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1.14.4 Using Maxwell’s equations, show that for a system (steady current) the magnetic vector
potentialA satisfies a vector Poisson equation,

∇2A =−µ0J,

provided we require∇ ·A = 0.

1.15 DIRAC DELTA FUNCTION

From Example 1.6.1 and the development of Gauss’ law in Section 1.14,

∫
∇ ·∇

(
1

r

)
dτ =−

∫
∇ ·

(
r̂
r2

)
dτ =

{
−4π
0,

(1.169)

depending on whether or not the integration includes the originr = 0. This result may be
conveniently expressed by introducing the Dirac delta function,

∇2
(

1

r

)
=−4πδ(r)≡−4πδ(x)δ(y)δ(z). (1.170)

This Dirac delta function isdefinedby its assigned properties

δ(x)= 0, x 
= 0 (1.171a)

f (0)=
∫ ∞

−∞
f (x)δ(x) dx, (1.171b)

wheref (x) is any well-behaved function and the integration includes the origin. As a
special case of Eq. (1.171b),

∫ ∞

−∞
δ(x) dx = 1. (1.171c)

From Eq. (1.171b),δ(x) must be an infinitely high, infinitely thin spike atx = 0, as in the
description of an impulsive force (Section 15.9) or the charge density for a point charge.27

The problem is thatno such function exists, in the usual sense of function. However, the
crucial property in Eq. (1.171b) can be developed rigorously as the limit of asequence
of functions, a distribution. For example, the delta function may be approximated by the

27The delta function is frequently invoked to describe very short-range forces, such as nuclear forces. It also appears in the
normalization of continuum wave functions of quantum mechanics. Compare Eq. (1.193c) for plane-wave eigenfunctions.
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FIGURE 1.37 δ-Sequence
function.

FIGURE 1.38 δ-Sequence
function.

sequences of functions, Eqs. (1.172) to (1.175) and Figs. 1.37 to 1.40:

δn(x) =





0, x <− 1
2n

n, − 1
2n < x < 1

2n
0, x > 1

2n

(1.172)

δn(x) =
n√
π

exp
(
−n2x2) (1.173)

δn(x) =
n

π
· 1

1+ n2x2
(1.174)

δn(x) =
sinnx

πx
= 1

2π

∫ n

−n
eixt dt. (1.175)
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FIGURE 1.39 δ-Sequence function.

FIGURE 1.40 δ-Sequence function.

These approximations have varying degrees of usefulness. Equation (1.172) is useful in
providing a simple derivation of the integral property, Eq. (1.171b). Equation (1.173)
is convenient to differentiate. Its derivatives lead to the Hermite polynomials. Equa-
tion (1.175) is particularly useful in Fourier analysis and in its applications to quantum
mechanics. In the theory of Fourier series, Eq. (1.175) often appears (modified) as the
Dirichlet kernel:

δn(x)=
1

2π

sin[(n+ 1
2)x]

sin(1
2x)

. (1.176)

In using these approximations in Eq. (1.171b) and later, we assume thatf (x) is well be-
haved — it offers no problems at largex.
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For most physical purposes such approximations are quite adequate. From a mathemat-
ical point of view the situation is still unsatisfactory: The limits

lim
n→∞

δn(x)

do not exist.
A way out of this difficulty is provided by the theory of distributions. Recognizing that

Eq. (1.171b) is the fundamental property, we focus our attention on it rather than onδ(x)

itself. Equations (1.172) to (1.175) withn= 1,2,3, . . . may be interpreted assequencesof
normalized functions:

∫ ∞

−∞
δn(x) dx = 1. (1.177)

The sequence of integrals has the limit

lim
n→∞

∫ ∞

−∞
δn(x)f (x) dx = f (0). (1.178)

Note that Eq. (1.178) is the limit of a sequence of integrals. Again, the limit ofδn(x),
n→∞, does not exist. (The limits for all four forms ofδn(x) diverge atx = 0.)

