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Abstract

The tiny neutrino masses and the associated large lepton mixings
provide an interesting puzzle and a likely window to the physics be-
yond the standard model. This is certainly true if neutrinos are Majo-
rana particles, since then, unlike in the Dirac case, the standard model
is not a complete theory. The Majorana case leads to lepton number
violation manifested through a neutrino-less double beta decay and
same sign dileptons possibly produced at colliders such as LHC. I
discuss in these lectures possible theories of neutrino mass whose pre-
dictions are dictated by their structure only and this points strongly
to grand unification. I cover in detail both SU(5) and SO(10) grand
unified theories, and study the predictions of their minimal versions.
I argue that the theory allows for a (moderate) optimism of probing
the origin of neutrino mass in near future.

1 Foreword

The theory of neutrino masses and mixings is a rich subject, with a continuos
flow of papers as you are reading these lecture notes. There is no way I could
do justice to this vast field in such a short time and space an so I chose to
concentrate on what my taste dictated. In order to be as complete and as
pedagogical as possible on the issues chosen to be discussed, I have completely
omitted a popular field of horizontal symmetries which are used in order to
make statements on neutrino masses and mixings, and I apologize to the
workers in the field. My decision is prompted by my lack of belief in this
approach which to me amounts often to a change of language.

Instead of accepting the values of these parameters one typically choses
some textures of fermion mass matrices (this is done by the use of symme-
tries, often discrete ones) which then lead to definite values of masses and/or
mixings. The problem that I have with this approach is that to this is like
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saying that proton is stable because of baryon number symmetry or that
photon is massless because of gauge invariance. The symmetries we assume
need not to be exact, and the departures from these symmetries will give
departures from the values that follow consequently. It does not make sense
to me to say that proton and neutron should have the same mass because
of SU(2) isospin invariance, and here I am sure the reader will agree with
me. The small mass difference between the proton and the neutron only says
that the isospin symmetry is quite good, albeit approximate symmetry.

In searching for the origin of neutrino mass, I have opted here for the
theories whose inner structure leads to neutrino mass and whose predictions
depend only on the same inner structure. Two such examples, the very ones
that lead originally to the understanding of the smallness of neutrino mass
through the so-called seesaw mechanism, are provided by left-right symmetric
theories and the SO(10) grand unified theory. They provide the core of my
lectures, and I dedicate one of the Appendices (D) to the group theory of
SO(2N) to in order to facilitate a reader’s job. I also discuss in detail the
SU(5) grand unified theory, although in its minimal form it was tailor fit
for massless neutrinos, just as the minimal standard model. However, a
minimal extension needed to account for neutrino masses and mixings leads
to exciting predictions of new particles and interactions likely to be tested at
LHC. Furthermore, an understanding of SO(10) becomes much easier after
one masters a simple, minimal SU(5) theory, which will always remain as a
laboratory of the theory of grand unification and thus a large portion of these
notes is devoted to it, including a short Appendix C. The readers familiar
with SU(5) can go directly to the subsection 5.5 relevant for neutrino mass.

I have included a number of exercises throughout the text which are
important for the understanding of the material. I encourage the reader to
go through them, including those in the Appendices.

Since my lectures are far from being complete, I suggest here to comple-
ment them with these two pedagogical exposes on the subject of neutrino
masses and mixings. At the end of the lectures, I include some references for
further reading.

1) Mohapatra, Pal [1]. An excellent book, with a detailed analysis of Ma-
jorana neutrinos, left-right symmetry, seesaw mechanism and SO(10) grand
unification, which provides the core of my lectures.

2) Strumia, Vissani review [2]. Highly recommended, especially for the
phenomenology of neutrino masses and mixings. Very well written, contin-
uously updated, concise, clear and surprisingly complete study of neutrino
oscillations and related topics.

Regarding grand unification, I recommend the books by Mohapatra [3]
and Ross [4].
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Last but not least. I have tried to do justice in citations, to the field
and to my peers, but it is impossible not to fail due to the lack of time and
ignorance. I apologize in advance for any omission.

2 Introduction

The Standard Model (SM) of electro-weak and strong interactions is a re-
markably successful theory of all particle forces but gravity. In its minimal
version neutrinos are massless, but the observed tiny neutrino masses are
easily accounted for through a new, high-energy physics; all it requires is to,
say, add right-handed neutrinos, the SM singlets. True, one should find the
Higgs particle in order to complete the theory, but to most of us it is only
a question of time, rather likely to happen at LHC. Since it works so well,
most of the attempts in building theories beyond the SM have focused on
purely theoretical and even philosophical questions. One issue that stands
out in my opinion is the disparity of three different forces based on SU(3),
SU(2) and U(1) gauge groups. Particularly worrisome is the U(1), since its
charge is not quantized, and the miracle of charge quantization in nature
is accounted for by arbitrary of U(1) quantum numbers. Things would be
different if we had a single (or a product) non-abelian group, such as was the
hope in the original proposal by Schwinger [5] of SU(2) as a unified theory
of weak and electromagnetic interactions, long before the neutral currents
were discovered. This guarantees charge quantization and is a prototype of
any unified theory based on a simple gauge group The neutral gauge boson
of SU(2) was to be identified with the photon and one had

Q = T3 (1)

Thus the charges were automatically, but unfortunately wrongly, quan-
tized (a heroic attempt to save the theory was made by Georgi and Glashow
[6], before the discovery of neutral currents). This could have been consid-
ered as an example of a beautiful theory killed by the ugly facts of nature.
For charge quantization in this theory is a profound and deep fact: if one
breaks SU(2) down to U(1)em as spontaneously as renormalizability requires,
one predicts the existence of magnetic monopoles [7, 8]. This means that all
the charges must be quantized, not just the ones of the observed particles.
One is assured that the fact will persist whatever new particles be discovered.

Four years after Schwinger, Glashow made a simple but important sug-
gestion: he added the U(1) piece [9]. The rest as we know is history. Well,
what was missing was to break the symmetry through the Higgs mechanism
which was to follow six years later [10, 11], and everything fell in its place.
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It seemed quite a blow though that one was forced to introduce the U(1)
culprit to get the lepton and quark charges right. Now, in the SM model
the charges are quantized due to anomaly cancellation, but that does not say
anything about the particles not yet discovered, their charges do not have
to be quantized. For example, the vector-like states may have arbitrary real
number charges since their anomalies cancel automatically.

But then came SU(3) as a theory of strong interactions, and a wish to
unify both weak and strong forces in a simple theory, based on a single gauge
group. This then, besides unification, leads to charge quantization automat-
ically, and furthermore the minimal theory based on SU(5) gauge group [12],
also includes U(1) for free. There are two generic beautiful predictions of
grand unification: proton decay and magnetic monopoles, the former due to
the unification of quarks and leptons and the latter due to in-built quan-
tization of electric charge. Whereas Dirac predicted charge quantization if
magnetic monopoles exist [13], grand unification predicts the existence of
monopoles. Both proton decay and magnetic monopoles were searched for
desperately, alas, with no success. Furthermore, the minimal grand unified
theory of both matter and interactions based on SO(10) [14] gauge group
predicts massive neutrinos, and connects neutrino masses and mixings with
the ones of the quarks.

The crucial characteristic of SO(10) regarding neutrino mass is the auto-
matic, gauged, left-right symmetry. It suggests that the purely chiral, V-A
property of weak interactions, is an accidental low energy fact, to be even-
tually restored at high energies. The idea of LR symmetry is an old one, as
old as the very idea of the breakdown of parity in weak interactions [15]. At
the end of their landmark paper, Lee and Yang speculate of LR symmetry
restoration through the existence of mirror fermions. Another possibility is
offered by LR symmetric gauge theories [16, 17, 18, 19] discussed at length
in these lectures. It is these theories that led originally to neutrino mass and
the well known seesaw mechanism [20].

Today we know for fact that at least two neutrinos are massive and
by analogy with quarks we need the leptonic mixing matrix. For the phe-
nomenology of neutrino masses and mixings, see e.g. [2].

We start by reviewing what the Standard Model (SM) says about neutrino
masses and mixings.
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2.1 Standard Model review

The minimal Standard Model (MSM) is an SU(3) × SU(2) × U(1) gauge
theory with the following fermionic assignment [9]

qL ≡
(
u
d

)
; (uc)L, (d

c)L

`L ≡
(
ν
e

)
; (ec)L (2)

where we have omitted the color index for quarks and we work here with
left-handed anti fermions instead of right-handed fermions (see Appendix A,
formula (A11))

(ψC)L ≡ Cψ̄TR (3)

Actually, we will sometimes work with right-handed fermions too (as in
the section 4 on L-R symmetry), and it is important to be familiar and at
ease with both notations.

The maximal parity violation in the usual charged weak interactions is
characterized by the maximal asymmetry between left and right: only left-
handed fermions interact with W± gauge bosons. On top of that, the quark-
lepton symmetry is broken by the minimality assumption: NO right-handed
neutrinos. Hence a clear prediction: neutrinos are massless. In order to
see that, recall that fermionic masses in the MSM stem from the Yukawa
interactions with a Higgs doublet Φ

LY = yu q
T
LCiσ2ΦucL + yd q

T
LCΦ∗dcL + yl l

T
LCΦ∗ecL + h.c. (4)

where the generation index is suppressed for simplicity. An equivalent ex-
pression involves right-handed particles instead of left-handed anti-particles

LY = yu q̄Liσ2Φ∗uR + yd q̄LΦdR + yl l̄LΦeR + h.c. (5)

From the charge formula
Q = T3 + Y/2 (6)

The usual charges are reproduced with

Yq =
1

3
, Y` = −1, YuR =

4

3
, YdR = −2

3
, YeR = −2, YΦ = 1 (7)

Notice the physical interpretation for the hypercharge of the left-handed
particles

YL = B − L (8)
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whereas YR has no physical interpretation and needs to be memorized.
The B − L symmetry of the MSM is selected out: it is an anomaly free

combination of accidental global symmetries B and L. In other words, B−L
can be gauged. We will come back often to this important and suggestive fact.
The minimality of (2), the broken symmetry between quarks and leptons is
thus responsible for the only failure of this, otherwise extremely successful,
theory.

As it is, the MSM must be augmented in order to account for neutrino
mass. If you insist, though, on the MSM degrees of freedom in (2), the
Yukawa interactions that could lead to neutrino mass must clearly be higher
dimensional [21]

LY (d = 5) = yν
(`TLCiσ2Φ)(ΦT iσ2`L)

M
(9)

where the new scale M signifies some new physics.

Exercise: Show that there are only three possible d = 5, SU(2) × U(1)
invariant operators bilinear in the lepton doublet. Show then that they are
all equivalent.

When the Higgs doublet gets a nonvanishing vacuum expectation value
(vev)

〈Φ〉 =

(
0
v

)
(10)

the charged fermions get the usual Dirac mass

mf f̄ f ≡ mf (f̄L fR + f̄R fL) (11)

with mf = yfv. In the same manner, from (9) neutrino gets a Majorana
mass [22]

mν ν
T
LCνL (12)

with

mν = yν
v2

M
(13)

If M � v, neutrinos are automatically lighter than the charged fermions;
however if M ' v (or even M � v), small mν may result from yν � 1.
Since this is an effective theory, we can say nothing about mν . In short, the
absence of new light degrees of freedom, indicates Majorana neutrino masses
and the violation of the lepton number at the new scale M .
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Figure 1: Neutrinoless double β decay through a Majorana mass mM which
breaks a neutrino fermionic line

From (9) and (12), one has ∆L = 2 which allows for the neutrinoless
double beta decay ββ0ν [23] [24].

n+ n→ p+ p+ e+ e (14)

It is often argued that ββ0ν probes mM , however, the situation is more
complex. Namely, the MSM with neutrino Majorana mass is not a complete
theory –it must be completed through a d=5 operator (9) and a new physics
at M . We will see that the predictions for ββ0ν depend on the completion,
to which we now turn to.

