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Abstract

In completely local settings, we establish that a dynamically evolving spherically sym-
metric black hole horizon can be assigned a Hawking temperature and with the emission
of flux, radius of the horizon shrinks.

The laws of black hole mechanics in general relativity are remarkably analogous to the laws
of thermodynamics [1]. This analogy is exact when quantum effects are taken into account.
Indeed, Hawking’s semiclassical analysis establishes that quantum mechanically, a stationary
black hole with surface gravity κ radiates particles to infinity with a perfect black body spectrum
at temperature κ/2π [2]. Consequently, asymptotic observers perceive a thermal state and
assign a physical temperature to the black hole. The precise match to thermodynamics is
complete when the thermodynamic entropy of the black hole is identified with a quarter of its
area [3].

Although the proofs that have been provided over the years are elegant, they are quite
restrictive, inapplicable even for spacetimes with superradiance [4]. These formulations also do
not indicate how such a thermal state may arise as a result of some version of physical process.
In addition, it seems to be a reasonable physical expectation that even with a local definition
of black hole horizon one should be able to establish the analogy to thermodynamics. More
precisely, such horizons should have a temperature of κ/2π. Incidentally, this question has
been investigated in a semiclassical approach which treats Hawking radiation as a quantum
tunneling phenomenon [5, 6]. Still there are some problems with the method itself and some
issues which have not been addressed in this treatment of dynamical horizons and it is not clear
how the horizon loses area due to emission of a flux of radiation.

In this paper, a formalism is developed to establish two basic issues (see [7] for details). First,
that one can associate a temperature to local dynamical horizons without the need of any WKB-
like approximations. Second, that there exists a precise relation between the radiation emitted
by the horizon and area loss, i.e., flux of outgoing radiation through the horizon in between
two partial Cauchy slices exactly equals the difference of radii of the sphere that foliates the
horizon at those two instances.

We begin with definitions. We follow the conventions of [8]. Consider a four dimensional
spacetime M with signature (−,+,+,+). A three-dimensional submanifold ∆ in M is said to
be a future outer trapping horizon (FOTH) if 1) It is foliated by a preferred family of topological
two-spheres such that, on each leaf S, the expansion θ+ of a null normal la+ vanishes and the
expansion θ− of the other null normal la− is negative definite, 2) The directional derivative of
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θ+ along the null normal la− (i.e., Ll−θ+) is negative definite. Thus, ∆ is foliated by marginally
trapped two-spheres. According to a theorem due to Hawking, the topology of S is necessarily
spherical in order that matter or gravitational flux across ∆ is non-zero. If these fluxes are
identically zero then ∆ becomes a Killing or isolated horizon. Even though our arguments will
remain local, for definiteness, we choose a spherically symmetric background metric

ds2 = −2e−fdx+dx− + r2(dθ2 + sin2θdφ2) (1)

where both f and r are smooth functions of x±. The expansions of the two null normals
are θ± = (2/r) ∂±r respectively where ∂± = ∂/∂x±. In this coordinate system, the second
requirement for FOTH translates to ∂−θ+ < 0 on ∆.

Let the vector field ta = la+ + h la− be tangential to the FOTH for some smooth function h.
Then the Raychaudhuri equation for la+ and the Einstein equation implies

∂+θ+ = −h∂−θ+ = −8π T++. (2)

where T++ = Tab l
a
+l
b
+ and Tab is the energy momentum tensor. Since t2 = −2h e−f , a FOTH

becomes spacelike if and only if T++ > 0 and is timelike if and only if T++ < 0. For a timelike
FOTH, several consequences follow. Here, Ltr < 0, and hence, ∆ is timelike if and only if the
area A and the Misner-Sharp energy E decreases along the horizon. This is also expected on
general grounds since the horizon receives an incoming flux of negative energy, T++ < 0.

In the dynamical spacetime (1) the Kodama vector field plays the analog role of the Killing
vector [9]. For this spacetime, it is given by

Ka = ef (∂−r) ∂
a
+ − ef (∂+r) ∂

a
−. (3)

The surface gravity is defined through Ka∇[bKa] = κKb and is κ = −ef ∂−∂+r. The FOTH
condition ∂−θ+ < 0 implies κ > 0. We determine the positive frequency modes of the Kodama
vector. It is given by

Zω = F (r)

{
θ
− iω
κ

+ for θ+ > 0

(|θ+|)−
iω
κ for θ+ < 0.