We may treatδ(x) consistently in the form
∫ ∞

−∞
δ(x)f (x) dx = lim

n→∞

∫ ∞

−∞
δn(x)f (x) dx. (1.179)

δ(x) is labeled a distribution (not a function) defined by the sequencesδn(x) as indicated
in Eq. (1.179). We might emphasize that the integral on the left-hand side of Eq. (1.179) is
not a Riemann integral.28 It is a limit.

This distributionδ(x) is only one of an infinity of possible distributions, but it is the one
we are interested in because of Eq. (1.171b).

From these sequences of functions we see that Dirac’s delta function must be even inx,
δ(−x)= δ(x).

The integral property, Eq. (1.171b), is useful in cases where the argument of the delta
function is a functiong(x) with simple zeros on the real axis, which leads to the rules

δ(ax)= 1

a
δ(x), a > 0, (1.180)

δ
(
g(x)

)
=

∑

a,
g(a)=0,
g′(a) 
=0

δ(x − a)

|g′(a)| . (1.181a)

Equation (1.180) may be written
∫ ∞

−∞
f (x)δ(ax)dx = 1

a

∫ ∞

−∞
f

(
y

a

)
δ(y) dy = 1

a
f (0),

28It can be treated as a Stieltjes integral if desired.δ(x) dx is replaced bydu(x), whereu(x) is the Heaviside step function
(compare Exercise 1.15.13).
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applying Eq. (1.171b). Equation (1.180) may be written asδ(ax)= 1
|a|δ(x) for a < 0. To

prove Eq. (1.181a) we decompose the integral

∫ ∞

−∞
f (x)δ

(
g(x)

)
dx =

∑

a

∫ a+ε

a−ε
f (x)δ

(
(x − a)g′(a)

)
dx (1.181b)

into a sum of integrals over small intervals containing the zeros ofg(x). In these intervals,
g(x) ≈ g(a)+ (x − a)g′(a) = (x − a)g′(a). Using Eq. (1.180) on the right-hand side of
Eq. (1.181b) we obtain the integral of Eq. (1.181a).

Using integration by parts we can alsodefine the derivativeδ′(x) of the Dirac delta
function by the relation

∫ ∞

−∞
f (x)δ′(x − x′) dx =−

∫ ∞

−∞
f ′(x)δ(x − x′) dx =−f ′(x′). (1.182)

We useδ(x) frequently and call it the Dirac delta function29 — for historical reasons.
Remember that it is not really a function. It is essentially a shorthand notation, defined
implicitly as the limit of integrals in a sequence,δn(x), according to Eq. (1.179). It should
be understood that our Dirac delta function has significance only as part of an integrand.
In this spirit, the linear operator

∫
dx δ(x − x0) operates onf (x) and yieldsf (x0):

L(x0)f (x)≡
∫ ∞

−∞
δ(x − x0)f (x) dx = f (x0). (1.183)

It may also be classified as a linear mapping or simply as a generalized function. Shift-
ing our singularity to the pointx = x′, we write the Dirac delta function asδ(x − x′).
Equation (1.171b) becomes

∫ ∞

−∞
f (x)δ(x − x′) dx = f (x′). (1.184)

As a description of a singularity atx = x′, the Dirac delta function may be written as
δ(x− x′) or asδ(x′− x). Going to three dimensions and using spherical polar coordinates,
we obtain

∫ 2π

0

∫ π

0

∫ ∞

0
δ(r)r2dr sinθ dθ dϕ =

∫∫∫ ∞

−∞
δ(x)δ(y)δ(z) dx dy dz= 1. (1.185)

This corresponds to a singularity (or source) at the origin. Again, if our source is atr = r1,
Eq. (1.185) becomes

∫∫∫
δ(r2− r1)r

2
2 dr2 sinθ2dθ2dϕ2= 1. (1.186)