The effective operator (9) is useful in discussing the qualitative nature of
neutrino mass, but if we wish to probe the origin of neutrino masses we need
a renormalizable theory beyond the MSM. There are infinitely many different
possibilities of completing the MSM which all lead to the d=5 operator upon
integrating out the new physics, so we cannot a priori say anything about
the physics behind it. The situation simplifies if one assumes adding only
one type of new particles in which case there are only three different ways of
completing MSM. These are three different seesaw mechanisms. A word of
caution is in order. The assumption of only one new type of particles is rather
simplifying and should not be taken too seriously. A new theory beyond the
standard model (BSM) may turn out much more complex, and this naive
picture may turn out wrong. However, in the suggestive, simple extensions
of the SM one ends up precisely with one (or more) of these contributions;
for this reason I decided to keep this logic of presentation. By no means
should one imagine that this is a full story though or that a full theory will
not have a variety of these seesaws.
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3 The see-saw mechanism

We discuss here different realizations of the see-saw mechanism, in order of
their popularity which also coincides with the historic development. The idea
as we said is a renormalizable completion of the MSM that can lead to small
neutrino masses.

3.1 Right-handed neutrinos: Type I see-saw

The most suggestive completion of the MSM is the introduction of νR (per
family of fermions), a gauge singlet chiral fermion. This is a right handed
neutrino, whose existence is appealing from the structural quark - lepton
symmetry. A new renormalizable Yukawa coupling (written here for one
generation case only) then follows

∆L = yD ¯̀
Lσ2Φ∗νR +

MR

2
νTRCνR + h.c. (15)

Introduce

ν ≡ νL + Cν̄TL
N ≡ νR + Cν̄TR (16)

which gives the mass matrix for ν and N (see Appendix B)(
0 mD

mT
D MR

)
(17)

If MR � mD, neutrinos would be predominantly Dirac particles. For
MR ' mD, we have a messy combination of Majorana and Dirac, whereas
for mD � MR we would have a predominantly Majorana case [this case is
rather interesting, since the gauge invariant scale MR is expected to be above
MW : MR > MW ]. In this case the approximate eigenstates are N with mass
MN ≡MR and ν with a tiny mass

Mν = −mT
D

1

MN

mD (18)

This is the original see-saw formula [20]. today called Type I. As we know
from (9), with heavy νR, neutrino mass must be of the type (12), confirmed
here.

Exercise: Prove explicitly (17) in the case of two generations. Hint:
work with mD diagonal.
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Figure 2: Diagrammatic representation of the Type I see-saw

Is is clear from (17) that the number of νR’s determines the number of
massive light neutrinos: for each νR, only one νL gets a mass. In other words,
we need at least two νR’s in order to account for both solar and atmospheric
neutrino mass differences. It is suggestive, though, to have a νR per family,
in which case an accidental anomaly free global symmetry of the MSM can
be gauged. A neutrino per generation is needed to cancel U(1)3

B−L anomaly.
The diagrammatic representation of the see-saw in Fig.2 may be even

more clear; it is easy to see that the heavy neutrino propagator gives the
see-saw result.

3.2 Y = 2, SU(2)L triplet Higgs: Type II see-saw

Instead of νR, a Y = 2 triplet ∆L ≡ ~∆L · ~σ can play the same role [25] [26]
[27]. From the new Yukawas

∆L(∆) = yij∆`
T
i Cσ2∆L`j + h.c. (19)

where i, j = 1, ...N counts the generations, neutrinos get a mass when ∆L

gets a vev
Mν = y∆〈∆〉 (20)

The vev 〈∆〉 results form the cubic scalar interaction

∆V = µΦTσ2∆∗LΦ +M2
∆Tr∆

†
L∆L + ... (21)

with

〈∆〉 ' µv2

M2
∆

(22)

where one expects µ of order M∆. If M∆ � v, neutrinos are naturally light.
Notice that (20) and (22) reproduce again the formula (12) as it must be: for
large scales of new physics, neutrino mass must come from d = 5 operator in
(9).

Again, the diagrammatic representation may be even more clear, see Fig.
3.
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Figure 3: Diagrammatic representation of the Type II see-saw

3.3 Y = 0, SU(2)L triplet fermion: Type III see-saw

The Yukawa interaction in (15) for new singlet fermions carries on straight-
forwardly to SU(2) triplets too, written now in the Majorana notation (where
for simplicity the generation index is suppressed and also an index counting
the number of triplet - recall that at least two are needed in order to provide
two massive light neutrinos)

∆L(TF ) = yT `
TCσ2~σ · ~TFΦ +MT

~T TF C ~TF (23)

In exactly the same manner as before in Type I, one gets a Type III see-saw
[28] for MT � v

Mν = −yTT
1

MT

yTv
2 (24)

Again, as in the Type I case, one would need at least two such triplets to
account for the solar and atmospheric neutrino oscillations (or a triplet and
a singlet). And, as before, (24) simply reproduces (12) for large MT , and
SU(2)× U(1) symmetry dictates.

Under the assumption of single type of new particles added to the SM,
these three types of see-saw exhaust all the possibilities [29] of reproducing
(9) and (12).

Exercise: Show that the three possible different operators of the type (9)
correspond to the three different types of see-saw.

Since (9) and (12) describe effectively neutrino Majorana masses in the
MSM, the question is wether we gain anything by going to be the renormal-
izable see-saw scenarios. If the new scales MR,M∆ and MT are huge and not
accessible to experiment, then arguably 17), or (20) and (22 , or (24), are
equivalent to the (9) or (12). In a sense, they are only a change of language,
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but not a useful language. We have traded the couplings yν between phys-
ical, observable particles, to the unknown yD (or y∆ or yT ) couplings and
the unknown masses of the heavy particles that we integrate out.

The issue, in any case, is not so much to explain the smallness of neutrino
mass, but to relate it to some other physical phenomenon. After all, small
fermion masses are controlled by small Yukawa couplings.

This is reminiscent of the Fermi theory of weak interactions. At low
energies E � MW , the concept of a massive gauge boson W was not useful
and for many years one kept working on the Fermi theory instead. For
otherwise, one would be trading the interactions between light physical states
for the unknown coupling with W and unknown MW .

There are two cases when one is better off talking of W , though

1. when one can reach the energy E 'MW and thus make W experimen-
tally accessible

2. even when E �MW , but one has a dynamical theory of W interactions
as in the MSM. The SU(2)×U(1) gauge symmetry of MSM made clear
predictions at low energies by correlating charged and neutral current
processes.

Ideally, we would like both 1 and 2. By complete analogy, we need then
either MR, M∆ or MT close to MW in order to be accessible at LHC, or
we need a theory of new interactions. The nice example for the latter is
Grand Unification: through q − ` symmetry it in principle correlates quark
and lepton masses and mixings.

A particularly appealing GUT is SO(10), since it unifies a family of
fermions and has L − R symmetry as a finite gauge transformation in the
form of DIrac’s charge conjugation. I will be discussing it at length later; for
the moment suffice it to say that it predicts both Type I and Type II see-saw,
but in minimal predictive versions their scale is very large, much above MW

– and hopeless to detect directly. The type III seesaw, though, is predicted
naturally in a minimal realistic extension of the original SU(5) grand unified
theory. This will be covered too towards the end of the course.

In summary, the main message of this chapter should be that the Majo-
rana neutrino mass is rather suggestive from the theoretical point of view.
As such, it provides a window to new physics at scale M of (9). The crucial
prediction of this picture is the ∆L = 2 lepton number violation in processes
such as ββ0ν. However, ββ0ν depends in general on the new physics at scale
M , and it is desirable to have a direct probe of lepton number violation. In
1983, Keung and I [30]suggested ∆L = 2 production of same sign dileptons
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at colliders, accompanied by jets, as a direct probe of the origin of neutrino
mass. We will discuss lepton number violation at length in Section 7.

What happens if the neutrino has a pure Dirac mass? In this case,
mν = yDv and the smallness of mν simply requires the smallness of yD.
The smallness of mν remains a puzzle controlled by small yD, as much as
the smallness of me is controlled by a small electron Yukawa coupling. The
MSM with Dirac couplings is a complete theory and needs no theory beyond
it. The diversity of fermion masses and mixings encourages though many
workers in the field to look for flavor symmetries at high energies. The dan-
ger here is to be caught in semantics rather in physics, for one often trades
the known masses and mixings of the physical states for the unmeasurable
properties of the new heavy particles and/or textures of mass matrices that
cannot be probed. This is a generic problem of large scale theories ad in
order to verify them we would need to correlate the neutrino masses and
mixings with some new physics. A nice example is proton decay in GUTs,
to which we will come later.

4 Left-right symmetry and neutrino mass

This Section is devoted to the left-right symmetric extension of the standard
model and the issue of the origin of the breaking of parity. This theory
played an important historic role in leading automatically to nonzero neutrino
masses and the seesaw mechanism. There are two different possible left-
right symmetries: parity and charge conjugation. The latter is the finite
gauge transformation in SO(10), an is thus rather suggestive. Still, parity is
normally identified with L-R symmetry, so I discuss next parity. The write-up
here is rather simple and pedagogical, without too many technicalities.

4.1 Parity as L-R symmetry

Parity is the fundamental symmetry between left and right and its breaking,
I believe, should be understood. In the standard model P is broken explicitly
and clearly, in order to break P spontaneously we must enlarge the gauge
group. The minimal model is based on the gauge group [16, 17, 18, 19].

GLR = SU(2)L × SU(2)R × U(1)B−L
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with the quarks and leptons completely symmetric under L↔ R

QL =

(
u
d

)
L

P←→ QR =

(
u
d

)
R

`L =

(
ν
e

)
L

P←→ `R =

(
ν
e

)
R

(25)

Notice that the requirement of left-right symmetry leads to the existence
of the right-handed neutrino and now the neutrino mass becomes a dynamical
issue, related to the pattern of symmetry breaking. In the Standard Model,
where νR is absent, mν = 0; here instead we shall need to explain why
neutrinos are so much lighter than the corresponding charged leptons.

In this theory, the formula for the electromagnetic charge becomes

Qem = I3L + I3R +
B − L

2
(26)

This is in sharp contrast with the Standard Model, where the hypercharge
Y was completely devoid of any physical meaning. So L-R symmetry is
deeply connected with B-L symmetry; the existence of right-handed neutrinos
implied by L-R symmetry is necessary in order to cancel anomalies when
gauging B-L. Namely, the B-L symmetry is a global anomaly free symmetry
of the SM, but without νR the gauged version would have (B−L)3 anomaly.

Our primary task is to break L-R symmetry, i.e. to account for the fact
thatMWR

�MWL
, WR andWL denoting right-handed and left-handed gauge

bosons respectively. In order to do so we need a set of left-handed and right-
handed Higgs scalars whose quantum numbers we will specify later. Imagine
for the moment two scalars ϕL and ϕR with

ϕL
P←→ ϕR (27)

Assume no terms linear in the fields (since ϕL and ϕR should carry quan-
tum numbers under SU(2)L and SU(2)R ) we can write down the left-right
symmetric potential

V = −µ
2

2
(ϕ2

L + ϕ2
R) +

λ

4
(ϕ4

L + ϕ4
R) +

λ′

2
ϕ2
L ϕ

2
R (28)

where λ > 0 in order for V to be bounded from below, and we choose
µ2 > 0 in order to achieve symmetry breaking in the usual manner. We
rewrite the potential as

V = −µ
2

2
(ϕ2

L + ϕ2
R) +

λ

4
(ϕ2

L + ϕ2
R)2 +

λ′ − λ
2

ϕ2
L ϕ

2
R (29)
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which tells us that the pattern of symmetry breaking depends crucially on
the sign of λ′−λ, since the first two terms do not depend on the direction of
symmetry breaking (of course µ2 > 0 guarantees that < ϕL >=< ϕR >= 0
is a maximum and not a minimum of the potential).

