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Abstract. Unified models incorporating the right handed neutrino in a symmetric way generically
possess parity symmetry. If this is broken spontaneously it results in the formation of domain walls
in the early Universe, whose persistence is unwanted. A generic mechanism for destabilisation of
such walls is a small pressure difference signalled by difference in the free energy across the walls.
It is interesting to explore the possibility of such effects in conjunction with the effects that break
supersymmetry in a phenomenologically acceptable way. When this possibility is realised in the
context of several scenarios of supersymmetry breaking, it leads to an upper bound on the scale of
spontaneous parity breaking, often much lower than the GUT scale. In the left-right symmetric
models studied, the upper bound is no higher than 1011GeV but a scale as low as 105GeV is
acceptable.
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1. LEFT-RIGHT SYMMETRY : A SUPERSYMMETRIC REVIVAL

The pioneering contributions of Charan, some of them with Goran, to unification with
right handed neutrinos have been a very useful source for some ideas I have had about
how cosmology and unification might work and I have presented them in several other
conferences. It is certainly very special to be able to present them here, with title as
phrased above.

Chirality seems to be an essential feature of fundamental physics, thereby allowing
dynamical generation of fermion masses. However the observed parity violation of the
Standard Model (SM) is not warranted by chirality. Discovery of neutrino masses in
the past two decades strongly suggests the existence of right handed neutrino states. The
resulting parity balanced spectrum of fermions begs a parity symmetric theory and parity
violation could then be explained to be of dynamical origin. An interesting fact to emerge
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is that the see-saw mechanism generically suggests an MR scale considerably smaller
than the scale of coupling constant unification in SO(10). It is therefore appealing to
look for left-right symmetry as an intermediate stage in the sequence of symmetry
breaking, and explore the possible range of masses acceptable for MR. The crucial
phenomenological question is, could the new symmetries be within the accessible range
of the LHC and the colliders of foreseeable future, and hence deserve the name Just
Beyond the Standard Model (JBSM)?

Left-right symmetric model[1, 2] needs a Supersymmetric extension as an expedient
for avoiding the hierarchy problem. The minimal set of Higgs superfields required, with
their SU(3)⊗SU(2)L⊗SU(2)R⊗U(1)B−L is,

Φi = (1,2,2,0), i = 1,2,
∆ = (1,3,1,2), ∆̄ = (1,3,1,−2), ∆c = (1,1,3,−2), ∆̄c = (1,1,3,2),

Ω = (1,3,1,0), Ωc = (1,1,3,0) (1)

and further details of the model can be found in the references.
There is an awkward impasse with this model, namely we would like to retain su-

persymmetry down to the TeV scale. So the first stage of gauge symmetry breaking has
to respect supersymmetry. If we choose the parameters of the superpotential to ensure
spontaneous parity breaking, then either the electromagnetic gauge invariance or the R
parity have to be sacrificed. The first of these is unacceptable consequence, and the sec-
ond entails a requirement of inelegant fixes. This problem was elegantly resolved by
Charan, Karim Benakli and Goran[3]. It contains the two additional triplet Higgs fields
introduced in the third line above. We refer to this as ABMRS model. Supersymmetric
minima breaking SU(2)R symmetry are signalled by the ansatz

〈Ωc〉=
(

ωc 0
0 −ωc

)
, 〈∆c〉=

(
0 0
dc 0

)
, (2)

In this model, with an enhanced R symmetry, we are lead naturally to a see-saw relation
M2

B−L = MEW MR. This means Leptogenesis is postponed to a lower energy scale closer
to MEW . Being generically below 109 GeV, this avoids the gravitino mass bound but
requires non-thermal leptogensis[4].

For comparison we also take an alternative model to this, considered in [5] where a
superfield S(1,1,1,0) also singlet under parity is included in addition to the minimal set
of Higgs required. This is referred here as BM model.