29Dirac introduced the delta function to quantum mechanics. Actually, the delta function can be traced back to Kirchhoff, 1882.
For further details see M. Jammer,The Conceptual Development of Quantum Mechanics. New York: McGraw–Hill (1966),
p. 301.
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Example 1.15.1 TOTAL CHARGE INSIDE A SPHERE

Consider the total electric flux
∮

E · dσ out of a sphere of radiusR around the origin
surroundingn chargesej , located at the pointsr j with rj < R, that is, inside the sphere.
The electric field strengthE=−∇ϕ(r), where the potential

ϕ =
n∑

j=1

ej

|r − r j |
=
∫

ρ(r ′)
|r − r ′|d

3r ′

is the sum of the Coulomb potentials generated by each charge and the total charge density
is ρ(r)=∑j ej δ(r − r j ). The delta function is used here as an abbreviation of a pointlike
density. Now we use Gauss’ theorem for

∮
E · dσ =−

∮
∇ϕ · dσ =−

∫
∇2ϕ dτ =

∫
ρ(r)
ε0

dτ =
∑

j ej

ε0

in conjunction with the differential form of Gauss’s law,∇ ·E=−ρ/ε0, and
∑

j

ej

∫
δ(r − r j ) dτ =

∑

j

ej .

�

Example 1.15.2 PHASE SPACE

In the scattering theory of relativistic particles using Feynman diagrams, we encounter the
following integral over energy of the scattered particle (we set the velocity of lightc= 1):

∫
d4pδ

(
p2−m2)f (p) ≡

∫
d3p

∫
dp0 δ

(
p2

0− p2−m2)f (p)

=
∫

E>0

d3pf (E,p)

2
√
m2+ p2

+
∫

E<0

d3pf (E,p)

2
√
m2+ p2

,

where we have used Eq. (1.181a) at the zerosE = ±
√
m2+ p2 of the argument of the

delta function. The physical meaning ofδ(p2 − m2) is that the particle of massm and
four-momentumpµ = (p0,p) is on its mass shell, becausep2=m2 is equivalent toE =
±
√
m2+ p2. Thus, the on-mass-shell volume element in momentum space is the Lorentz

invariant d3p
2E , in contrast to the nonrelativisticd3p of momentum space. The fact that

a negative energy occurs is a peculiarity of relativistic kinematics that is related to the
antiparticle. �

Delta Function Representation by Orthogonal
Functions

Dirac’s delta function30 can be expanded in terms of any basis of real orthogonal functions
{ϕn(x), n = 0,1,2, . . .}. Such functions will occur in Chapter 10 as solutions of ordinary
differential equations of the Sturm–Liouville form.

30This section is optional here. It is not needed until Chapter 10.
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They satisfy the orthogonality relations

∫ b

a

ϕm(x)ϕn(x) dx = δmn, (1.187)

where the interval(a, b) may be infinite at either end or both ends. [For convenience we
assume thatϕn has been defined to include(w(x))1/2 if the orthogonality relations contain
an additional positive weight functionw(x).] We use theϕn to expand the delta function
as

δ(x − t)=
∞∑

n=0

an(t)ϕn(x), (1.188)

where the coefficientsan are functions of the variablet . Multiplying by ϕm(x) and inte-
grating over the orthogonality interval (Eq. (1.187)), we have

am(t)=
∫ b

a

δ(x − t)ϕm(x) dx = ϕm(t) (1.189)

or

δ(x − t)=
∞∑

n=0

ϕn(t)ϕn(x)= δ(t − x). (1.190)

This series is assuredly not uniformly convergent (see Chapter 5), but it may be used as
part of an integrand in which the ensuing integration will make it convergent (compare
Section 5.5).