Exercise: Show that if

1. λ′ − λ > 0, in order to minimize V we have either < ϕL >= 0, <
ϕR >6= 0, or vice versa.

2. λ′ − λ < 0, we need < ϕL >6= 0 6=< ϕR > and L-R symmetry implies
< ϕL >=< ϕR >.

Obviously we choose 1., which implies that P is broken in nature [18, 19].

4.2 Left-Right symmetry and massive neutrinos

What fields should we choose for the role of ϕL and ϕR? From the neutrino
mass point of view, the ideal candidates should be triplets [?] [?], i.e.

∆L(3̄L , 1R , 2) ; ∆R(1̄L , 3R , 2) (30)

where the quantum numbers denote SU(2)L , SU(2)R and B − L trans-
formation properties. Simply speaking, ∆L and ∆R are SU(2)L and SU(2)R
triplets, respectively, with B − L numbers equal to two.

Writing ∆L,R = ∆i
L,Rτi/2 (τi being the Pauli matrices) as is usual for the

adjoint representations, we find Yukawa couplings

L∆ = h∆(`TL C iτ2 ∆L `L + L→ R) + h.c. (31)

To check the invariance of (31) under the Lorentz group and the gauge
symmetry SU(2)L × SU(2)R × U(1)B−L, recall

• that ψTLCψL is a Lorentz invariant quantity for a chiral Weyl spinor ψL
(and similarly for ψR).

• under the gauge symmetry SU(2)L

`L −→ UL`L , ∆L −→ UL∆LU †L
UTL (iτ2) = (iτ2)U †L (32)

and similarly for SU(2)R
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• the B-L number of the ∆L,R fields is two.

This proves the invariance of (31) under all the relevant symmetries. Now,
from their definition, the fields ∆L,R have the following decomposition under
the charge eigenstates

∆L,R =

[
∆+/
√

2 ∆++

∆0 −∆+/
√

2

]
L,R

(33)

where we use the fact that Tr∆L,R = 0 and the charge is computed from
Q = I3L + I3R + (B − L)/2.

Notice an interesting consequence of doubly charged physical Higgs scalars
in this theory. From the general analysis of the spontaneous L-R symmetry
breaking, we know that for a range of parameters of the potential the mini-
mum of the theory can be chosen as

〈∆L〉 = 0 , 〈∆R〉 =

[
0 0
vR 0

]
(34)

From (31), we the obtain the mass for the right-handed neutrino νR

Lm = h∆ vR (νTR C νR + ν†R C
† ν∗R) (35)

Thus the right-handed neutrino gets a large mass MR = h∆vR, which
corresponds to the scale of breaking of parity. At the same time, the original
gauge symmetry is broken down to the Standard Model one

SU(2)L × SU(2)R × U(1)B−L
<∆R>−→ SU(2)L × U(1)Y (36)

This can be checked by computing the gauge boson mass matrix. By
defining the right-handed charged gauge boson

W±
R =

A1
R ∓ iA2

R√
2

(37)

we get

M2
WR

= g2
R v

2
R (38)

M2
ZR

= 2(g2 + g2
B−L) v2

R (39)

where

ZR =
gB−LA

3
R + gRAB−L√
g2 + g2

B−L

(40)
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is the new massive neutral gauge field, and gR and gB−L gauge couplings
correspond to SU2)R and (B − L)/2, respectively.

To complete the theory, one needs a Higgs bi-doublet Φ ∈ (2L, 2R, 0)
which contains the SM Higgs, so that one can give masses to quarks and
leptons. At the next stage of symmetry breaking, the neutral components of
Φ develop a VEV and break the SM symmetry down to U(1)em

〈Φ〉 =

[
v1 0
0 v2

]
(41)

where M2
W = g2v2 ≡ g2(v2

1 + v2
2)

In the process we get the Dirac neutrino mass between νL and νR and in
turn we end up with the type I see-saw mechanism for light neutrino masses.

Type I see-saw From the Dirac Yukawas

L = hΦ`L Φ `R + h.c. (42)

after the symmetry breaking the neutrino Dirac mass term is mD = hΦ〈Φ〉.
The neutrino mass terms become

mD`L`R +MR`
T
RC`R + h.c. (43)

and the neutrino mass matrix takes clearly the seesaw form.
The important point here is that the mass of νR is determined by the

scale of parity breaking and the smallness of the neutrino mass is a reflection
of the predominant V-A structure of the weak interaction and provides a
probe of parity restoration at high energies E > MWR

.

Type II see-saw The gauge symmetry of the Left-Right model allows
also for the following term in the potential that we have ignored before for
simplicity

∆V = α∆†LΦ∆RΦ† (44)

which implies that 〈∆L〉 cannot vanish [27].

Exercise: Show that

〈∆L〉 ' α
M2

W 〈∆R〉
M∆L

' α
M2

W

MR

(45)

which leads to type II see-saw.

The predictions for neutrino mass depend crucially on MWR
, but the L-R

symmetric model by itself cannot give us its value. This is cured in SO(10)
grand unified theory, where we will see that this scale tends to be very large,
far above the TeV energy scale of LHC. This is unfortunate.
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4.3 Charge conjugation as L-R symmetry

Since charge conjugation (see Appendix A)

(ψC)L ≡ Cψ̄TR (46)

is also a transformation between left and right, one can as well use C as a
L-R symmetry of this theory. In the limit of CP invariance, these symmetries
are equivalent; the difference lies only in the tiny breaking of CP. The above
discussion goes almost unchanged and we leave it as an exercise for a reader
to go through.

Exercise: Rewrite the above left-right symmetric theory, both gauge and
Yukawa couplings with L-R symmetry as C instead of P.

We will see that in SO(10) this symmetry introduced here ad-hoc, is an
automatic finite gauge transformation. It would be natural to go directly
to SO(10) now, but it will be helpful to master first the minimal grand
unified theory based on SU(5) symmetry. In order to be as pedagogical
as possible, I have included Appendices C and D on SU(N) and SO(2N)
groups, respectively. In particular, Appendix D deals with the spinorial
representations of SO(2N), a possibly new topic for most of the readers.
There are a number of exercises that should help you know whether you
have a mastery of the necessary group theory.

Last but not least. Before turning our attention to grand unification, we
should address the question of the experimental situation regarding the LR
scale. As we saw above, the scale of parity breaking is related to the mass of
the right-handed charged gauge bosons W±

R , so we can better speak of MWR
.

The predominant V-A nature of the weak interactions puts a lower limit on
MWR

, but the limit depends on the details of the model. In general the
left and right mixings between quarks (and leptons too) are not correlated
and MWR

can be quite low. In the minimal model, these mixings are indeed
correlated due to the Yukawa couplings being either Hermitian or symmetric
depending whether one use P or C for LR symmetry, respectively.

In either case there is a lower limit on MWR
from KL −KS and B − B̄

mass differences
MWR

& 2.5TeV. (47)

There have been recent claims of MWR
& 4TeV [73] (or even MWR

&
10TeV [74]). These bounds arrive from the CP-violating observables and are
valid only in the case of P. If C is used instead of P, these bounds go away
[33].
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In short, the potential observability of the LR symmetry at the Large
Hadron Collider (LHC) select uniquely charge conjugation as LR symmetry.
In the case of parity, the scale becomes too high, out of LHC reach. The
discussion of the probe of LR symmetry and the potential discovery of wR
is given in the Section 7.2. The crucial feature of the observability of WR is
a Majorana nature of the associated right-handed neutrinos which leads to
lepton number violation (LNV), and the resulting signature are same sign
di-lepton pairs. LHC offers thus a spectacular possibility of observing both
the restoration of LR symmetry and a Majorana origin of neutrino masses
through direct LNV.

5 SU(5): A Prototype GUT

The minimal group that can unify the Standard Model (SM) is SU(5) [12],
a group of rank four. It is actually the minimal group that can unify the
SU(2)L and SU(3)c of the SM, the U(1) comes for free.

It is natural that we should try to put the electro-weak doublet Φ and
the new color triplet hα in the 5-dimensional fundamental representation

5H = Φ =


hr

hg

hb

φ+

φ0


SU(3)c}
SU(2)L

(48)

where in the obvious notation the SU(3)c symmetry is acting on the first
3 components and the SU(2)L on the last two.

5.1 Structure

5.1.1 Fermions

We have 15 Weyl fields in each generation and it is natural to try to put
them in a 15-dimensional symmetric representation of SU(5). Now

5⊗ 5 = 15s + 10as (49)

Since 5 = (3c , 1L)+(1c , 2L) (in an obvious notation), since (3c⊗3c)s = 6c,
and since quarks come only in color triplets, we must abandon the idea of
15S. It is not anomaly free anyway, it could not have worked. What about
5 and 10as ? The quantum numbers of 5 from (48) imply uniquely
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5F ≡ ψ =


dr

dg

db

e+

−νC


R

(50)

(recall that (fC)R ≡ Cf̄L).
Now, from ψ −→ Uψ under SU(5), the 10-dimensional representation

10F ≡ χ must transform as

χ −→ U χ UT (51)

This is enough to give the quantum numbers of the particles in 10F

χ =
1√
2


0 uCb −uCg −ur −dr
−uCb 0 uCr −ug −dg
uCg −uCr 0 −ub −db
ur ug ub 0 e+

dr dg db −e+ 0


L

(52)

Notice that in (50), a minus sign convention for the νC field is to ensure

that

(
e+

−νC
)
R

and

(
e
ν

)
L

transform identically, and in (52) the signs are

the property of χ being antisymmetric. We will work in the future with 10F
and 5̄F (instead of 5F ).

We can see furthermore that a unified theory such as SU(5) explains
charge quantization, i.e. it relates quark and lepton charges. From (50)

Q(dC) = −1

3
Q(e) =

1

3
(53)

and then from (52) we see that Q(u) = Q(d) + 1 = 2/3.

5.1.2 Interactions

The interactions of fermions with gauge bosons are

Lf = iψ̄γµDµψ − iT rχ̄γµDµχ (54)

where
Dµχ = ∂µχ− ig(Aµχ+ χATµ ) (55)

There are of course the old QCD and SU(2)L × U(1) interactions with gs =
gW = g, and sin2θW = 3/8, the couplings at the unification scale where
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full SU(5) is operative. Furthermore, there are new X and Y bosons who
carry both color and flavor with charges 4/3 and 1/3 respectively. Their
interactions are

L(X, Y ) =
g√
2
X̄α
µ

[
d̄αRγ

µe+
R + d̄αLγ

µe+
L + εαβγū

cγ
L γµuβL

]
+

g√
2
Ȳ α
µ

[
−d̄αRγµνCR + ūαLγ

µe+
L + εαβγū

cγ
L γµdβL

]
+ h.c.(56)

As expected, due to the nontrivial color and flavor characteristics of the
quarks, the X and Y couple to the quark-quark and quark-lepton states. It
is clear that B and L are violated, although for some magic reason B − L
is conserved (more about it later). This leads to the decay of the proton,
as can be seen from the effective upon integrating out the heavy X and Y
gauge bosons

Leff(X, Y ) ' g2

M2
X

QQQL (57)

where Q and L can stand generically for quarks and leptons.
By analogy with the usual muon decay, the proton decay rate can be

estimated as

Γp '
g4

M4
X

m5
p (58)

From (τp)exp & 1033yr we get MX & 1015.5GeV ; later we will show that
we can actually compute MX .