2. COSMOLOGY OF BREAKING AND SOFT TERMS

SUSY breaking soft terms emerge below the SUSY breaking scale MS. We now proceed
with the stipulation advanced in [6] that the role of the hidden sector dynamics is not
only to break SUSY but also break parity. This permits in principle a relation between
observables arising from the two apparently independent breaking effects.

The soft terms which arise in the two models ABMRS and BM may be parameterized
as follows

L 1
so f t = m2

1Tr(∆∆
†)+m2

2Tr(∆̄∆̄
†)+ m2

3Tr(∆c∆
†
c)+m2

4Tr(∆̄c∆̄
†
c) (3)



TABLE 1. Differences in values of soft supersymmetry
breaking parameters for a range of domain wall decay
temperature values TD. The differences signify the extent
of parity breaking.

TD/GeV ∼ 10 102 103

(m2−m2′)/GeV2 ∼ 10−4 1 104

(β1−β2)/GeV2 ∼ 10−8 10−4 1

L 2
so f t = α1Tr(∆Ω∆

†)+α2Tr(∆̄Ω∆̄
†)+ α3Tr(∆cΩc∆

†
c)+α4Tr(∆̄cΩc∆̄

†
c) (4)

L 3
so f t β1Tr(ΩΩ

†)+β2Tr(ΩcΩ
†
c) (5)

L 4
so f t = S[γ1Tr(∆∆

†)+ γ2Tr(∆̄∆̄
†)]+ S∗[γ3Tr(∆c∆

†
c)+ γ4Tr(∆̄c∆̄

†
c)] (6)

L 5
so f t = σ̃

2|S|2 (7)
For ABMRS model the relevant soft terms are given by,

Lso f t = L 1
so f t +L 2

so f t +L 3
so f t (8)

For BM model the soft terms are given by,

Lso f t = L 1
so f t +L 4

so f t +L 5
so f t (9)

Using the requirement δρ ∼ T 4
D we can constrain the differences between the soft terms

in the Left and Right sectors [7, 8]. In the BM model the S field does not acquire a vev
in the physically relevant vacua and hence the terms in eq.s (6) and (7) do not contribute
to the vacuum energy. The terms in eq. (4) are suppressed in magnitude relative to those
in eq. (5) due to having Ω vev’s to one power lower. This argument assumes that the
magnitude of the coefficients α are such as to not mix up the symmetry breaking scales
of the Ω’s and the ∆’s.

To obtain orders of magnitude we have taken the m2
i parameters to be of the form

m2
1 ∼ m2

2 ∼ m2 and m2
3 ∼ m2

4 ∼ m
′2 [8] with TD in the range 10−103 GeV [9]. For both

the models we have taken the value of the ∆ vev’s as d ∼ 104 GeV. For ABMRS model
additionally we take ω ∼ 106 GeV. The resulting differences required for successful
removal of domain walls are shown in Table 1.

We see from table 1 that if we assume both the mass-squared differences m2−m′2 and
β1−β2 to arise from the same dynamics, Ω fields are the determinant of the cosmology.
This is because the lower bound on the wall disappearance temperature TD required by
Ω fields is higher and the corresponding TD is reached sooner. This situation changes if
for some reason Ω’s do not contribute to the pressure difference across the walls. The
BM model does not have Ω’s and falls in this category.

During the period of time in between destabilization of the DW and their decay, lepto-
genesis occurs due to these unstable DW as discussed in [10, 8]. After the disappearance
of the walls at the scale TD, electroweak symmetry breaks at a scale MEW ∼ 102 GeV
and standard cosmology takes over. In the next section we discuss the implementation
of GMSB scenario for these models.



3. TRANSITORY DOMAIN WALLS

Spontaneous parity breaking leads to formation of Domain walls which quickly domi-
nate the energy density of the Universe. It is necessary for recovering standard cosmol-
ogy that these walls disappear at least before the Big Bang Nucleosynthesis (BBN). In an
intrinsically parity symmetric theory difference in the vacua resulting in destabilisation
is not permitted. We may seek these effects to have arisen from the hidden sector and
communicated along with the messenger fields [11]. Constraints on the hidden sector
model and the communication mechanism can be obtained in this way. Here we report
on other possibilities.

