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Abstract

θ13 is small compared to the other neutrino mixing angles. The solar mass splitting is
about two orders smaller than the atmospheric splitting. We indicate how both could arise
from a perturbation of a more symmetric structure. The perturbation also affects the solar
mixing angle and can tweak alternate mixing patterns such as tribimaximal, bimaximal,
or other variants to viability. For real perturbations only normal mass ordering with the
lightest neutrino mass less than 10−2 eV can accomplish this goal. Both mass orderings
can be accommodated by going over to complex perturbations if the lightest neutrino is
heavier. The CP-phase in the lepton sector, fixed by θ13 and the lightest neutrino mass,
distinguishes different options.

I Introduction

The recent experimental observation [1] of non-zero θ13

sin2 2θ13 = 0.090+0.008
−0.009 (Daya Bay : 217days, Rate and Spectrum) (1)

sin2 2θ13 = 0.100± 0.010 (stat)± 0.015 (syst) (RENO : 403 live days, Rate only) (2)

has triggered much model building.

The flavour basis neutrino mass matrix is diagonalized by a unitary matrix U such that
UTMνU = diag(m1, m2, m3). In the standard parametrization this Pontecorvo, Maki, Nak-
agawa, Sakata (PMNS) mixing matrix U is expressed as:

U =





c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13



 . (3)

As is evident, the entire PMNS matrix is completely determined by the oscillation observables
which in turn dictates the lepton mixings. The association of the CP violating phase δ with
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s13 readily suggests the possibility of occurrence CP violation now as θ13 is observed to be
non-vanishing. From global fits the currently favoured values are [2]:

∆m2
21 = (7.50+0.18

−0.19)× 10−5 eV2, θ12 = (33.36+0.81
−0.78)

◦,

|∆m2
31| = (2.473+0.070

−0.067)× 10−3 eV2, θ23 = (40.0+2.1
−1.5 ⊕ 50.4± 0.13)◦

θ13 = (8.66+0.44
−0.46)

◦, δ = (300+66
−138)

◦ . (4)

The atmospheric mixing angle, θ23, displays an intriguing deviation from exact maximal mixing
(θ23 = π/4). θ12 is also large but not maximal while θ13 is the smallest of the three although it
is close to its upper bound from earlier data. In this sense the latter is sometimes said to be
large.

The mass spectrum harbours some fascinating unsettled issues. Although the magnitude of
the solar and atmospheric neutrino mass splittings are now well measured, the absolute mass
remains undetermined. Moreover, the sign of ∆m2

31 remains unknown keeping the options
open for both the normal (m1 < m2 < m3) and the inverted (m3 < m1 < m2) ordering
depending upon whether this sign is positive or negative. Note that the solar splitting is about
two orders of magnitude smaller than the atmospheric one. It is useful to define the ratio
Rmass ≡ |∆m2

21/∆m
2
31| = (3.03± 0.16)× 10−2.

Therefore, the oscillation data evince two small quantities namely θ13 and Rmass. This observa-
tion kindled the motivation of our present analysis of starting with both these small quantities
vanishing and generating both by deploying a single perturbation, thereby relating them [3].

II Perturbation Theory

II.A The Unperturbed Picture

To begin with we assume no solar splitting as well as θ13 = 0 and produce both by a sin-

gle perturbation. For three flavours1 of neutrinos in the absence of solar splitting the un-
perturbed mass matrix in the mass basis will appear as2 M0

mass = diag(m
(0)
1 , m

(0)
1 , m

(0)
3 ).

We define3 m± = (m
(0)
3 ± m

(0)
1 ). The unperturbed mass matrix4 in the flavour basis is

M0
flavour = U0diag(m

(0)
1 , m

(0)
1 , m

(0)
3 )U0T , where U0 is the lowest order leptonic mixing matrix.

The columns of U0 are the unperturbed flavour eigenstates. Popular lepton mixings like tribi-
maximal (TBM), bimaximal (BM), and the ‘golden ratio’ (GR) exhibit5 θ13 = 0 and θ23 = π/4.