5.2 Symmetry Breaking

The first stage of symmetry breaking down to the SM is achieved by the
adjoint Higgs Σ = 24H . Assume, only for the sake of simplicity, the discrete
symmetry Σ → −Σ. Then the most general renormalizable potential for Σ
is given by

V (Σ) = −µ
2

2
TrΣ2 +

1

4
a (TrΣ2)2 +

1

2
b TrΣ4 (59)

〈Σ〉 is a Hermitean matrix and thus it can be diagonalized by an SU(5)
rotation. Assume now that it is in the same direction as the hypercharge:
〈Σ〉 ∝ Y = vX diag(1, 1, 1,−3/2,−3/2). From (59) you get then µ2 =
1
2
(15a + 7b) v2

X , which, for µ2 > 0, implies (15a + 7b) > 0. In order to
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check that this is a local minimum, we must show that all the second deriva-
tives are positive. Since Σ has exactly the same form as the gauge boson
matrix, we can write

Σ = 〈Σ〉+


Σ8 +

√
3
5

(
−2

3

)
1cΣ0 Σ̄X Σ̄Y

ΣX

√
1
2
Σ3 +

√
3
5
Σ0 Σ+

ΣY Σ− −
√

1
2
Σ3 +

√
3
5
Σ0


(60)

where Σ8 are the analogs of gluons, ΣX and ΣY the analogs of X and Y ,
Σ3, Σ+, Σ− and Σ0 the analogs of W 3, W+, W− and B, respectively. The
masses of the particle masses in Σ are

m2(Σ8) =
5

4
b v2

X

m2(Σ3) = m2(Σ±) = 5b v2
X

m2(Σ0) =
15a+ 7b

2
v2
X

m2(ΣX) = m2(ΣY ) = 0 (61)

Thus for 15a + 7b > 0, b > 0 the extremum is a local minimum of the
theory. Notice that ΣX and ΣY are would-be Goldstone bosons of the the-
ory; they get “eaten” by the X and Y gauge fields, i.e. they become their
longitudinal components.

Finally, one can show that the vev of Σ is actually a global minimum. In
fact, other extrema can be shown to be at best saddle points.

Exercise:
HARD. Prove that the above minimum is in fact global. Hint: show that

the only possible minima are the SU(5), SU(4)×U(1) and SU(3)×SU(2)×
U(1). Then show that for the above conditions of the SM minimum, the other
two extrema are the maxima.

Thus SU(5) can be successfully broken down to the standard model, since
as we said Y commutes with both the SU(3)c and SU(2)L×U(1)Y generators.
This will be even more evident from the study of the gauge bosons mass
matrix. Since Σ is in the adjoint representation, DµΣ = ∂µΣ− ig[Aµ,Σ], and
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one has

1

2
(Dµ < Σ >)†(Dµ < Σ >) =

25

8
g2v2

X

[
X̄a
µX

µ
a + Ȳ a

µ Y
µ
a

]
(62)

where a as usual is the color index, a = r, g, b. As expected, the gluons
and the electro-weak gauge bosons remain massless, but X and Y get equal
masses

m2
X = m2

Y ≡M2
X =

25

8
g2v2

X (63)

as a consequence of both SU(3)c and SU(2)L remaining unbroken. The
original SU(5) symmetry is broken down to SU(3)c × SU(2)L × U(1)Y .

The rest of the breaking is completed by a 5-dimensional Higgs multiplet
Φ5 which contains the Standard Model doublet. Let us study this in some
detail including the full SU(5) invariant potential. We can write

V (Σ,Φ) = −µ
2
Σ

2
TrΣ2 +

1

4
a( TrΣ2)2 +

1

2
b TrΣ4

− µ2
Φ

2
Φ†Φ +

λ

4
(Φ†Φ)2

+ αΦ†Φ TrΣ2 − βΦ†Σ2Φ (64)

with a > 0, λ > 0, 15a + 7b > 0 and β > 0. Since both SU(3)c and
SU(2)L are unbroken at this point, we can always rotate 〈Φ〉 into the form
〈ΦT 〉 = (vc, 0, 0, 0, vW ). It is only the β term that is sensitive to the direction
of < Φ > and it gives −βv2

X(v2
c + 9/4v2

W ), which for β > 0 forms the solution
vW 6= 0, vc = 0 in order to minimize the energy.

It is an easy exercise to compute the mass of the colored triplet scalar ha
in 〈Φ〉, it is m2

h = 5
2
βv2

X , which justifies the choice β > 0. It is also easy to
show that

M2
W =

g2

4λ

[
µ2

Φ +
8M2

X

25g2
(−15α +

9

2
β)

]
(65)

But MX & 1015GeV , which implies an extraordinary fine-tuning in the
above equation of at least 26 orders of magnitude since the number on the
right hand side of (65) is naturally of order M2

X . This is known as the
hierarchy problem.

In the next subsection we will see that the colored triplet ha mediates
proton decay and thus it must be very heavy: mh & 1012GeV , implying that
β cannot be taken arbitrarily small. This aspect of the hierarchy problem is
known as the doublet-triplet splitting problem.

Before we close this subsection, let us say a few words more on the hi-
erarchy problem. The problem is that the mass term for the Higgs scalars
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cannot be made small (or zero) by any symmetry, unlike the case of fermions.
There the limit mf = 0 leads to chiral symmetry and thus the higher order
corrections must also vanish if mf = 0 at the tree level. In other words, the
higher order corrections are necessarily proportional to mf (tree), and so only
logarithmically divergent. In the case of scalars the divergence is quadratic
and thus in the context of grand unified theories (GUTs) such as SU(5) the
natural value for MW is of order MX .

5.3 Yukawa Couplings and Fermion mass relations

In the Standard Model the left-handed fermions are doublets and the right-
handed fermions are singlets, and so their chiral property is more than man-
ifest. In SU(5) the V-A structure of a family of fermions is left-intact and
here also there are no direct mass terms for fermions.

In the minimal SU(5) theory the fermion masses originate through the
Yukawa couplings of fermions with the light Higgs Φ

LY = fd ψ̄R χΦ† + fu
1

2
χT C χΦ + h.c. (66)

where C is the Dirac conjugation matrix, and fu is clearly a symmetric
matrix. The symbolic notation of (66) should read in the SU(5) notation as

ψ̄R χΦ† = ψ̄R i χ
ij Φ†j

χT C χΦ = εijklm (χT )ij C χkl Φm (67)

With < Φ >T= ( 0 0 0 0 vW ), we get for fermionic masses

Lm = fdvW (d̄RdL + ē+
Re

+
L)− fuvW (uc)TL C uL + h.c.

= −[fdvW (d̄d+ ēe)− fuvW ūu] (68)

Minimal SU(5) predicts the same masses for charged leptons and down
quarks: md = m` [48].

Exercise:
Explain why md = m`.

Unfortunately, this works bad even for the third family, since at MX one
finds mb = 0.6mτ . This means that one must include higher dimensional
operators [47] in the Yukawa sector, up to now neglected. Alternatively, you
can include other Higgs representations that can contribute to the fermionic
masses; for example, you can add 45H .
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Now, besides the usual Yukawa structure of the Higgs doublet in the SM,
one has new interactions of the color triplet hα. From (66) and (67) it is easy
to compute it’s couplings to fermions

Lh = fdψ̄R iχ
i αh+

α + fuεijklα(χT )ijCχklhα (69)

which gives

Lh =
{
fd
(
εαβγūcLβ d

γ
R + ūαL e

+
R + d̄αL ν

c
R

)
+fu

(
εαβγūcRβ d

γ
L + ūαR e

+
L

)}
hα (70)

Notice that the structure of the above couplings (not the strength, though),
is dictated by the SU(3)C × SU(2)L × U(1)Y gauge invariance only. This
becomes more clear if we write ūcLdR = uTRCdR and ūcRdL = uTLCdL.

It is clear that the interactions of H break B and L, just like those of X
and Y . Notice, though, that B−L is again conserved. In a complete analogy
with the situation encountered before for the X and Y bosons, we have the
possible exchanges of hα which leads to the proton decay. Of course, the
amplitude is proportional to small Yukawa couplings and the corresponding
limit on its mass is somewhat less strict: mh & 1012GeV .

5.3.1 Generations and their mixings

We know that in the standard model the neutral current interactions are
flavor diagonal and that the charged current processes lead to flavor mixing
and CP violation. How is this feature incorporated in the SU(5) theory
and what about new superweak interactions of the X and Y bosons ? The
analysis is straightforward and it proceeds along the same lines as in the
SU(2)L×U(1)Y theory [36]. I should stress that the predictions we will obtain
are of course not realistic since in this minimal theory neutrinos are massless
and the down quark and charged lepton mass relations come out wrong. The
minimal model discussed here should be viewed only as a prototype of the
what predictive theory should be like.

We diagonalize as usual fermion mass matrices by bi-unitary transforma-
tions

U †LfMfURf = Df (71)

where Df is diagonal, with its elements being real, positive numbers. Fur-
thermore, since Mu is symmetric

URu = U∗LuK∗ (72)
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where

K =


eiφu

eiφe

eiφt

...

 (73)

is the matrix of phases needed to ensure that the elements of Du are real
and positive. The above statements are equivalent to the redefinition of our
original fermionic fields in the Lagrangian

fL,R → U †L,RfL,R (74)

with UdL,R = U e+L,R. Since on the other hand the neutrinos are massless, we
can rotate them any which way we wish and so we chose νcR → UdRνcR . Thus
we can write for the 5-dimensional representation ψR → UdRψR, which means
that UdR disappears since it is just an overall factor. Suppressing the color
index, we can write

χ →

 ULuKuc −ULuu −ULdd

−ULde+


L

= ULd

 UCKMKuc −UCKMu −d

−e+


L

(75)

where UCKM = U †LdULu. Although I use the CKM notation, this matrix has
in general extra quark phases that one rotates away in the SM interactions
of the W boson. Again ULd is just an overall factor and so it will disappear.
Thus, the X and Y boson interactions involve no new flavor mixings besides
UCKM , only new phases. This was coined the ‘kinship’ hypothesis by Wilczek
and Zee [37], and in the minimal SU(5) it is unfortunately the consequence
of wrong mass relations md = m`. In the physical basis we get

L(X, Y ) =
g√
2
X̄µ

[
d̄R γ

µ e+
R + d̄L γ

µ e+
L + ūcL γ

µK∗ uL
]

+
g√
2
Ȳµ

[
−d̄R γµ νcR + ūL γ

µ U †CKM e+
L + ūcL γ

µ U †CKM dL

]
+ h.c.(76)

From U11 ∝ cos θc, U12 ∝ sin θc we would expect

Γ(p→ π0µ+)

Γ(p→ π0e+)
∝ sin2 θc (77)
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Of course, this minimal SU(5) model is not realistic, for down and strange
quark masses are not equal to their leptonic counterparts at the unification
scale. It is only an illustration how proton decay partial rates are connected
to the fermion masses and mixings. The true test can only be possible in a
completely realistic grand unified theory of fermion masses and mixings.

In any case, the minimal SU(5) theory fails to explain neutrino masses; it
is custom fit for massless neutrinos. While non-minimal models can lead to
non-vanishing neutrino masses, by itself, SU(5) just like the standard model
cannot relate neutrino masses to charged fermion masses nor relate quark
and lepton mixing angles. This is cured beautifully in the SO(10) theory
which requires the existence of right-handed neutrinos and leads to small,
non-vanishing neutrino masses through the see-saw mechanism. The main
ingredients are the left-right and quark-lepton symmetry inbuilt in SO(10)
automatically. However, SU(5) offers an interesting possibility of neutrino
Yukawa couplings be probed at LHC and before moving to SO(10) in Sec-
tion 6 we will discuss a simple and predictive SU(5) theory with an adjoint
fermionic representation added to the minimal model discussed above. We
will show that the theory is completely realistic and testable at colliders.