There are several studies of wall evolution, and an estimate of the temperature at
which the walls may destabilise, parametrically expressed in terms of the surface tension
of the walls, in turn determined by the parity breaking scale MR. By equating the terms
leading to small symmetry breaking discussed in the previous para with this parametric
dependence then gives a bound on MR.

The dynamics of the walls in a radiation dominated universe is determined by two
quantities : [12], Tension force fT ∼ σ/R, where σ is energy per unit area and R is the
average scale of radius of curvature, and Friction force fF ∼ βT 4 for walls moving with
speed β in a medium of temperature T . The scaling law for the growth of the scale
R(t) on which the wall complex is smoothed out, is taken to be R(t) ≈ (Gσ)1/2t3/2.
Also, fF ∼ 1/(Gt2) and fT ∼ (σ/(Gt3))1/2. Then the pressure difference required to
overcome the above forces and destabilise the walls is

δρRD ≥ Gσ
2 ≈

M6
R

M2
Pl
∼M4

R
M2

R

M2
Pl

(10)

The case of matter dominated evolution is relevant to moduli fields copiously pro-
duced in generic string inspired models [9] of the Universe. A wall complex formed
at temperature Ti ∼MR is assumed to have first relaxed to being one wall segment per
horizon volume. It then becomes comparable in energy density to the ambient matter
density, due to the difference in evolution rates, 1/a(t) for walls compared to 1/a3(t)
for matter. For simplicity also demand that the epoch of equality of the two contributions
is the epoch also of instability, so as to avoid dominance by domain walls. Thus we can

set M−2
Pl T 4

D ∼H2
eq ∼ σ

3
4 H

1
4

i M−3
Pl . The corresponding temperature permits the estimate of

the required pressure difference,

δρMD > M4
R

(
MR

MPl

)3/2

(11)

Thus in this case we find (MR/MPl)
3/2 [13], a milder suppression factor than in the

radiation dominated case above.



4. PARITY BREAKING FROM PLANCK SUPPRESSED EFFECTS

For a generic neutral scalar field φ , the higher dimensional operators that may break
parity have the simple form [14] Ve f f =

C5
MPl

φ 5. But this is only instructional because in
realistic theories, the structure and effectiveness of such terms is conditioned by Gauge
invariance and supersymmetry and the presence of several scalar species.

One possibility is that the parity breaking operators arise at Planck scale [13]. We
shall assume the structure of the symmetry breaking terms as dictated by the Kähler
potential formalism and treat the cases of two different kinds of domain wall evolution.
Substituting the VEV’s in the effective potential, we get

V R
e f f ∼

a(cR +dR)

MPl
M4

RMW +
a(aR +dR)

MPl
M3

RM2
W (12)

and likewise R↔ L. Hence, with generic coefficients κ , which for naturalness should
remain order unity,

δρ ∼ κ
A M4

RMW

MPl
+κ

′A M3
RM2

W
MPl

(13)

Then equating to δρRD, δρMD derived above,

κ
A
RD > 10−10

(
MR

106GeV

)2

(14)

For MR scale tuned to 109GeV needed to avoid gravitino problem after reheating at the
end of inflation, κRD ∼ 10−4, a reasonable constraint. But κA

RD is required to be O(1) or
unnaturally large for the scale of MR greater than the intermediate scale 1011GeV.

Next,

κ
A
MD > 10−2

(
MR

106GeV

)3/2

, (15)

which seems to be a modest requirement, but taking MR ∼ 109GeV required to have
thermal leptogenesis without the undesirable gravitino production, leads to unnatural
κMD > 105/2.

Concluding this section we note that the least restrictive requirement on δρ is &
(1MeV)4 in order for the walls to not ruin BBN. This requirement gives a lower bound
on the MR scale, generically much closer to the TeV scale.