Suppose we form the integral
∫
F(t)δ(t − x)dx, where it is assumed thatF(t) can be

expanded in a series of orthogonal functionsϕp(t), a property calledcompleteness. We
then obtain

∫
F(t)δ(t − x)dt =

∫ ∞∑

p=0

apϕp(t)

∞∑

n=0

ϕn(x)ϕn(t) dt

=
∞∑

p=0

apϕp(x)= F(x), (1.191)

the cross products
∫
ϕpϕn dt (n 
= p) vanishing by orthogonality (Eq. (1.187)). Referring

back to the definition of the Dirac delta function, Eq. (1.171b), we see that our series
representation, Eq. (1.190), satisfies the defining property of the Dirac delta function and
therefore is a representation of it. This representation of the Dirac delta function is called
closure. The assumption of completeness of a set of functions for expansion ofδ(x − t)

yields the closure relation. The converse, that closure implies completeness, is the topic of
Exercise 1.15.16.
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Integral Representations for the Delta Function

Integral transforms, such as the Fourier integral

F(ω)=
∫ ∞

−∞
f (t)exp(iωt) dt

of Chapter 15, lead to the corresponding integral representations of Dirac’s delta function.
For example, take

δn(t − x)= sinn(t − x)

π(t − x)
= 1

2π

∫ n

−n
exp

(
iω(t − x)

)
dω, (1.192)

using Eq. (1.175). We have

f (x)= lim
n→∞

∫ ∞

−∞
f (t)δn(t − x)dt, (1.193a)

whereδn(t − x) is the sequence in Eq. (1.192) defining the distributionδ(t − x). Note that
Eq. (1.193a) assumes thatf (t) is continuous att = x. If we substitute Eq. (1.192) into
Eq. (1.193a) we obtain

f (x)= lim
n→∞

1

2π

∫ ∞

−∞
f (t)

∫ n

−n
exp

(
iω(t − x)

)
dωdt. (1.193b)

Interchanging the order of integration and then taking the limit asn→∞, we have the
Fourier integral theorem, Eq. (15.20).

With the understanding that it belongs under an integral sign, as in Eq. (1.193a), the
identification

δ(t − x)= 1

2π

∫ ∞

−∞
exp

(
iω(t − x)

)
dω (1.193c)

provides a very useful integral representation of the delta function.
When the Laplace transform (see Sections 15.1 and 15.9)

Lδ(s)=
∫ ∞

0
exp(−st)δ(t − t0)= exp(−st0), t0 > 0 (1.194)

is inverted, we obtain the complex representation

δ(t − t0)=
1

2πi

∫ γ+i∞

γ−i∞
exp

(
s(t − t0)

)
ds, (1.195)

which is essentially equivalent to the previous Fourier representation of Dirac’s delta func-
tion.
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Exercises

1.15.1 Let

δn(x)=





0, x <− 1
2n ,

n, − 1
2n < x < 1

2n ,

0, 1
2n < x.

Show that

lim
n→∞

∫ ∞

−∞
f (x)δn(x) dx = f (0),

assuming thatf (x) is continuous atx = 0.

1.15.2 Verify that the sequenceδn(x), based on the function

δn(x)=
{

0, x < 0,
ne−nx, x > 0,

is a delta sequence (satisfying Eq. (1.178)). Note that the singularity is at+0, the posi-
tive side of the origin.
Hint. Replace the upper limit (∞) by c/n, wherec is large but finite, and use the mean
value theorem of integral calculus.

1.15.3 For

δn(x)=
n

π
· 1

1+ n2x2
,

(Eq. (1.174)), show that
∫ ∞

−∞
δn(x) dx = 1.

1.15.4 Demonstrate thatδn = sinnx/πx is a delta distribution by showing that

lim
n→∞

∫ ∞

−∞
f (x)

sinnx

πx
dx = f (0).

Assume thatf (x) is continuous atx = 0 and vanishes asx→±∞.
Hint. Replacex by y/n and take limn→∞ before integrating.

1.15.5 Fejer’s method of summing series is associated with the function

δn(t)=
1

2πn

[
sin(nt/2)

sin(t/2)

]2

.

