
PRAMANA c© Indian Academy of Sciences Vol. xx, No. x
— journal of xxxx xxxx

physics pp. 1–7

Generalized Parton Distributions for the Nucleon in the
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Abstract. We calculate the generalized parton distributions (GPDs) for the up and down quark in
nucleon using the effective light- front wavefunction (LFWF). Our results for the GPDs in momen-
tum and impact parameter space are comparable with the other phenomenological models for the
quark distribution functions.
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1. Introduction

Generalized parton distributions (GPDs) are the important set of parameters that give us
essential information about the nonperturbative structure of hadrons. GPDs have gained
a lot of theoretical and experimental interest in the recent past. At the leading order, there
are two GPDs: helicity dependent H(x, ζ, t) and helicity independent E(x, ζ, t). These
are functions of three variables, namely, longitudinal momentum fraction (x), square of
the total momentum transferred (t), and skewness (ζ), which represents the longitudinal
momentum transferred in the process. GPDs are experimentally extracted from hard ex-
clusive processes like deeply virtual compton scattering [1] and vector meson production
[2]. Recent measurements at DESY [3] and Jefferson Lab [4] with the upcoming 12 GeV
energy upgrade at Jefferson Lab will significantly advance the determination of GPDs in
the valence quark region, whereas measurements at COMPASS [5] will explore the region
of sea quarks and gluons with small momentum fractions.

The GPDs are expressed as off-forward matrix elements of bilocal light-front current
in the overlap representation. Their first moments are related to form factors and they
do not have probabilistic interpretation. For the zero skewness, the Fourier transform
(FT) of the GPDs with respect to the momentum transfer in the transverse direction, gives
the impact parameter dependent GPDs. The impact parameter GPDs have probabilistic
interpretation [6] and provide us information about partonic distributions in the impact
parameter or transverse position space [7].

The AdS/CFT correspondence between the string theory on a higher-dimensional anti-
de Sitter (AdS) space and conformal field theory (CFT) in physical space-time is an im-
portant approach to study the hadron spectroscopy [8]. The AdS/CFT conjecture has
led to a semiclassical approximation for strongly-coupled quantum field theories which
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provides physical insights into its non perturbative dynamics of meson and baryons [9].
These models incorporate confinement and chiral symmetry breaking, and successfully
explain the important properties of hadron spectra, e.g., the mass spectra [10], form fac-
tors [11], etc. [12]. The idea of matching the matrix elements of AdS modes to the
light-front QCD is referred to as light-front holography (LFH). This approach has been
successfully extended to explain the GPDs for valence quarks indirectly via the sum rules
that connect GPDs with electromagnetic form factors [13].

Recently a phenomenological light-front wave function (LFWF) has been proposed by
matching the soft-wall model of AdS/QCD and Light-Front QCD for electromagnetic
form factors of hadrons with arbitrary twist dimensions [14]. The light-front quark model
(LFQM) successfully explain the results for hadronic form factors consistent with quark
counting rules as well as the Drell Yan-West Duality. Using LFH approach we intend to
investigate the LFQM to study the GPDs for the up and down quark in nucleon. We also
investigate the GPDs in the impact parameter space. The qualitative behavior of our model
predictions is compared with the recent parameterization method of parton distributions
[15].

2. Generalized parton distributions in the Light-front quark model

In the light-front formalism, the Dirac and Pauli form factors are identified by the helicity
conserving and the helicity non-conserving matrix element of the plus component of the
electromagnetic current J+ [16]. The quark electromagnetic form factors F q1 (q

2) and
F q2 (q

2) in the overlap representation are defined as

F q1 (t) =

∫
dx d2k⊥
16π3

[
ψ∗↑1/2(x, k

′
⊥)ψ

↑
1/2(x, k⊥) + ψ∗↑−1/2(x, k

′
⊥)ψ

↑
−1/2(x, k⊥)

]
,

F q2 (t) =
−2MN

q1 − ιq2

∫
dxd2k⊥
16π3

[
ψ∗↑1/2(x, k

′
⊥)ψ

↓
−1/2(x, k⊥) +

ψ∗↑1/2(x, k
′
⊥)ψ

↓
−1/2(x, k⊥)

]
, (1)

where ψλNλq (x, k⊥) is LFWF describing the interaction of quark with scalar-diquark to
form a nucleon, λN =↑↓ correspond to the specific helicities of the nucleon and λq =
±1/2 is helicity of struck quark, k′⊥ = k⊥ + (1 − x)q⊥, and t = −q2 = −q2⊥ is the
momentum transferred.