5.4 Low energy predictions

5.4.1 Ordinary SU(5)

I discuss here some elementary and simple aspects of gauge coupling unifica-
tion, at the one loop level. As is well known, the couplings run logarithmically
with energy. We have

1

αG(MW )
=

1

αU
− 1

2π
bG ln

MX

MW

(78)

for the gauge group G; MX is the energy where we imagine the unification
to take place, and αU is the value of the unified coupling at MX . One has a
generic formula for the running coefficient

bG =
11

3
TGB −

2

3
TF −

1

3
TH (79)

where the Casimir TR for the representation R is defined by

TRδij = TrTiTj (80)

and Ti are the Hermitian traceless generators of a group in question. For
the fundamental representation of SU(N) the convention is the one of SU(2):
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Tfund = 1
2
, which implies for the adjoint representation (relevant for gauge

bosons) in SU(N): Tadj = TGB = N .

Exercise:
Prove the above claim: Tadj = TGB = N for the adjoint of SU(N) using

Tfund = 1
2
.

This gives for the SU(3)C , SU(2)L and U(1) respectively

b3 =
33

3
− 4

3
ng

b2 =
22

3
− 4

3
ng −

1

6
nH

b1 =
3

5
bY = −4

3
ng −

1

10
nH (81)

where Ng is the number of generations, nH is the number of Higgs doublets
(nH = 1 in the minimal standard model).

We are now fully armed to check the evolution of these couplings above
MW . Using α1(MX) = α2(MX) = α3(MX) = αU , we get

1

αi(MW )
− 1

αj(MW )
=
bj − bi

2π
ln
MX

MW

(82)

From αem = sin2 θWα2 = cos2 θWαY and αY = 3/5α1 we get easily

1

α2(MW )
− 1

α3(MW )
=

22 + nH
12π

ln
MX

MW

sin2 θW (MW ) =
3

8
− 110− nH

48π
αem(MW ) ln

MX

MW

(83)

Notice the prediction sin2 θW = 3
8

at MX which we discussed before.
Now, for nH = 1 and by taking a α3(MW ) ' .12, α2(MW ) ' 1/30 we find
MX ' 1016GeV , but

sin2 θW (MW ) ' 0.2 (84)

The minimal SU(5) theory thus fails to meet the experiment.

5.4.2 Supersymmetric SU(5)

Supersymmetry, i.e. symmetry between bosons and fermions guarantees the
cancellation of quadratic divergences for the Higgs mass and thus can make
MW insensitive to MX . That is, we do not know why MW/MX is small, but it
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is not a problem, since it will stay small in perturbation theory as long as the
scale of supersymmetry breaking is small ΛSS ' MW . The point is that the
Higgs mass term is invariant under the internal symmetries and thus is nor-
mally not protected from high scales as manifested by quadratic divergences.
The fermion masses, on the other hand, are protected by chiral symmetry
and thus insensitive to large scales as manifested by ’small’ logarithmic di-
vergences. In supersymmetry scalars and fermions are not distinguishable
and thus Higgs mass is under control too.

Then for every particle of the standard model there is a supersymmetric
partner of the opposite statistics

fermions ⇐⇒ sfermions
(quarks, leptons) (squarks, sleptons)

s = 1/2 s = 0

gauge bosons ⇐⇒ gauginos
(W±, Z, γ, gluons) (Wino, Zino, photino, gluinos)

s = 1 s = 1/2

Higgs scalar ⇐⇒ Higgsino
s = 0 s = 1/2

It is easy to see that the formulas for the running of the gauge couplings
will be affected by the presence of the new particles. From (79) we get

bSSG =

(
11

3
− 2

3

)
TGB −

(
2

3
+

1

3

)
TF −

(
1

3
+

2

3

)
TH (85)

or

bG = 3TGB − TF − TH (86)

where the added contributions in (85) are due to the superpartners.
From (86) we get for the individual gauge couplings

bSS3 = 9− 2ng

bSS2 = 6− 2ng −
1

2
nH

bSS1 = −2ng −
3

10
nH (87)

where nH is again the number of Higgs doublets.
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In exactly the same way as before, assuming the unification of couplings
at MX , we find [38]

1

α2(MW )
− 1

α3(MW )
=

6 + nH
4π

ln
MX

MW

sin2 θW (MW ) =
3

8
− 30− nH

16π
αem(MW ) ln

MX

MW

(88)

In the minimal supersymmetric standard model (MSSM) nH = 2, and so [?]
[?] [?] [?]

MX ' 1016GeV (89)

and

sin2 θW (MW ) =
1

5
+

7

15

αem(MW )

α3(MW )
' 0.23 (90)

MSSM agrees perfectly well with the experiment and with the above value
for MX we predict the proton lifetime

τp ' 1035yr (91)

which is above the experimental bound (for the mode p→ π0e+) [42]

(τp)exp ≥ 8× 1033yr (92)

It actually did even better: the prediction of sin2θW = 0.23 was tied to
the prediction of the heavy top quark, with mt ' 200GeV . Namely, in 1981
the low indirect measurements gave sin2θW = 0.21, with the assumed value
ρ = 1. In order to make a case for low energy supersymmetry, Marciano and
I [41] had to say that ρ was bigger, which required loops, which required at
least one large coupling, and the only SM candidate was the top quark, with
yt ' 1. It is remarkable that both the sin2θW = 0.23 and the heavy top
would turn out to be true.

Now, if we are to take supersymmetry seriously, all the way up to the
scale MX , we expect of course new gauginos X̃, Ỹ , associated with the su-
perheavy bosons X and Y of SU(5); and also heavy Higgsinos h̃α from 5
of SU(5). The exchange of the heavy Higgsinos leads to proton decay, sup-
pressed only linearly by the GUT scale [43]. More precisely, the exchange of
heavy Higgsinos gives the effective operator d = 5 proton decay operator of
the type

1

MT

QLQ̃Q̃ (93)
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where Q and L stand for quarks and leptons and Q̃ stands for squarks while
MT is the mass of the heavy color triplet Higgsino. In turn the squarks are
changed into quarks through the exchange of gauginos and one obtains an
operator of the form QQQL of the proton decay.

A rough estimate gives

GT '
α

4π
yu yd

mgaugino

MTm2
f̃

' 10−30 GeV−2

which for yu ' yd ' 10−4, mgaugino ' 100 GeV, mf̃ 'TeV and MT ' 1016

GeV gives τp(d = 5) ' 1030−31 yr. It would seem that today this theory is
ruled out. It was actually proclaimed dead in 2001 when the triplet mass
was carefully computed to give M0

T = 3 × 1015GeV [44] (for the superscript
0 explanation, see below). Caution must be raised however for two impor-
tant reasons: i) the uncertainty in sfermion masses and mixings [45] and ii)
uncertainty in MT [46] due to necessity of higher dimensional operators [47]
to correct bad fermion mass relations md = m` [48]. The d = 4 operators,
besides correcting these relations also split the masses m3 and m8 of weak
triplet and color octet, respectively, in the adjoint 24H Higgs super multiplet
and one gets

MGUT = M0
GUT

(
M0
GUT

2m8

)1/2

MT = M0
T

(
m3

m8

)5/2


M0

GUT ' 1016 GeV

M0
T = 3× 1015GeV

where the superscript 0 denotes the predictions for m3 = m8 at the tree
level with d = 5 operators neglected. The fact that MGUT goes up with
m8 below MGUT was noticed quite some time ago [49]. Imagine that d = 4
terms dominate for small cubic Yukawa self coupling, in which case one has
m3 = 4m8 and thus MT = 32M0

T ' 1017 GeV 'MGUT (m8 ' 1015 GeV). In
turn a strong suppression of proton decay with τp ' 103τ 0

p (d = 5) ' 1033−34

yr. In principle the ratio of the triplet and octet masses can be as large as one
wishes, so at first glance the proton lifetime would seem not to be limited from
above at all. However, all this makes sense if the theory remains perturbative
and thus predictive. Increasing MGUT would bring it too close to the Planck
scale, so it is fair to conclude that the proton lifetime is below 1035 yr.

5.5 SU(5) and neutrino mass

The minimal theory of Georgi and Glashow fails in two crucial ways:
a) it predicts massless neutrinos b) gauge couplings do not unify
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We need a minimal extension that cures both problems. It does not suf-
fice to add right-handed neutrinos for they are gauge singlets and no not
contribute to the running of gauge couplings and thus cannot help the uni-
fication. In other words type I seesaw fails in minimal SU(5). One could
try type II, which requires a 15-dimensional Higgs representation, but in-
stead I wish to discuss here a particularly simple and predictive theory [50],
since it only requires adding the adjoint fermions 24F to the existing min-
imal model with three generations of quarks and leptons, and 24H and 5H
Higgs fields. This automatically leads to the hybrid scenario of both type I
and type III seesaw, since 24F has also a SM singlet fermion, i.e. the right-
handed neutrino. This should be clear to the alert student. After all, the 24F
is completely analogous to the 24H or even better the adjoint gauge boson
representation, which we studied at length. The fermionic triplet simply cor-
responds to the SU(2) gauge boson triplet, whereas the singlet corresponds
to the U(1) gauge boson. This singlet can be interpreted as a right handed
neutrino, for it is a SM neutral particle with Yukawa couplings to the light
neutrinos. The triplet fermion on the other hand has the quantum numbers
of the winos, the supersymmetric partners of the SU(2) charged and neutral
gauge bosons.

The main prediction of this theory is the lightness of the fermionic triplet.
For a conventional value of MGUT ≈ 1016 GeV, the unification constraints
strongly suggest its mass below TeV, relevant for the future colliders such as
LHC. The triplet fermion decay predominantly into W (or Z) and leptons,
with lifetimes shorter that about 10−12 sec.

Equally important, the decays of the triplet are dictated by the same
Yukawa couplings that lead to neutrino masses and thus one has an example
of predicted low-energy seesaw directly testable at colliders and likely already
at LHC.

The minimal implementation of the type III seesaw in non-supersymmetric
SU(5) requires a fermionic adjoint 24F in addition to the usual field content
24H , 5H and three generations of fermionic 10F and 5F . The consistency
of the charged fermion masses requires higher dimensional operators in the
usual Yukawa sector [47]. One must add new Yukawa interactions

LY ν = yi05̄iF24F5H (94)

+
1

Λ
5̄iF
[
yi124F24H + yi224H24F + yi3Tr (24F24H)

]
5H + h.c. .

After the SU(5) breaking one obtains the following physical relevant Yukawa

interactions for neutrino with the triplet TF ≡ ~TF ·~σ and singlet SF fermions
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(together with mass terms for TF and SF

LY ν = Li
(
yiTTF + yiSSF

)
H +

mS

2
SFSF +

mT

2
TFTF + h.c. (95)

where yiT , yiS are two different linear combinations of yi0 and yiavGUT/Λ (a =
1, 2, 3), Li are the lepton doublets and H is the Higgs doublet. It is clear from
the above formula that besides the new appearance of the triplet fermion, the
singlet fermion in 24F acts precisely as the right-handed neutrino; it should
not come out as a surprise, as it has the right SM quantum numbers.

After the SU(2)×U(1) symmetry breaking (〈H〉 = v ≈ 174GeV), one
obtains in the usual manner the light neutrino mass matrix upon integrating
out SF and TF

mij
ν = v2

(
yiTy

j
T

mT

+
yiSy

j
S

mS

)
(96)

with mT ≤ 1 TeV (see below) and mS undetermined.
From the above formula, one important prediction emerges immediately:

only two light neutrinos get mass, while the third one remains massless. This
is understood readily. First, the Yukawas here are vectors, and for example
the vector coupling corresponding to the triplet can be rotated in the say
3rd direction. Thus only one light neutrino effectively coupled to the triplet,
i.e. only one neutrino gets the mass through this coupling. Obviously, the
same could have been said about the singlet an thus only two massive light
neutrinos. This is of course independent of the nature of the heavy states,
and the number of light massive neutrinos is in direct proportion to the
number of heavy fermions, be they singlets or triplets.