1The charged lepton mass matrix is diagonal in the flavour basis under consideration.
2The masses m

(0)
i

(i = 1, 2, 3) are chosen real and positive by appropriately adjusting the Majorana phases.
3m− is positive (negative) for normal (inverted) mass ordering.
4Note that all the mass matrices both the unperturbed as well as the perturbation itself are of Majorana

nature and therefore symmetric. M0 is hermitian by construction.
5After the discovery of non-zero θ13, none of them are consistent with the data and thus have to be corrected.
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They differ only in θ012. We opt for a general parametrization:

U0 =









cos θ012 sin θ012 0

− sin θ012√
2

cos θ012√
2

√

1
2

sin θ0
12√
2

− cos θ0
12√
2

√

1
2









(5)

For sin θ012 = 0.577 one gets the Tribimaximal mixing, wheras sin θ012 = 0.707 and sin θ012 = 0.526
yields the BM and GR mixings respectively. At 1σ, 0.539 < sin θ12 < 0.561. Therefore, none
of the mixings above satisfy the 1σ limits of θ12.

II.B The Perturbation

The symmetric perturbation mass matrix in the mass basis after removal of an irrelevant
constant part has the most general form:

M ′ = m+





0 γ ξ
γ α η
ξ η β



 . (6)

The dimensionless entities α, β, γ, ξ, η should be small compared to unity for a valid perturbation
theory. The perturbation – i.e., α, β, γ, ξ, η – can be real or complex.

A complex M ′ is not hermitian, therefore the combination (M0 +M ′)†(M0 +M ′) has to be
considered. M0†M0 is the unperturbed term and (M0†M ′ + M ′†M0) = Mpert serves as the

perturbation to the lowest order. The unperturbed eigenvalues are (m
(0)
i )2 and the perturbation

matrix is

Mpert = m+





0 2m
(0)
1 Re(γ) m+Re(ξ)− i m−Im(ξ)

2m
(0)
1 Re(γ) 2m

(0)
1 Re(α) m+Re(η)− i m−Im(η)

m+Re(ξ) + i m−Im(ξ) m+Re(η) + i m−Im(η) 2m
(0)
3 Re(β)



 .

(7)

II.B.1 The solar sector

The perturbation splits the degeneracy and determines the eigenstates which are rotated by an
angle ζ with respect to the first two columns of U0. The resultant solar mixing angle is now
θ12 = θ012 + ζ . The 2× 2 perturbation submatrix responsible for the entire solar story is:

M ′
(2×2) = m+α

(

0 r
r 1

)

for Real M ′ . (8)

with r = γ/α. For complex M ′, r ≡ Re(γ)/Re(α) and

(Mpert)(2×2) = 2m+m
(0)
1 Re(α)

(

0 r
r 1

)

for Complex M ′ . (9)

From simple calculation, one can easily show for Real Perturbation

m2,1 = m
(0)
1 +m+ α

2

[

1±
√
1 + 4r2

]

, (10)

3



Parameter TBM BM GR
rmin rmax rmin rmax rmin rmax

r (×102) -4.59 -1.95 -23.1 -19.9 1.54 4.18

Table 1: The range of r in the perturbation (see Eqs. (8, 9)) for the TBM, BM, and GR alternatives
that produces a θ12 consistent with the global fits at 1σ.

and for complex perturbation one has:

m2
2,1 = (m

(0)
1 )2 + 2m

(0)
1 m+ Re(α)

2

[

1±
√
1 + 4r2

]

. (11)

Up to small perturbative corrections m+m− gives the atmospheric mass splitting. Hence:

Rmass = |(m2
2 −m2

1)/(m
2
3 −m2

1)| = 2
m

(0)
1

|m−| Re(α)
√
1 + 4r2 . (12)

The angle ζ obtained from the above 2×2 submatrices – Eqs. (8, 9) – is ζ = 1
2
tan−1(2r). r 6= 0

is chosen so that the mass degeneracy is removed as well as the mixing angle is tuned within
the allowed range. In Table 1 we show the ranges of r for each of the three models.

II.B.2 Generating θ13 6= 0

With first order corrections, the third wave-function |ψ3〉 is given by:

|ψ3〉 =





0
1/
√
2

1/
√
2



+ ξ̄∗





cos θ012
− sin θ012/

√
2

sin θ012/
√
2



 + η̄∗





sin θ012
cos θ012/

√
2

− cos θ012/
√
2



 . (13)

with

ξ̄ =

(

m+

m−

)

Re(ξ) + i Im(ξ), η̄ =

(

m+

m−

)

Re(η) + i Im(η) for Complex M ′ . (14)

The expressions for the real limit can be read off from the above.