Show thatδn(t) is a delta distribution, in the sense that

lim
n→∞

1

2πn

∫ ∞

−∞
f (t)

[
sin(nt/2)

sin(t/2)

]2

dt = f (0).
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1.15.6 Prove that

δ
[
a(x − x1)

]
= 1

a
δ(x − x1).

Note. If δ[a(x − x1)] is considered even, relative tox1, the relation holds for negativea
and 1/a may be replaced by 1/|a|.

1.15.7 Show that

δ
[
(x − x1)(x − x2)

]
=
[
δ(x − x1)+ δ(x − x2)

]
/|x1− x2|.

Hint. Try using Exercise 1.15.6.

1.15.8 Using the Gauss error curve delta sequence (δn = n√
π
e−n

2x2
), show that

x
d

dx
δ(x)=−δ(x),

treatingδ(x) and its derivative as in Eq. (1.179).

1.15.9 Show that ∫ ∞

−∞
δ′(x)f (x) dx =−f ′(0).

Here we assume thatf ′(x) is continuous atx = 0.

1.15.10 Prove that

δ
(
f (x)

)
=
∣∣∣∣
df (x)

dx

∣∣∣∣
−1

x=x0

δ(x − x0),

wherex0 is chosen so thatf (x0)= 0.
Hint. Note thatδ(f ) df = δ(x) dx.

1.15.11 Show that in spherical polar coordinates(r,cosθ,ϕ) the delta functionδ(r1− r2) be-
comes

1

r2
1

δ(r1− r2)δ(cosθ1− cosθ2)δ(ϕ1− ϕ2).

Generalize this to the curvilinear coordinates(q1, q2, q3) of Section 2.1 with scale fac-
torsh1, h2, andh3.

1.15.12 A rigorous development of Fourier transforms31 includes as a theorem the relations

lim
a→∞

2

π

∫ x2

x1

f (u+ x)
sinax

x
dx

=





f (u+ 0)+ f (u− 0), x1 < 0< x2
f (u+ 0), x1= 0< x2
f (u− 0), x1 < 0= x2
0, x1 < x2 < 0 or 0< x1 < x2.

Verify these results using the Dirac delta function.

31I. N. Sneddon,Fourier Transforms. New York: McGraw-Hill (1951).
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FIGURE 1.41 1
2[1+ tanhnx] and the Heaviside unit step

function.

1.15.13 (a) If we define a sequenceδn(x)= n/(2 cosh2nx), show that
∫ ∞

−∞
δn(x) dx = 1, independent ofn.

(b) Continuing this analysis, show that32

∫ x

−∞
δn(x) dx =

1

2
[1+ tanhnx] ≡ un(x),

lim
n→∞

un(x)=
{

0, x < 0,
1, x > 0.

This is the Heaviside unit step function (Fig. 1.41).

1.15.14 Show that the unit step functionu(x) may be represented by

u(x)= 1

2
+ 1

2πi
P

∫ ∞

−∞
eixt

dt

t
,

whereP means Cauchy principal value (Section 7.1).

1.15.15 As a variation of Eq. (1.175), take

δn(x)=
1

2π

∫ ∞

−∞
eixt−|t |/n dt.

Show that this reduces to(n/π)1/(1+ n2x2), Eq. (1.174), and that
∫ ∞

−∞
δn(x) dx = 1.

Note. In terms of integral transforms, the initial equation here may be interpreted as
either a Fourier exponential transform ofe−|t |/n or a Laplace transform ofeixt .

32Many other symbols are used for this function. This is the AMS-55 (see footnote 4 on p. 330 for the reference) notation:u for
unit.
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1.15.16 (a) The Dirac delta function representation given by Eq. (1.190),

δ(x − t)=
∞∑

n=0

ϕn(x)ϕn(t),

is often called theclosure relation. For an orthonormal set of real functions,
ϕn, show that closure implies completeness, that is, Eq. (1.191) follows from
Eq. (1.190).