The mass of the fermionic triplet is found by performing the renormal-
ization group analysis as before. From [50] one has

exp
[
30π

(
α−1

1 − α−1
2

)
(MZ)

]
= (97)(

MGUT

MZ

)84
((

mF
3

)4
mB

3

M5
Z

)5(
MGUT

mF
(3,2)

)20(
MGUT

mT

)
,

exp
[
20π

(
α−1

1 − α−1
3

)
(MZ)

]
= (98)(

MGUT

MZ

)86
((

mF
8

)4
mB

8

M5
Z

)5(
MGUT

mF
(3,2)

)20(
MGUT

mT

)−1

,

where mF,B
3 , mF,B

8 , mF
(3,2) and mT are the masses of weak triplets, color octets,

(only fermionic) leptoquarks and (only bosonic) color triplets respectively.
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We discussed at length the well known problem in the standard model of
the low meeting scale of α1 and α2. It is clear that the SU(2) triplet fermions
are ideal from this point of view since they slow down the running of α2,
while leaving α1 intact (other particles have non vanishing hypercharge and
thus make α1 grow faster as to meet α2 even before). They should clearly
be as light as possible while the color triplet as heavy as possible. In order
to illustrate the point, take mF

3 = mB
3 = MZ and mT = MGUT . This gives

(α−1
1 (MZ) = 59, α−1

2 (MZ) = 29.57, α−1
3 (MZ) = 8.55) MGUT ≈ 1015.5 GeV.

Increasing the triplet masses mF,B
3 reduces MGUT dangerously, making proton

decay too fast.
Finally, one can ask, where must the octets be. Since the triplets slowed

down the running of α2, the meting point of α2 and α3 would become too
large, unless α3 gets slowed down too. Thus the octets must lie much below
MGUT , but since they contribute to the running more than the triplets, they
should be also much above the weak scale, and one gets m8 = 107− 108GeV

For a more detailed discussion of unification constraints and the physics
of the triplets, see [51], and for phenomenology of the triplet relevant for
colliders, see [52]. The bottom line is a prediction of the light weak fermion
triplet

mT ≤ TeV (99)

Its decays proceed via its Yukawa couplings yT and thus probe the neu-
trino mass. One can parametrize yT through the lepton mixing matrix [53].

In normal hierarchy (NH) i.e. mν
1 = 0,

vyi∗T = i
√
mT

(
Ui2
√
mν

2 cos z ± Ui3
√
mν

3 sin z
)
, (100)

while in inverted hierarchy (IH) i.e. mν
3 = 0,

vyi∗T = i
√
mT

(
Ui1
√
mν

1 cos z ± Ui2
√
mν

2 sin z
)
. (101)

where z is a complex parameter.
You can readily show that in NH the neutrino masses are

mν
1 = 0 , mν

2 =
√

∆m2
S , mν

3 =
√

∆m2
A + ∆m2

S , (102)

while in the IH case

mν
1 =

√
∆m2

A −∆m2
S , mν

2 =
√

∆m2
A , m

ν
3 = 0 . (103)
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The the predominant decay modes of the triplets [51] are T → W (Z) +
light lepton whose strength is dictated by the neutral Dirac Yukawa cou-
plings.

Γ(T− → Ze−k ) =
mT

32π

∣∣ykT ∣∣2(1− m2
Z

m2
T

)2(
1 + 2

m2
Z

m2
T

)
, (104)

∑
k

Γ(T− → W−νk) =
mT

16π

(∑
k

∣∣ykT ∣∣2
)(

1− m2
W

m2
T

)2(
1 + 2

m2
W

m2
T

)
,(105)

Γ(T 0 → W+e−k ) = Γ(T 0 → W−e+
k ) =

=
mT

32π

∣∣ykT ∣∣2(1− m2
W

m2
T

)2(
1 + 2

m2
W

m2
T

)
, (106)

∑
k

Γ(T 0 → Zνk) =
mT

32π

(∑
k

∣∣ykT ∣∣2
)(

1− m2
Z

m2
T

)2(
1 + 2

m2
Z

m2
T

)
,(107)

where we averaged over initial polarizations and summed over final ones.
From (106) one sees that the decays of T 0, just as those of righthanded
neutrinos, violate lepton number. In a machine such as LHC one would
typically produce a pair T+T 0 (or T−T 0), whose decays then allow for inter-
esting ∆L = 2 signatures of same sign dileptons and 4 jets. This fairly SM
background free signature is characteristic of any theory with righthanded
neutrinos as discussed in [30]. The main point here is that these triplets are
really predicted to be light, unlike in the case of righthanded neutrinos. We
discuss this further in the Section 7 on lepton number violation.

6 SO(10): family unified

The minimal gauge group that unifies the gauge interactions of the standard
model was seen in the previous subsection to be based on SU(5) and stud-
ied at length. It is tailor fit for massless neutrinos just as the SM, for in
the minimal version of the theory neutrinos get neither Dirac nor Majorana
mass terms. Furthermore, the ordinary, non supersymmetric theory fails to
unify gauge couplings. We found that the simple extension with the adjoint
fermion representation provides a minimal and remarkably predictive theory
with light fermionic triplet expected at LHC and whose decay rates probe
the Dirac Yukawa couplings of neutrinos. We have a theory that works and
furthermore gives serious hope for an old dream of verifying seesaw mecha-
nism at colliders. So why should one ever wish to go beyond SU(5)? We can
think of at least two reasons. First, if one is to worry about the Higgs mass
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naturalness, one may wish to include supersymmetry. While SU(5) with the
low energy supersymmetry has a rather appealing feature of providing au-
tomatically (as predicted many years ago) a gauge coupling unification, it
is not an interesting theory of fermion masses and mixings. First of all, it
offers no explanation for the smallness of R-parity violation in nature, and
at the same time it requires a certain amount of arbitrary and unpredicted
R-parity violation in order to provide neutrino masses. One can also include
the type II seesaw into the theory through the 15H supermultiplet, and even
attribute to it a mediation of supersymmetry breaking [54], but one ends up
without any direct low energy probes or interesting quark-lepton mass and
mixings relations. This is where SO(10) fits ideally, for it also unifies matter
besides the interactions. It works nicely without supersymmetry too, for it
provides a natural unification of gauge couplings through the intermediate
scale of L-R symmetry breaking.

The general case SO(2N) is presented in Appendix D. The one important
representation of SO(10) is a 16-dimensional spinor, which can be decom-
posed under SU(5) as 16 = 10 + 5̄ +1. It unifies a family of fermions with
an addition of a right handed neutrino per family. This minimal grand uni-
fied theory that unifies matter on top of interactions suggests naturally small
neutrino masses through the seesaw mechanism. Furthermore, it relates neu-
trino masses and mixings to the ones of charged fermions, and is predictive
in its minimal version. In this Section I discuss some salient features in this
theory while focusing on its minimal realizations. The crucial representation
is a self-dual five index anti-symmetric one responsible for right-handed neu-
trino masses and is a must, whether being elementary of composed at the
loop level or through the higher dimensional operators. A number of differ-
ent minimal realizations of SO(10) depends on this construction, and what
follows summarizes a few of them.

There are a number of features that make SO(10) special:

1. a family of fermions is unified in a 16-dimensional spinorial representa-
tion; this in turn predicts the existence of right-handed neutrinos

2. L−R symmetry is a finite gauge transformation in the form of charge
conjugation. This is a consequence of both left-handed fermions fL and

its charged conjugated counterparts (f c)L ≡ Cf
T

R residing in the same
representation 16F .

3. in the supersymmetric version, matter parity M = (−1)3(B−L), equiv-
alent to the R-parity R = M(−1)2S, is a gauge transformation [55], a
part of the center Z4 of SO(10). It simply reads 16→ −16, 10→ 10. Its
fate depends then on the pattern of symmetry breaking (or the choice
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of Higgs fields); it turns out that in the renormalizable version of the
theory R-parity remains exact at all energies [56, 57]. The lightest su-
persymmetric partner (LSP) is then stable and is a natural candidate
for the dark matter of the universe.

4. its other maximal subgroup, besides SU(5)×U(1), is SO(4)×SO(6) =
SU(2)L × SU(2)R × SU(4)c symmetry of Pati and Salam. It explains
immediately the somewhat mysterious relations md = me (or md =
1/3me) of SU(5).

5. the unification of gauge couplings can be achieved with or without
supersymmetry.

6. the minimal renormalizable version (with no higher dimensional 1/MPl

terms) offers a simple and deep connection between b − τ unification
and a large atmospheric mixing angle in the context of the type II
see-saw [58] [59].

In order to understand some of these results, and in order to address the
issue of construction of the theory, we turn now to the Yukawa sector.

6.1 Yukawa sector

Fermions belong to the spinor representation 16F [60]. From

16× 16 = 10 + 120 + 126 (108)

the most general Yukawa sector in general contains 10H , 120H and 126H ,
respectively the fundamental vector representation, the three-index antisym-
metric representation and the five-index antisymmetric and anti-self-dual rep-
resentation. This can be seen by analogy with the Yukawa couplings of SO(6)
(see Appendix D)

Ly = y10ΨTBΓiΨΦi + y120ΨTBΓiΓjΓkΨΦ[ijk]

+ y126ΨTBΓiΓjΓkΓlΓmΨΦ−[ijklm] (109)

126H is necessarily complex, supersymmetric or not; 10H and 126H Yukawa
matrices are symmetric in generation space, while the 120H one is antisym-
metric.

Understanding fermion masses is easier in the Pati-Salam language of
one of the two maximal subgroups of SO(10), GPS = SU(4)c × SU(2)L ×
SU(2)R (the other being SU(5) × U(1)). Let us decompose the relevant
representations under GPS
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16 = (4, 2, 1) + (4̄, 1, 2)

10 = (1, 2, 2) + (6, 1, 1)

120 = (1, 2, 2) + (6, 3, 1) + (6, 1, 3) + (15, 2, 2) + (10, 1, 1) + (10, 1, 1)

126 = (10, 3, 1) + (10, 1, 3) + (15, 2, 2) + (6, 1, 1) (110)

I illustrate the decomposition of a spinor representation 16 = Ψ+ (see
Appendix D)

Ψ+ ≡ |ε1...ε5〉; ε1..ε5 = +1 (111)

It contains

ε1ε2ε3 = +1; ε4ε5 = +1 (112)

and

ε1ε2ε3 = −1; ε4ε5 = −1 (113)

The first one is 4 of SU4)C , doublet of SU(2)L and the latter 4̄ of 4 of
SU4)C , doublet of SU(2)R, as can be read off readily from the sections on
SO(4) and SO6) of Appendix D.

Exercise: Try to arrive at the rest of the above decomposition using the
material in Appendix D

Clearly, the see-saw mechanism, whether type I or II, requires 126: it
contains both (10, 1, 3) whose vev gives a mass to νR (type I), and (10, 3, 1),
which contains a color singlet, B − L = 2 field ∆L, that can give directly a
small mass to νL (type II). A reader familiar with the SU(5) language sees
this immediately from the decomposition under this group

126 = 1 + 5 + 15 + 45 + 50 (114)

The 1 of SU(5) belongs to the (10, 1, 3) of GPS and gives a mass for νR, while
15 corresponds to the (10, 3, 1) and gives the direct mass to νL.

Of course, 126H can be a fundamental field, or a composite of two 16H
fields, or can even be induced as a two-loop effective representation built
out of a 10H and two gauge 45-dim representations. In what follows I shall
discuss carefully all three possibilities.