For simplicity we assume θ23 = π/4. Hence we get,
(

ξ̄

η̄

)∗
= tan θ012. Now tan θ012, being a real

quantity, forces the phases of ξ̄ and η̄ to be exactly equal. Comparing |ψ3〉 with Eq. (3) one
has:

sin θ13 e
−iδ =

[

cos θ012 ξ̄
∗ + sin θ012 η̄

∗] =
ξ̄∗

cos θ012
, (15)

θ13 and δ are now determined. It is evident that in the real case CP is conserved.

II.C Results

Eq. (12) gives an estimate of α while ξ is obtained from Eq. (15). This is utilized below to set
bounds on the lightest neutrino mass, m0.

II.C.1 Real Perturbation
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Figure 1: |ξ/α| is shown as a function of the lightest neutrino mass m0 for both mass orderings
when M ′ is real. The area between two curves of the same type is allowed when θ13 is varied over
its 1σ range. Also indicated are the values 1

3
and 3 for |ξ/α| – black dot-dashed lines.

It is not unreasonable to demand that the elements of the perturbation matrix should be of the
same order. In Fig. 1 is shown |ξ/α| for both mass orderings as a function of m0 for the TBM
case. We have also indicated where this ratio corresponds to the values 3 and 1

3
(dot-dashed

black lines), two limits separated by an order of magnitude. For normal ordering the ratio
is within the above range only if 2.3 meV ≤ m0 ≤ 3.7 meV. If other experiments establish
a larger value of m0 then that could be an indication that M ′ must be complex. In case of
inverted ordering, α is more than an order of magnitude less than |ξ| for almost the entire range
of m0. Thus, inverted ordering is a less favoured alternative if the perturbation is real but can
be accommodated if it is complex.

II.C.2 Complex Perturbation
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Figure 2: The limits on ε for normal (left) and inverted (right) mass orderings as a function of m0.
The upper (lower) limits from Eq. (16) for TBM are the green dashed (blue solid) curves. The
region between the curves of the same type correspond to θ13 values in the 1σ range. The dotted
maroon curves are the lower limits from solar splitting. Here r = 0 has been taken.

We take a conservative standpoint such that the complex perturbation matrix elements differ
only in the phase while each of them have the same magnitude (ε), i.e., α = ε exp(iφα), γ =
ε exp(iφγ), ξ = ε exp(iφξ). ε sets the scale of perturbation. ε is not entirely arbitrary; Eq. (14)
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Figure 3: φα (φγ) for complex M ′ as a function of m0 for normal ordering in the left panel (inset)
for ε in decreasing order of line-thickness 0.1, 0.05 and 0.025. The right panel is for the TBM model.
Same values of ε are chosen – in decreasing order of thickness and θ13 is taken at the best-fit value.
In the inset is shown the Jarlskog parameter J for the chosen ε and the 1σ limits of θ13. Both panels
are for normal ordering. For inverted ordering δ → (π − δ) and J is unchanged.

implies:
∣

∣

∣

∣

m+

m−

∣

∣

∣

∣

ε ≥ |ξ̄| ≥ ε . (16)

These limits are presented in the left (right) panel of Fig. 2 for the normal (inverted) mass
ordering. The upper and lower limits on ε are shown as the green dashed and blue solid curves.
The two curves of each type show how the limit changes as θ13 is allowed to vary over its 1σ
range. Tribimaximal mixing has been assumed for these plots.

In addition, Eq. (12) also puts a bound indicated by the dotted maroon curves in the two
panels of Fig. 2. It is seen that ε < 0.13 is a safe choice.

The phases φα, φγ and φξ can be found from the solar splitting, θ12, and θ13, respectively and
δ can be predicted as shown in Fig. 3.

It is worthwhile to point out that the procedure for extracting δ using |ξ̄| leaves a two-fold
uncertainty δ ↔ π + δ. Keeping this in mind we have shown δ in the first quadrant in Fig. 3
even though the 1σ range of the global fit – Eq. (4) – would prefer the partner π + δ solution.