5. CUSTOMIZED GMSB FOR LEFT-RIGHT SYMMETRIC
MODELS

The differences required between the soft terms of the Left and the Right sector for the
DW to disappear at a temperature TD are not unnaturally large. However the reasons for
appearance of even a small asymmetry between the Left and the Right fields is hard to
explain since the original theory is parity symmetric. We now try to explain the origin of
this small difference by focusing on the hidden sector, and relating it to SUSY breaking.



For this purpose we assume that the strong dynamics responsible for SUSY breaking
also breaks parity, which is then transmitted to the visible sector via the messenger
sector and encoded in the soft supersymmetry breaking terms. We implement this idea
by introducing two singlet fields X and X ′, respectively even and odd under parity.

X ↔ X , X ′↔−X ′. (16)

The messenger sector superpotential then contains terms

W = ∑
n

[
λnX

(
ΦnLΦ̄nL +ΦnRΦ̄nR

)
+ λ

′
nX ′

(
ΦnLΦ̄nL−ΦnRΦ̄nR

)]
(17)

For simplicity, we consider n = 1. The fields ΦL, Φ̄L and ΦR, Φ̄R are complete represen-
tations of a simple gauge group embedding the L-R symmetry group. Further we require
that the fields labelled L get exchanged with fields labelled R under an inner automor-
phism which exchanges SU(2)L and SU(2)R charges, e.g. the charge conjugation opera-
tion in SO(10). As a simple possibility we consider the case when ΦL, Φ̄L (respectively,
ΦR, Φ̄R) are neutral under SU(2)R (SU(2)L). Generalization to other representations is
straightforward.

As a result of the dynamical SUSY breaking we expect the fields X and X ′ to develop
nontrivial vev’s and F terms and hence give rise to mass scales

ΛX =
〈FX〉
〈X〉

, ΛX ′ =
〈FX ′〉
〈X ′〉

. (18)

Both of these are related to the dynamical SUSY breaking scale MS, however their
values are different unless additional reasons of symmetry would force them to be
identical. Assuming that they are different but comparable in magnitude we can show
that Left-Right breaking can be achieved simultaneously with SUSY breaking being
communicated.

In the proposed model, the messenger fermions receive respective mass contributions

m fL = |λ 〈X〉+λ
′〈X ′〉| (19)

m fR = |λ 〈X〉−λ
′〈X ′〉|

while the messenger scalars develop the masses

m2
φL

= |λ 〈X〉+λ
′〈X ′〉|2±|λ 〈FX〉+λ

′〈FX ′〉| (20)

m2
φR

= |λ 〈X〉−λ
′〈X ′〉|2±|λ 〈FX〉−λ

′〈FX ′〉|

We thus have both SUSY and parity breaking communicated through these particles.
As a result the mass contributions to the gauginos of SU(2)L and SU(2)R from both

the X and X ′ fields with their corresponding auxiliary parts take the simple form,

MaL =
αa

4π

λ 〈FX〉+λ ′〈FX ′〉
λ 〈X〉+λ ′〈X ′〉

(21)



and

MaR =
αa

4π

λ 〈FX〉−λ ′〈FX ′〉
λ 〈X〉−λ ′〈X ′〉

(22)

upto terms suppressed by ∼ F/X2. Here a = 1,2,3. In turn there is a modification to
scalar masses, through two-loop corrections, expressed to leading orders in the xL or xR
respectively, by the generic formulae

m2
φL

= 2
(

λ 〈FX〉+λ ′〈FX ′〉
λ 〈X〉+λ ′〈X ′〉

)2[(
α3

4π

)2
Cφ

3 +
(

α2

4π

)2
(Cφ

2L)+
(

α1

4π

)2
Cφ

1

]
(23)

m2
φR

= 2
(

λ 〈FX〉−λ ′〈FX ′〉
λ 〈X〉−λ ′〈X ′〉

)2[(
α3

4π

)2
Cφ

3 +
(

α2

4π

)2
(Cφ

2R)+
(

α1

4π

)2
Cφ

1

]
(24)