The quark-scalar diquark helicity component of the LFWFs are expressed as

ψ↑1
2

(x, k⊥) = ϕ1
q(x, k⊥) , ψ↑− 1

2

(x, k⊥) = −
(
k1 + ιk2

xMn

)
ϕ2
q(x, k⊥) ,

ψ↓1
2

(x, k⊥) =

(
k1 − ιk2

xMn

)
ϕ2
q(x, k⊥) , ψ↓− 1

2

(x, k⊥) = ϕ1
q(x, k⊥) . (2)

where

ϕiq(x, k⊥) =
4π

κ
N i
q

√
log(1/x)

1− x
xa

i
q (1− x)b

i
q e
− k2⊥

2κ2
log(1/x)

(1−x)2 . (3)

Here N i
q is the normalization constant, aiq and biq are the free parameters to be fitted to the

experimental data on form factors for proton and neutron.
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Sum rules connect the GPDs for unpolarized quarks with the electromagnetic form
factors [6]

F q1 (t) =

∫ 1

0

dx Hq(x, t) , F q2 (t) =

∫ 1

0

dx Eq(x, t) . (4)

We have used the standard convention to define the GPDs for valence quarks (minus
antiquark)Hq(x, t) = Hq(x, 0, t)+Hq(−x, 0, t); Eq(x, t) = Eq(x, 0, t)+Eq(−x, 0, t).
The GPDs at −x for quarks is equal to the GPDs at x for antiquarks with a minus sign.
After performing the matching of respective expressions for the nucleon form factors
results the GPDs for the up and down quark are given as

Hq(x, t) = nq
(N1

q )
2

Iq1
x2a

1
q (1− x)2b

1
q+1

[
1 +

σ(x)
2
κ2

log(1/x)

(
1− q2⊥ log(1/x)

4κ2

)]

× exp[− log(1/x)

4κ2
q2⊥] ,

Eq(x, t) = κq
2N1

qN
2
q

Iq2
xa1q+a2q−1(1− x)b1q+b2q+2

exp[− log(1/x)

4κ2
q2⊥] . (5)

where nq is the number of valence quarks in nucleon, κq is the quark anomalous magnetic

moment, and σ(x) =
N2
q

N1
q
x(a

2
q−a

1
q)(1− x)(b

2
q−b

1
q+1). The integral in the above Eq. are

defined as

Iq1 =

∫ 1

0

dx (N1
q )

2 x2a
1
q (1− x)2b

1
q+1

[
1 +

σ2κ2

log(1/x)

]
,

Iq2 = 2

∫ 1

0

dxN1
qN

2
q x

a1q+a2q−1(1− x)b1q+b2q+2
. (6)

For the numerical computation of GPDs, we use the following set of parameters: a1u =
0.285, a1d = 0.7, b1u = 0.05, b1d = 1, a2u = 0.244, a2d = 0.445, b2u = 0.109, b2d =
0.336. In Fig. 1(a)-(b), we have presented the spin conserving GPD Hu/d(x, t) as a
function of x for different t = −0.5,−1,−2 GeV2 for up and down quark. The overall
behavior of the GPDs is same for up and down quarks, however, the fall off behavior is
faster with the increasing values of x for the down quark. In Figs. 1(c)-(d), we present
the GPD Eu/d(x, t) as a function of x for different t values for the up and down quark. In
this case the profile function increases to a maximum value and then decreases, however,
the fall off behavior is same for both up and down quarks.

3. GPDS in impact parameter space

GPDs in the momentum space are related to the impact parameter dependent parton dis-
tribution by the Fourier transform [7]. The transverse impact parameter b = |b⊥| is a
measure of the transverse distance between the struck parton and the center of momen-
tum of the hadron. The GPDs in the impact parameter or transverse position space are

Hq(x, b) =
1

(2π)
2

∫
d2q⊥e

−q⊥.b⊥Hq(x, t) , (7)

Eq(x, b) =
1

(2π)
2

∫
d2q⊥e

−q⊥.b⊥Eq(x, t) . (8)
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Figure 1. (Color online) Plots of (a) Hu(x, b) vs x for fixed values of impact parameter
b = |b⊥| (b) Hu(x, b) vs b for fixed values of x, (c) same as in (a) but for d quark and
(d) same as in (b) but for d-quark.