III A Mass Model

In this segment we focus on a definite model. As already shown, the two small quantities
θ13 and ∆m2

solar can originate from a single perturbation. We now intend to generate some
other oscillation parameters perturbatively, causing them to get connected. Specifically, our
present goal is to get non-zero θ12, θ13, ∆m

2
solar and also allow θ23 to deviate from π/4 starting

from a scenario where both the solar mixing and splitting together with θ13 are zero and the
atmospheric mixing is also maximal. Here a sub-dominant Type I seesaw contribution perturbs
the dominant unperturbed mass matrix arising from a Type II seesaw.

6



III.A Origin of the Unperturbed Piece

The unperturbed mass matrix remains the same as earlier. The mixing matrix now reduces to
a simpler form obtained from eq. (5) setting θ012 = 0.

We assume that the Type II seesaw together with a µ↔ τ symmetry produces the unperturbed
piece. The SU(2)L × U(1)Y conserving Lagrangian is of the form:

LTypeII =
∑

i,j

1

2
hij(ν

i
L)

TC−1νjL〈∆L〉+ h.c. (17)

Here ∆L is the usual scalar triplet whose vev gives the Majorana mass, and νL ≡ (νe, νµ, ντ )
T
L.

hij = hji owing to the symmetric nature of the Majorana mass matrix. The additional µ ↔ τ
symmetry causes h22 = h33. We demand νe is unmixed and set h12 = h13 = 0. This can be
achieved using a Z2 symmetry satisfying:

Z2 : νeL → νeL; (νµ,τ )L → −(νµ,τ )L; ∆L → ∆L (i, j = 1, 2, 3). (18)

All the above properties are obeyed by a general mass matrix in the flavour basis:

M0
flavour =





x 0 0
0 y z
0 z y



 (19)

Its mass basis counterpart obtained with the help of U0 that leads toM0
mass = diag(x, y−z, y+

z). Absence of solar splitting is guaranteed if x = y − z, i.e., h22 − h23 = h11.

III.B Model for the Perturbation

The perturbation originates from a Type - I seesaw. We choose the Dirac mass matrix to be
proportional to the identity. The SU(2)L × U(1)Y preserving Lagrangian in this case is,

LTypeI =
∑

i,j

λij ν̄
i
LN

j
R〈Φ〉+

1

2
Hij(N

i
R)

TC−1(N j
R) + h.c. (i, j = 1, 2, 3) (20)

The vev of the doublet scalar 〈Φ〉 sets the Dirac mass scale (mD). Choosing λij = λ0δij , gives
MD = mDI.

One of the singlet right-handed neutrinos is taken decoupled from the rest to yield the mass
matrix of the desired form via the Majorana mass term given by the second term in the above
Lagrangian. The Majorana nature requires Hij = Hji. The perturbation can be both real and
complex depending upon Hij. We discuss the real case first.

III.B.1 Real Perturbation

Using Type - I seesaw Mechanism we get the perturbation matrix in flavour basis as:

M ′flavour =MT
DM

−1
R MD =

m2
D

mR





0 1 0
1 0 0
0 0 1



 choosing Mflavour
R = mR





0 1 0
1 0 0
0 0 1



 . (21)
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In mass basis:

M ′mass = U0TM ′flavourU0 =
m2

D√
2mR







0 1 1

1
√

1
2

−
√

1
2

1 −
√

1
2

√

1
2






. (22)

Using this perturbation matrix the corrected wave-function |ψ3〉 is:

|ψ3〉 =





σ
1√
2
(1− σ√

2
)

1√
2
(1 + σ√

2
)



 where σ ≡ m2
D√

2mRm−
= s13 cos δ. (23)

Since M ′ is real, CP-violation is absent. As m− is positive (negative) for normal (inverted)
ordering, δ is 0 (π) for normal (inverted) ordering. For the atmospheric mixing we have,

tan θ23 =
1− σ√

2

1 + σ√
2

= tan(45◦ − ϕ) where ϕ = tan−1(
σ√
2
) = tan−1(

s13 cos δ√
2

). (24)

Since s13 cos δ is positive (negative) for normal (inverted) ordering θ23 lies in the first and second
octant for normal and inverted ordering respectively.