The resulting difference between the mass squared of the left and right sectors are
obtained as

δm2
∆ = 2(ΛX)

2 f (γ,σ)

{(
α2

4π

)2
+

6
5

(
α1

4π

)2
}

(25)

where,

f (γ,σ) =

(
1+ tanγ

1+ tanσ

)2

−
(

1− tanγ

1− tanσ

)2

(26)

We have brought ΛX out as the representative mass scale and parameterised the ratio of
mass scales by introducing

tanγ =
λ ′〈FX ′〉
λ 〈FX〉

, tanσ =
λ ′〈X ′〉
λ 〈X〉

(27)

Similarly,

δm2
Ω = 2(ΛX)

2 f (γ,σ)
(

α2

4π

)2
(28)

In the models studied here, the ABMRS model will have contribution from both the
above kind of terms. The BM model will have contribution only from the ∆ fields.

The contribution to slepton masses is also obtained from eq.s (23) and (24). This
can be used to estimate the magnitude of the overall scale ΛX to be ≥ 30 TeV [15]
from collider limits. Substituting this in the above formulae (25) and (28) we obtain
the magnitude of the factor f (γ,σ) required for cosmology as estimated in table 1. The
resulting values of f (γ,σ) are tabulated in table 2. We see that obtaining the values of
TD low compared to TeV scale requires considerable fine tuning of f . The natural range
of temperature for the disappearance of domain walls therefore remains TeV or higher,
i.e., upto a few order of magnitudes lower than the scale at which they form.

Consider for instance TD ∼ 3× 102GeV, which allows (m2 −m′2) to range over
∼ 102GeV2 to 103 GeV2. Consider two representative values of tanγ and tanσ for of
(m2−m′2). First, (m2−m′2) = (2±1.5)×103GeV2. This results in sufficient paramour
space for the F and X parameters. However when we consider (m2−m′2) ∼ 10 GeV2.



TABLE 2. Entries in this table are the values of the
parameter f (γ,σ), required to ensure wall disappear-
ance at temperature TD displayed in the header row.
The table should be read in conjuction with table 1,
with the rows corresponding to each other.

TD/GeV ∼ 10 102 103

Adequate (m2−m′2) 10−7 10−3 10
Adequate (β1−β2) 10−11 10−7 10−3

We find that this requires the two parameters to be fine tuned to each other as tanγ ∼ 0.4
and tanσ > 3. While this is specific to the particular scheme we have proposed for the
communication of parity violation along with SUSY violation, our scheme we believe
is fairly generic and the results may persist for other implementations of this idea.

6. SUPERSYMMETRY BREAKING IN METASTABLE VACUA

The dilemma of phenomenology with broken supersymmetry can be captured in the fate
of R symmetry generic to superpotentials [16]. An unbroken R symmetry in the theory
is required for SUSY breaking. R symmetry when spontaneously broken leads to R-
axions which are unacceptable. If we give up R symmetry, the ground state remains
supersymmetric. The solution proposed in [16, 17], is to break R symmetry mildly,
governed by a small parameter ε . Supersymmetric vacuum persists, but this can be
pushed far away in field space. SUSY breaking local minimum is ensured near the origin,
since it persists in the limit ε → 0. A specific example of this scenario [18] referred to
as ISS, envisages SU(Nc) SQCD (UV free) with N f (> Nc) flavors such that it is dual to
a SU(N f −Nc) gauge theory (IR free) so called magnetic phase, with N2

f singlet mesons
M and N f flavors of quarks q, q̃.

Thus we consider a Left-Right symmetric model with ISS mechanism as proposed
in [19]. The particle content of the electric theory is Qa

L ∼ (3,1,2,1,1), Q̃a
L ∼

(3∗,1,2,1,−1) and Qa
R ∼ (1,3,1,2,−1), Q̃a

R ∼ (1,3∗,1,2,1). where a = 1,N f with
the gauge group G33221. This SQCD has Nc = 3, and we need N f ≥ 4.