In order to have a comprehensive analysis of GPDs in impact parameter space, we com-
pare our model predictions with other approaches. There are various phenomenological
approaches based upon the global parton analysis [17], Gaussian ansatz [18], Regge pa-
rameterization [19], etc. [20]. In a recent parameterization method(PM), the GPDs for
Dirac form factor [15]

Hq(x, t) = q(x) exp[1.1
(1− x)2t
x0.4

] , (9)

where the quark distribution function q(x)

u(x) = 0.262x−0.69(1− x)3.50(1 + 3.83x0.5 + 37.65x) ,

d(x) = 0.061x−0.65(1− x)4.03(1 + 49.05x0.5 + 8.65x) . (10)

Similarly, for the GPD Eq(x, t), we have used the representation [15]

Eq(x, t) = Eq(x) exp[1.1(1− x)
2t

x0.4
] . (11)

Here the function Eq(x) is expressed as

Eu(x) = κu
Nu

(1− x)κ1u(x) , Ed(x) = κd
Nd

(1− x)κ2d(x) , (12)

with k1 = 1.53, k2 = 0.31, normalization constants Nu = 1.53, and Nd = 0.946 for
quark anomalous magnetic moment κu = 1.673, κd = −2.033.

We compare the behavior of impact parameter GPDs Hu/d(x, b) and Eu/d(x, b) in
LFQM with the PM for both up and down quarks. In Fig. 2(a), we have plotted the
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Figure 2. (Color online) Plots of (a) Hu(x, b) vs x for fixed values of impact parameter
b = |b⊥| (b) Hu(x, b) vs b for fixed values of x, (c) same as in (a) but for d quark and
(d) same as in (b) but for d quark.

behavior of Hu(x, b) with x for fixed values b = 0.3, 1 GeV−1, and in Fig. 2(b), we
have shown the behavior of same GPD with impact parameter b for the fixed values x =
0.3, 0.6. In Figs. 2(c) and 2(d), we plot the GPDsHd(x, b) while considering its variation
with x and b for the same set of parameters for the down quark. Similar plots showing
the behavior of GPDs Eu/d(x, b) are shown in Fig. 3(a)-(d). In both cases, the qualitative
behavior of GPDs is almost same for both the up and down quarks in the impact parameter
space. The profile of GPDs in the LFQM shifted towards a lower value of x as b increases,
therefore the transverse profile is peaked at b = 0 and falls off further.

The GPD Hu/d(x, b) is peaked at a higher value of x and falls off sharply in LFQM,
whereas in parameterization method the same GPD is peaked at a much lower x. The GPD
Eu/d(x, b) show almost similar behavior with x in two approaches, however for the small
values of x, GPD has a large magnitude for the up quark in LFQM. The small difference
in the behavior of GPDs is due reason that we restricted to contribution of up and down
quarks, while the contribution of the heavier quarks, such as, strange and charm quarks
has been ignored. For the variation of both the GPDs Hu/d(x, b) and Eu/d(x, b) with
impact parameter b, the overall behavior is same in different models and the transverse
profile is peaked at b = 0. It is also interesting to observe that for the small values of
b, the magnitude of GPD H(x, b) is larger for up quark than down quark, whereas the
magnitude of the GPD E(x, b) is marginally larger for down quark than up quark.

4. Summary and Conclusions

In this work we have used a phenomenological Light-front quark model to calculate the
GPDs for the up and down quark in nucleon. The effective light-front wavefunction is
obtained by matching the matrix elements in the AdS/QCD and light-front QCD at an
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Figure 3. (Color online) Plots of (a) Eu(x, b) vs x for fixed values of impact parameter
b = |b⊥| (b) Eu(x, b) vs b for fixed values of x, (c) same as in (a) but for d quark and
(d) same as in (b) but for d quark.

initial scale. A detailed analysis of nucleon GPDs has been performed in the momentum
space and transverse impact parameter space. The qualitative behavior of GPDs in trans-
verse impact parameter space is same as the phenomenological parameterization method,
though we have considered only the valence quarks contribution. In future, we plan to
generalize the LFWF to sea quarks, antiquarks, and gluons, which could then be used in
the evaluation of different hadronic processes.
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