Normally the light Higgs is chosen to be the smallest one, 10H . Since
〈10H〉 = 〈(1, 2, 2)〉PS is a SU(4)c singlet, md = me follows immediately,
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independently of the number of 10H you wish to have. Thus we must add
either 120H or 126H or both in order to correct the bad mass relations. Both
of these fields contain (15, 2, 2)PS, and its vev gives the relation me = −3md.

As 126H is needed anyway for the see-saw, it is natural to take this first.
The crucial point here is that in general (1, 2, 2) and (15, 2, 2) mix through
〈(10, 1, 3)〉 [61] and thus the light Higgs is a mixture if the two. In other
words, 〈(15, 2, 2)〉 in 126H is in general non-vanishing 1. It is rather appealing
that 10H and 126H may be sufficient for all the fermion masses, with only
two sets of symmetric Yukawa coupling matrices.

6.2 An instructive failure

Before proceeding, let me emphasize the crucial point of the necessity of 120H
or 126H in the charged fermion sector on an instructive failure: a simple and
beautiful model by Witten [62]. The model is non-supersymmetric and the
SUSY lovers may place the blame for the failure here. It uses 〈16H〉 in order
to break B − L, and the ”light” Higgs is 10H . Witten noticed an ingenious
and simple way of generating an effective mass for the right-handed neutrino,
through a two-loop effect which gives

MνR ' yup

(α
π

)2

MGUT (115)

where one takes all the large mass scales, together with 〈16H〉, of the order
MGUT . Since 〈10H〉 = 〈(1, 2, 2)PS〉 preserves quark-lepton symmetry, it is
easy to see that

Mν ∝ Mu

Me = Md

Mu ∝ Md (116)

so that Vlepton = Vquark = 1. The model fails badly.
The original motivation here was a desire to know the scale of MνR and

increase Mν , at that time neutrino masses were expected to be larger. But
the real achievement of this simple, elegant, minimal SO(10) theory is the
predictivity of the structure of MνR and thus Mν . It is an example of a good,
albeit wrong theory: it fails because it predicts.

What is the moral behind the failure? Not easy to answer. The main
problem, in my opinion, was to ignore the fact that with only 10H already

1In supersymmetry this is not automatic, but depends on the Higgs superfields needed
to break SO(10) at MGUT .
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charged fermion masses fail. One needs to enlarge the Higgs sector, by adding
for example a 120H ; the theory still leads to interesting predictions while
possible completely realistic [63] [64].

6.3 Non-supersymmetric SO(10)

In the last two decades, and especially after its success with gauge cou-
pling unification, grand unification by an large got tied up with low energy
supersymmetry. This is certainly well motivated, since supersymmetry is
the only mechanism in field theory which controls the gauge hierarchy. In
SO(10), gauge coupling unification needs no supersymmetry whatsoever. It
only says that there must be intermediate scales [65], such as Pati-Salam
SU(4)c×SU(2)L×SU(2)R or Left-Right SU(3)c×SU(2)L×SU(2)R×U(1)B−L
symmetry, between MW and MGUT . An oasis or two in the desert is always
welcome.

Thus if we accept the fine-tuning, as we seem to be forced in the case of the
cosmological constant, we can as well study the ordinary, non-supersymmetric
version of the theory. In this context the idea of the cosmic attractors [66] as
the solution to the gauge hierarchy becomes extremely appealing. It needs no
supersymmetry whatsoever, and enhances the motivation for ordinary grand
unified theories. In what follows I discuss some essential features of a possible
minimal such theory with 126H as a necessary ingredient for see-saw.

Let us start by analyzing the case with an extra 10H field [67]. The most
general Yukawa interaction is

LY = 16F
(
10HY10 + 126HY126

)
16F + h.c. . (117)

where Y10 and Y126 are symmetric matrices in the generation space. With
this one obtains relations for the Dirac fermion masses

MD = M1 +M0 , MU = c1M1 + c0M0 ,

ME = −3M1 +M0 , MνD = −3c1M1 + c0M0, (118)

where we have defined

M1 = 〈2, 2, 15〉d126 Y126 , M0 = 〈2, 2, 1〉d10 Y10 , (119)

and

c0 =
〈2, 2, 1〉u10

〈2, 2, 1〉d10

, c1 =
〈2, 2, 15〉u126

〈2, 2, 15〉d126

. (120)

In the physically sensible approximation θq = Vcb = 0, these relations imply
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c0 =
mc(mτ −mb)−mt(mµ −ms)

msmτ −mµmb

≈ mt

mb

, (121)

Exercise: Derive this formula.

Notice that this means that 10H cannot be real, since in that case one
would have |〈2, 2, 1〉u10| = |〈2, 2, 1〉d10|, implying mt/mb of order one. It is nec-
essary to complexify 10H , just as in a supersymmetric theory. If taking ad-
vantage of this fact one decides to impose a Peccei-Quinn symmetry, thus pro-
viding a Dark Matter candidate, the Yukawa sector in non-supersymmetric
and supersymmetric models is similar.

In this case, this model has the interesting feature of automatic connec-
tion between b − τ unification and large atmospheric mixing angle in the
type II see-saw. From MνL ∝ Y126 , one has MνL ∝ MD −ME. as shown
in [58]. This fact has inspired the careful study of the analogous supersym-
metric version where mτ ' mb at the GUT scale works rather well. In the
non-supersymmetric theory, b − τ unification fails badly, mτ ∼ 2mb [88].
The realistic theory will require a Type I seesaw, or an admixture of both
possibilities.

Suppose now that we choose instead 120H [67]. Since Y120 is antisym-
metric, this means only 3 new complex couplings on top of Y126. On gets in
this case

MD = M1 +M2 , MU = c1M1 + c2M2 , (122)

ME = −3M1 + c3M2 , MνD = −3c1M1 + c4M2

where M1 and c1 are defined in (119),(120), and:

M2 = Y120

(
〈2, 2, 1〉d120 + 〈2, 2, 15〉d120

)
, c2 =

〈2, 2, 1〉u120 + 〈2, 2, 15〉u120

〈2, 2, 1〉d120 + 〈2, 2, 15〉d120

,

c3 =
〈2, 2, 1〉d120 − 3〈2, 2, 15〉d120

〈2, 2, 1〉d120 + 〈2, 2, 15〉d120

, c4 =
〈2, 2, 1〉u120 − 3〈2, 2, 15〉u120

〈2, 2, 1〉d120 + 〈2, 2, 15〉d120

.(123)

It is easy to see that again there is a need to complexify the Higgs fields, by
arguments similar to the case of 10H .

In order to obtain algebraic expressions, from which a clearer physical
meaning can be extracted, one can restrict the analysis to the second and
third generations. Later, numerical studies could include the effects of the
first generation as a perturbation. In the basis where M1 is diagonal, real
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and non-negative, for the two-generation case one gets:

M1 ∝
(

sin2 θ 0
0 cos2 θ

)
(124)

and the most general charged fermion matrix can be written as:

Mf = µf

(
sin2 θ i(sin θ cos θ + εf )

−i(sin θ cos θ + εf ) cos2 θ

)
, (125)

where f = D,U,E stands for charged fermions and εf vanishes for negligible

second generation masses. In other words |εf | ∝ mf
2/m

f
3 . Furthermore the

real parameter µf sets the third generation mass scale. By calculating up to
leading order in |εf |, we have to the following interesting predictions [67]:

1. type I and type II seesaw lead to the same structure

M I
N ∝M II

N ∝M1 (126)

so that in the selected basis the neutrino mass matrix is diagonal. We
see that the angle θ has to be identified with the leptonic (atmospheric)
mixing angle θA up to terms of the order of |εE| ≈ mµ/mτ . For the
neutrino masses we obtain from (124)

m2
3 −m2

2

m2
3 +m2

2

=
cos 2θA

1− sin2 2θA/2
+O(|ε|) (127)

Exercise: Derive this formula.

This equation points to an intriguing correlation: the degeneracy of
neutrino masses is measured by the maximality of the atmospheric
mixing angle.

2. the ratio of tau and bottom mass at the GUT scale is given by:

mτ

mb

= 3 +O(|ε|) (128)

This is not correct in principle, the extrapolation in standard model
gives mτ ≈ 2mb. However, several effects modify this conclusion, such
as for example the inclusion of the first generation or the running of
Yukawa couplings. We would in any case expect that mb comes out as
small as possible.
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3. the quark mixing is found to be:

|Vcb| = | cos 2θA (εD − εU)|+O(|ε2|) (129)

This equation demonstrates the successful coexistence of small and
large mixing angles. In order for it to work quantitatively, | cos 2θA|
should be as large as possible, i.e. θA should be as far as possible from
the maximal value 45◦. To make a definite numerical statement, again,
the effects from the first generation and the loops have to be included.

6.4 Supersymmetric case

In supersymmetry 10H is necessarily complex and the bidoublet (1, 2, 2) in
10H contains the two Higgs doublets of the MSSM, with the vevs vu and
vd in general different: tan β ≡ vu/vd 6= 1 in general. In order to study the
physics of SO(10), we need to know what the theory is, i.e. its Higgs content.
There are two orthogonal approaches to the issue, as we discuss now.

Small representations. The idea: take the smallest Higgs fields (least
number of fields, not of representations) that can break SO(10) down to the
MSSM and give realistic fermion masses and mixings. The following fields
are both necessary and sufficient

45H , 16H + 16H , 10H (130)

It all looks simple and easy to deal with, but the superpotential becomes
extremely complicated. First, at the renormalizable level it is too simple.
The pure Higgs and the Yukawa superpotential at the renormalizable level
take the form

WH = m45452
H +m1616H16H + λ116HΓ216H45H

m10102
H + λ216HΓ16F10H + λ316HΓ16H10H (131)

Wy = y1016FΓ16F10H (132)

where Γ stands for the Clifford algebra matrices of SO(10), Γ1...Γ10, and
the products of Γ’s are written in a symbolic notation (both internal and
Lorentz charge conjugation are omitted).

Clearly, both WH and Wy are insufficient. The fermion mass matrices
would be completely unrealistic and the vevs 〈45H〉, 〈6H〉, 〈16H〉 would all
point in the SU(5) direction. Thus, one adds non-renormalizable operators

∆WH =
1

MPl

[
(452

H)2 + 454
H + (16H16H)2 + (16HΓ216H)2 + (16HΓ416H)2

+(16HΓ16H)2 + (16HΓ516H)2 + {16H → 16H}
+16HΓ416H452

H + 16HΓ316H45H10H + {16H → 16H}
]

(133)
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∆Wy =
1

MPl

[
16FΓ16F 16HΓ16H + {16H → 16H}

16FΓ316F45H10H + 16FΓ516F16HΓ516H
]

(134)

where I take for simplicity all the couplings to be unity; there are simply
too many of them. The large number of Yukawa couplings means very little
predictivity.

The way out is to add flavor symmetries and to play the texture game
and thus reduce the number of couplings. This in a sense goes beyond grand
unification and appeals to new physics at MPl and/or new symmetries.

To me, maybe the least appealing aspect of this approach is the loss of R
(matter) parity due to 16H and 16H ; it must be postulated by hand as much
as in the MSSM.

On the positive side, it is an asymptotically free theory and one can work
in the perturbative regime all the way up to MPl. While this sounds nice, I
am not sure what it means in practice. It would be crucial if you were able
to make high precision determination of MGUT or mT , the mass of colored
triplets responsible for d = 5 proton decay. The trouble is that the lack of
knowledge of the superpotential couplings is sufficient even in the minimal
SU(5) theory to prevent this task; in SO(10) it gets even worse.

Maybe more relevant is the fact that in this scenario MR 'M2
GUT/MPl '

1013− 1014GeV , which fits nicely with the neutrino masses via see-saw. Fur-
thermore, see-saw can be considered ”clean”, of the pure type I, since the
type II effect is suppressed by 1/MPl. Most important, the mb ' mτ relation
from (132) is maintained due to small 1/MPl effects relevant only for the first
two generations.