For N f = 4 the dual magnetic theory has Left Right gauge group SU(2)L×SU(2)R×
U(1)B−L and the effective fields are the squarks and nonet mesons carrying either the
SU(2)L or the SU(2)R charges. The Left-Right symmetric renormalisable superpotential
of this magnetic theory is

W 0
LR = hTrφLΦLφ̃L−hµ

2TrΦL +hTrφRΦRφ̃R−hµ
2TrΦR (29)

After integrating out the right handed chiral fields, the superpotential becomes

W 0
L = hTrφLΦLφ̃L−hµ

2TrΦL +h4
Λ
−1detΦR−hµ

2TrΦR (30)



which gives rise to SUSY preserving vacua at

〈hΦR〉= Λmε
2/3 = µ

1
ε1/3 (31)

where ε = µ

Λm
. Thus the right handed sector exists in a metastable SUSY breaking

vacuum whereas the left handed sector is in a SUSY preserving vacuum breaking D-
parity spontaneously.

We next consider [20] Planck scale suppressed terms that may signal parity breaking

W 1
LR = fL

Tr(φLΦLφ̃L)TrΦL

Λm
+ fR

Tr(φRΦRφ̃R)TrΦR

Λm
+ f ′L

(TrΦL)
4

Λm
+ f ′R

(TrΦR)
4

Λm
(32)

The terms of order 1
Λm

are given by

V 1
R =

h
Λm

SR[ fR(φ
0
Rφ̃

0
R)

2 + f ′Rφ
0
Rφ̃

0
RS2

R +(δ 0
R−SR)

2((φ 0
R)

2 +(φ̃ 0
R)

2)] (33)

The minimization conditions give φφ̃ = µ2 and S0 =−δ 0. Denoting 〈φ 0
R〉= 〈φ̃ 0

R〉= µ

and 〈δ 0
R〉=−〈S0

R〉= MR, we have

V 1
R =

h fR

Λm
(|µ|4MR + |µ|2M3

R) (34)

where we have also assumed f ′R ≈ fR. For |µ| < MR Thus the effective energy density
difference between the two types of vacua is

δρ ∼ h( fR− fL)
|µ|2M3

R
Λm

(35)

Thus for walls disappearing in matter dominated era, we get

MR < |µ|5/9M4/9
Pl ∼ 1.3×1010 GeV (36)

with µ ∼Tev. Similarly for the walls disappearing in radiation dominated era,

MR < |µ|10/21M11/21
Pl ∼ 1011 GeV (37)

7. CONCLUSIONS

We have pursued the possibility of left-right symmetric models as Just Beyond Standard
Models (JBSM), not possessing a large hierarchy. We also adopt the natural points of
view that right handed neutrinos must be included in the JBSM in a symmetric way and
that the required parity breaking to match low energy physics arises from spontaneous
breakdown. The latter scenario is often eschewed due to the domain walls it entails in the
early Universe. We turn the question around to ask given that the domain walls occur,



what physics could be responsible for their successful removal without jeopardising
naturalness.

We do not advance any preferred way to provide the small asymmetry required
to get rid of the domain walls. However it is interesting to correlate the possibility
that these small effects may be correlated to the supersymmetry breaking. We have
considered three models along these lines. One in which the hidden sector breaking of
supersymmetry is at a low energy, and mediated by a gauge sector. Another in which the
generic scale of supersymmetry breaking is at Planck scale and the breaking effects are
conveyed purely through Planck scale suppressed terms. Finally we have also considered
a possible implementation of the scenarios in which the supersymmetry breaking is not
in a hidden sector but occurs due to a metastable vacuum protected from decay by a
large suppression of tunnelling.

The general message seems to be that the parity breaking scale in any case is not
warranted to be as high as required for a full unification in SO(10) and further, several
scenarios suggest that left-right symmetry as the larger package incorporating the SM
may be within the reach of future colliders.
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