Hint. One can take

F(x)=
∫

F(t)δ(x − t) dt.

(b) Following the hint of part (a) you encounter the integral
∫
F(t)ϕn(t) dt . How do

you know that this integral is finite?

1.15.17 For the finite interval(−π,π) write the Dirac delta functionδ(x − t) as a series of
sines and cosines: sinnx,cosnx,n = 0,1,2, . . . . Note that although these functions
are orthogonal, they are not normalized to unity.

1.15.18 In the interval(−π,π), δn(x)= n√
π

exp(−n2x2).

(a) Writeδn(x) as a Fourier cosine series.
(b) Show that your Fourier series agrees with a Fourier expansion ofδ(x) in the limit

asn→∞.
(c) Confirm the delta function nature of your Fourier series by showing that for any

f (x) that is finite in the interval[−π,π] and continuous atx = 0,
∫ π

−π
f (x)

[
Fourier expansion ofδ∞(x)

]
dx = f (0).

1.15.19 (a) Writeδn(x)= n√
π

exp(−n2x2) in the interval(−∞,∞) as a Fourier integral and
compare the limitn→∞ with Eq. (1.193c).

(b) Write δn(x)= nexp(−nx) as a Laplace transform and compare the limitn→∞
with Eq. (1.195).

Hint. See Eqs. (15.22) and (15.23) for (a) and Eq. (15.212) for (b).

1.15.20 (a) Show that the Dirac delta functionδ(x − a), expanded in a Fourier sine series in
the half-interval(0,L), (0< a <L), is given by

δ(x − a)= 2

L

∞∑

n=1

sin

(
nπa

L

)
sin

(
nπx

L

)
.

Note that this series actually describes

−δ(x + a)+ δ(x − a) in the interval(−L,L).
(b) By integrating both sides of the preceding equation from 0 tox, show that the

cosine expansion of the square wave

f (x)=
{

0, 0� x < a

1, a < x < L,



1.16 Helmholtz’s Theorem 95

is, for 0� x < L,

f (x)= 2

π

∞∑

n=1

1

n
sin

(
nπa

L

)
− 2

π

∞∑

n=1

1

n
sin

(
nπa

L

)
cos

(
nπx

L

)
.

(c) Verify that the term

2

π

∞∑

n=1

1

n
sin

(
nπa

L

)
is

〈
f (x)

〉
≡ 1

L

∫ L

0
f (x)dx.

1.15.21 Verify the Fourier cosine expansion of the square wave, Exercise 1.15.20(b), by direct
calculation of the Fourier coefficients.

1.15.22 We may define a sequence

δn(x)=
{
n, |x|< 1/2n,
0, |x|> 1/2n.

(This is Eq. (1.172).) Expressδn(x) as a Fourier integral (via the Fourier integral theo-
rem, inverse transform, etc.). Finally, show that we may write

δ(x)= lim
n→∞

δn(x)=
1

2π

∫ ∞

−∞
e−ikx dk.

1.15.23 Using the sequence

δn(x)=
n√
π

exp
(
−n2x2),

show that

δ(x)= 1

2π

∫ ∞

−∞
e−ikx dk.

Note. Remember thatδ(x) is defined in terms of its behavior as part of an integrand —
especially Eqs. (1.178) and (1.189).

1.15.24 Derive sine and cosine representations ofδ(t−x) that are comparable to the exponential
representation, Eq. (1.193c).

ANS. 2
π

∫∞
0 sinωt sinωx dω, 2

π

∫∞
0 cosωt cosωx dω.

1.16 HELMHOLTZ’S THEOREM

In Section 1.13 it was emphasized that the choice of a magnetic vector potentialA was not
unique. The divergence ofA was still undetermined. In this section two theorems about the
divergence and curl of a vector are developed. The first theorem is as follows:

A vector is uniquely specified by giving its divergence and its curl within a simply con-
nected region (without holes) and its normal component over the boundary.