(4)

where the spheres are not trapped ‘outside the trapping horizon’ (θ+ > 0) and fully trapped
‘inside’ (θ+ < 0). These are precisely the modes which are defined outside and inside the
dynamical horizon respectively but not on the horizon. Now we have to keep in mind that the
modes (4) are not ordinary functions, but are distribution-valued. Using the standard results
[10], we find for

(θ+ + iε)λ =

{
θλ+ for θ+ > 0

|θ+|λeiλπ for θ+ < 0
(5)

for the choice λ = −iω/κ. For spherically symmetric static case, see [11]. The distribution (5)
is well-defined for all values of θ+ and λ, and it is differentiable to all orders. The modes Z∗ω
are given by the complex conjugate distribution.

We calculate the probability density in a single particle Hilbert space for positive frequency
solutions across the dynamical horizon and is given by, apart from a positive function of r,

%(ω) = ω(θ+ + iε)−
iω
κ (θ+ − iε)

iω
κ .

=

{
ω for θ+ > 0

ωe
2πω
κ for θ+ < 0.

(6)
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The conditional probability that a particle emits when it is incident on the horizon from inside
is,

P(emission|incident) = e−
2πω
κ (7)

This gives the correct Boltzmann weight with the temperature κ/2π, which is the desired value.
We now show that as the horizon evolves, the radius of the 2-sphere foliating the horizon

shrinks in precise accordance with the amount of flux radiated by the horizon. The line-element
(1) induces a line-element on ∆

ds2 = −2e−fh−1(dx̃−)2 + r2(dθ2 + sin2θdφ2). (8)

Consequently, the volume element on the FOTH is given by dµ =
√

2e−fh−1r2 sin θ dx̃−dθdφ.
We can now calculate the flux of matter energy that crosses the dynamical horizon—it is an
integral on a slice of horizon bounded by two spherical sections S1 and S2

F =

∫
dµ Tabn̂

aKb (9)

where n̂a is the unit normal vector

n̂a =
1√

2he−f
(∂a+ − h∂a−) (10)

and Ka is the Kodama vector. Using spherical symmetry, and the Einstein equations, we get
(see [7] for details)

F = −1

2
(r2 − r1) (11)

where r1, r2 are respectively the two radii of S1, S2. Since the area is decreasing along the
horizon, r2 < r1 where S2 lies in the future of S1. As a result, the outgoing flux of matter
energy radiated by the dynamical horizon is positive definite (and the ingoing flux of matter
energy is negative definite). The flux formula (11) differs from the one given in [12] in an
important way: since the Kodama vector field provides a timelike direction and is null on the
horizon, it is appropriate to use Ka in the flux formula for the dynamical horizon.

Our derivation of Hawking temperature and the flux law depends on two assumptions. The
first is the existence of the Kodama vector field and the Misner-Sharp energy. For spherically
symmetric spacetimes, the Kodama vector field exists unambiguously and the Misner-Sharp
energy is well defined. For more general spacetimes, a Kodama-like vector field is not known,
however, one can still define some mass for such cases that reduces to the Misner-Sharp energy
in the spherical limit. The second assumption, is the slow variation of the dynamical surface
gravity κ during evolution. For large black holes, the horizon evolves slowly enough so that
the surface gravity function should vary slowly in some small neighbourhood of the horizon. In
other words, this derivation implies that the Hawking temperature for a dynamically evolving
large black hole is κ/2π if the dynamical surface gravity is slowly varying in the vicinity of the
horizon.

It is also interesting to speculate on the extension of the present method for other diffeomor-
phism invariant theories of gravity. While the zeroth and the first law hold for any arbitrary
such theory, the second law has only been proved for a class of such theories [13]. If the present
formalism can be extended to other theories of gravity, it will lend a support to the existence
of the area increase theorem for such theories. While more interesting and deeper issues can
only be understood in a full quantum theory of gravity, the present framework can provide a
better understanding of the Hawking radiation process.
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