The 2× 2 submatrix of M ′mass relevant for the solar sector is:

M ′mass
2×2 =

m2
D√

2mR

(

0 1
1 1√

2

)

=
√
2m−s13 cos δ

(

0 1
1 1√

2

)

. (25)

This leads to:
∆m2

solar = 3
√
2s13 cos δ m

−m
(0)
1 . (26)

The solar mixing angle as already introduced in terms of ζ is given by

θ12 = ζ =
1

2
tan−1(2

√
2) = 35.26◦. (27)

This is actually the θ12 of Tribimaximal mixing. It can be inferred from Eqs. (4) and (27) that
realM ′ is incapable of providing the observed value of θ12 within 1σ. But it is allowed at 3σ for
which the region of lightest neutrino mass ranges from 2 meV to 3.25 meV for normal ordering.
For inverted ordering, the solar splitting is too high to fit the data.

To accommodate θ12 within 1σ and produce CP violation, complex M ′ is imperative.

III.B.2 Complex Perturbation

The perturbation is made complex by allowing phases in MR, keeping MD ∝ I fixed.

Mflavour
R = mR





0 e−iφ1 0
e−iφ1 0 0
0 0 e−iφ3



 (28)
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We will restrict ourselves to the choice of φ3 = 0. Employing Type - I seesaw:

M ′mass = U0TM ′flavourU0 = σm−





0 eiφ1 eiφ1

eiφ1 1√
2

−1√
2

eiφ1 −1√
2

1√
2



 . (29)

In mass basis,

Mpert =
m2

D√
2mR







0 2m
(0)
1 cos φ1 m+ cosφ1 − i m− sinφ1

2m
(0)
1 cosφ1

2√
2
m

(0)
1 −m+

√
2

m+ cosφ1 + i m− sin φ1 −m+
√
2

2√
2
m

(0)
3






. (30)

In analogy to the real case we write for the solar mixing angle

θ12 = ζ =
1

2
tan−1(2

√
2 cos φ1). (31)

This is similar to eq. (27) apart from the factor of cos φ1. One can utilize the 1σ values of
θ12 as in eq. (4) to obtain a range for φ1: 0.764 < cosφ1 < 0.890. Restricting ourselves to the
lowest order in perturbation

∆m2
solar =

√
2σm

(0)
1 m−

√

1 + 8 cos2 φ1 (32)

where σ is as defined in eq. (23). σ is positive and negative for normal and inverted ordering
respectively. With the solar sector now resolved, we turn towards the other two mixing angles.
As computed before,

|ψ3〉 =





σm−z1
1√
2
(1− σ√

2
)

1√
2
(1 + σ√

2
)



 where z1 ≡
cosφ1

m− − i
sinφ1

m+
. (33)

Thus s13e
−iδ = σm−z1. Hence the identification of

s13 = σ|m−|

√

cos2 φ1

m−2 +
sin2 φ1

m+2 and δ = tan−1(tanφ1
m−

m+
) (34)

is obvious. The atmospheric mixing angle is given by tan θ23 = tan(45◦ − ϕ′) where ϕ′ =√
2s13

cos δ
cosφ1

. As the sign of s13 cos δ is completely determined by sign of σ, one can clearly

exclude the second (first) octant of θ23 for normal (inverted) ordering. One can always check
the correspondence of this section with the real case by substituting φ1 = 0.

Our results for Normal Ordering are graphically represented in Fig. 4 for 1σ. Here solar
splitting is expressed as a function of m0. We have shown the results for central value of θ13
for θ23 in first octant. The horizontal lines are the observed bounds of the solar splitting. The
blue and maroon lines are for lower and upper bounds of θ12 respectively, that basically marks
the range of m0 in which our model holds. The CP violating phase δ lies between 24◦ to 36◦.
The Jarlskog parameter ranges between 1.4 × 10−2 and 2 × 10−2. In this case also our target
can not be achieved for Inverted Ordering.
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IV Conclusions

We have proposed that the neutrino mass matrix has a structure in which θ13 and ∆m2
solar

are zero, θ23 = π/4, and the atmospheric mass splitting, ∆m2
atm, is what is observed. The

solar mixing angle θ12 can be chosen zero or as dictated by popular mixing patterns such as
tribimaximal mixing. This is a reasonably good reflection of the observed data though a few
finer details are missing here. We speculate the presence of a smaller contribution in addition,
amenable to a perturbative treatment, that generates the small parameters in the neutrino
mixing sector, namely, θ13 and ∆m2

solar and applies minor tweaks to θ12 and θ23. CP-violation
can also be incorporated. This leads to testable relationships between oscillation parameters.
We also sketch a mass model based on the seesaw mechanism which embodies these features.
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