Large representations The non-renormalizable operators in reality mean
invoking new physics beyond grand unification. This may be necessary, but
still, one should be more ambitious and try to use the renormalizable theory
only. This means large representations necessarily: at least 126H is needed in
order to give the mass to νR (in supersymmetry, one must add 126H). The
consequence is the loss of asymptotic freedom above MGUT , the coupling
constants grow large at the scale ΛF ' 10MGUT .

Once we accept large representations, we should minimize their number.
The minimal theory contains, on top of 10H , 126H and 126H , also 210H
[68, 69, 70, 71] with the decomposition

210H = (1, 1, 1)− + (15, 1, 1)+ + (15, 1, 3) + (15, 3, 1)

+(6, 2, 2) + (10, 2, 2) + (10, 2, 2) (135)
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where the -(+) subscript denotes the properties of the color singlets under
charge conjugation.

The Higgs superpotential is remarkably simple

WH = m210(210H)2 +m126126H126H +m10(10H)2 + λ(210H)3

+η126H126H210H + α10H126H210H + α10H126H210H (136)

and the Yukawa one even simpler

WY = y1016FΓ16F10H + y12616FΓ516F126H (137)

Remarkably enough, this may be sufficient, without any higher dimen-
sional operators; however, the situation is not completely clear.

There is a small number of parameters: 3 + 6x2 = 15 real Yukawa cou-
plings, and 11 real parameters in the Higgs sector. In this sense the theory
can be considered as the minimal supersymmetric GUT in general [71]. As
usual, I am not counting the parameters associated with the SUSY breaking
terms.

The nicest feature of this program (and the best justification for the
use of large representations) is the following. Besides the 〈(10, 1, 3)〉 which
gives masses to the νR’s, also the 〈(15, 2, 2)〉 in 126H gets a vev [69, 61].
Approximately

〈15, 2, 2〉126 '
MPS

MGUT

〈1, 2, 2〉 (138)

with MPS = 〈15, 2, 2〉 being the scale of SU(4)c symmetry breaking. In
SUSY, MPS ≤ MGUT and thus one can have correct mass relations for the
charged fermions.

What is lost, though, is the b− τ unification, i.e. with 〈(15, 2, 2)〉126 6= 0,
mb = mτ at MGUT becomes an accident. However, in the case of type II
see-saw, there is a profound connection between b− τ unification and a large
atmospheric mixing angle. The fermionic mass matrices are obtained from
(137)

Mu = vu10y10 + vu126y126 ,

Md = vd10y10 + vd126y126 ,

Me = vd10y10 − 3vd126y126 ,

MνD = vu10y10 − 3vu126y126 , (139)

MνR = y126〈(10, 1, 3)〉 , (140)

MνL = y126〈(10, 3, 1)〉 , (141)

(142)
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where 〈(10, 3, 1)〉 ' M2
W/MGUT provides a direct (type II) see-saw mass for

light neutrinos. The form in (139) is readily understandable, if you notice
that 〈(1, 2, 2)〉 is a SU(4)c singlet with mq = m`, and 〈(15, 2, 2)〉 is a SU(4)c
adjoint, with m` = −3mq The vevs of the bidoublets are denoted by vu and
vd as usual.

Now, suppose that type II dominates, or Mν ∝ y126 ∝Me −Md, so that

Mν ∝Me −Md (143)

Let us now look at the 2nd and 3rd generations first. In the basis of
diagonal Me, and for the small mixing εde

Mν ∝
(
mµ −ms εde

εde mτ −mb

)
(144)

obviously, large atmospheric mixing can only be obtained for mb ' mτ [58].

Exercise: Prove that the above neutrino mass matrix requires b− τ uni-
fication in order to lead to a large mixing angle. Use the fact that the second
generation masses are small in comparison with the third generation ones.

Of course, there was no reason whatsoever to assume type II see-saw.
Actually, we should reverse the argument: the experimental fact of mb ' mτ

at MGUT , and large θatm seem to favor the type type II see-saw. It can
be shown, in the same approximation of 2-3 generations, that type I cannot
dominate: it gives a small θatm [59]. This gives hope to disentangle the nature
of the see-saw in this theory. As a check, it can be shown that the two types
of see-saw are really inequivalent [59].

I wish to stress an important feature of this programme. Since 126 (126)
is invariant under matter parity, R parity remains exact at all energies and
thus the lightest supersymmetric particle is stable and a natural candidate
for the dark matter.

Mass scales In SO(10) we have in principle more than one scale above
MW (and ΛSUSY ): the GUT scale, the Pati-Salam scale where SU(4)c is
broken, the L-R scale where parity (charge conjugation) is broken, the scales
of the breaking of SU(2)R and U(1)B−L. Of course, these may be one and
the same scale, as expected with low-energy supersymmetry. This solution
is certainly there, since the gauge couplings of the MSSM unify successfully
and encourage the single step breaking of SO(10).

Is there any room for intermediate mass scales in SUSY SO(10)? It is
certainly appealing to have an intermediate see-saw mass scale MR, between
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1012 − 1015GeV or so. In the non-renormalizable case, with 16H and 16H ,
this is precisely what happens: MR ' cM2

GUT/MPl ' c(1013 − 1014)GeV .
In the renormalizable case, with 126H and 126H , one needs to perform a
renormalization group study using unification constraints. While this is in
principle possible, in practice it is hard due to the large number of fields.
The stage has recently been set, for all the particle masses were computed
[83, 84], and the preliminary studies show that the situation may be under
control [85]. It is interesting that the existence of intermediate mass scales
lowers the GUT scale [83, 86], allowing for a possibly observable d = 6 proton
decay.

Notice that a complete study is basically impossible. In order to perform
the running, you need to know particle masses precisely. Now, suppose you
stick to the principle of minimal fine-tuning. As an example, you fine-tune
the mass of the W and Z in the SM, then you know that the Higgs mass and
the fermion masses are at the same scale

mH =

√
λ

g
mW , mf =

yf
g
mW (145)

where λ is a φ4 coupling, and yf an appropriate fermionic Yukawa coupling.
Of course, you know the fermion masses in the SM model, and you know
mH ' mW .

In an analogous manner, at some large scale mG a group G is broken and
there are usually a number of states that lie at mG, with masses

mi = αimG (146)

where αi is an approximate dimensionless coupling. Most renormalization
group studies typically argue that αi ' O(1) is natural, and rely on that
heavily. In the SM, you could then take mH ' mW , mf ' mW ; while
reasonable for the Higgs, it is nonsense for the fermions (except for the top
quark).

In supersymmetry all the couplings are of Yukawa type, i.e. self-renormalizable,
and thus taking αi ' O(1) may be as wrong as taking all yf ' O(1). While
a possibly reasonable approach when trying to get a qualitative idea of a
theory, it is clearly unacceptable when a high-precision study of MGUT is
called for.

Proton decay As you know, d = 6 proton decay gives τp(d = 6) ∝M4
GUT ,

while (d = 5) gives τp(d = 5) ∝ M2
GUT . In view of the discussion above, the

high-precision determination of τp appears almost impossible in SO(10) (and
even in SU(5)).
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You may wonder if our renormalizable theory makes sense at all. After
all, we are ignoring the higher dimensional operators of order MGUT/MPl '
10−2−10−3. If they are present with the coefficients of order one, we can for-
get almost everything we said about the predictions, especially in the Yukawa
sector. However, we actually know that the presence of 1/MPl operators is
not automatic (at least not with the coefficients of order 1). Operators of
the type (in symbolic notation)

Op
5 =

c

MPl

164
F (147)

are allowed by SO(10) and they give

Op
5 =

c

MPl

[(QQQL) + (QcQcQcLc)] (148)

These are the well-known d = 5 proton decay operators, and for c ' O(1)
they give τp ' 1023yr. Agreement with experiment requires

c ≤ 10−6 (149)

Exercise: Hard. Prove the above result. Use the fact that the supersym-
metric operator of the type QQQL corresponds to an effective interaction
QLQ̃Q̃ and then use the interactions with gauginos to transform Q̃Q̃ into
QQ in order to create a proton decay operator QQQL. It happens at the one
loop level.

Could this be a signal that 1/MPl operators are small in general? Al-
ternatively, you need to understand why just this one is to be so small. It
is appealing to assume that this may be generic; if so, neglecting 1/MPl

contributions in the study of fermion masses and mixings is fully justified.

7 Majorana Neutrinos: lepton number viola-

tion and the origin of neutrino mass

Majorana neutrino mass implies ∆L = 2 processes:

1. neutrino-less double β decay

2. same sign dilepton par production at colliders [30]
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Figure 4: Neutrinoless double β decay through WR and N

7.1 Neutrino-less double β decay

This is the usual text-book example of ∆L = 2 and is often considered a
probe of Majorana mν . However, the Majorana case needs a completion of
the SM and ββ0 depends in general on the completion. A simple and clear
example is provided by L−R symmetric theories with low MR scale in which
case there are new contributions to ββ0. The dominant one is due to the WR

exchange and right-handed neutrinos N
It gives

(ββ0)RR ∝
1

M4
WR

(
1

MN

)
ee (150)

to be compared with the usual WL contribution

(ββ0)LL ∝
1

M4
WL

(mν)ee
p2

(151)

where we assume gL ' gR and p is the momentum exchange p ' 100 MeV.
We have

(ββ0)RR
(ββ0)LL

'
(
MWL

MWR

)4
p2

(mν)ee

(
1

MN

)
ee (152)

For MR in the few TeV region and MN �TeV, the (RR) contribution
tends to dominate over the (LL) one, and clearly right-handed neutrinos
should not be too light.

Since mν → 0 when yD → 0, you can imagine a situation when neutrino
mass is arbitrarily small, but (ββ0)RR 6= 0 due to the N exchange.

Srictly speaking, ββ0 is not a measure of light neutrino masses and it
will be hard to disentangle the origin of the see-saw through this process. In
particular, we would need to know whether it is due to exchange of ν’s or
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Figure 5: Production of lepton number violating same sign dileptons at col-
liders through WR and N

heavy particles needed to complete the SM in order to have mν 6= 0 (such as
NR).

It is thus crucial to have a direct measure of lepton number violation
which can probe the source of neutrino Majorana mass. This is provided by
the same sign dilepton production at colliders as we discuss below.

7.2 Lepton number violation at colliders

We have just seen that ββ0 is obscured by various contributions which are
not easy to disentangle. We need some direct tests of the origin of ∆L = 2,
i.e. these-saw mechanism. This comes about from possible direct production
of the right-handed neutrinos through a WR production. The crucial point
here is the Majorana nature of N : once produced at decays equally often
into leptons and antileptons. This led us [30] to suggest a direct production
of the same sign dileptons at colliders as a manifestation of ∆L = 2. The
most promising channel is ``+2 jets as seen form Fig.5.

One can also imagine a production of N through its couplings to WL

(proportional to yD), but this is a long shot. It would require large yD and
large cancellations among the in order to have small mν . This could be
achieved in principle by fine-tuning, but is not the see-saw mechanism.

The crucial characteristics

1. no missing energy which helps to fight the background
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2. by measuring energies and momenta of the final states one can recon-
struct both the mas of WR and of the right-handed neutrino

3. the process can be amplified by the WR resonance

The main background comes from bb̄+ jets, but can be fought against
with the usual cuts of large pt for leptons and jets. Also important is tt̄+
jets, which is less present but more resistent to large pT cuts. Careful and
complete studies were performed with encouraging results: one can easily
discover WR at the LHC up to MWR

' 3.4 TeV and mN ' 100 GeV -TeV
[72]. There have been recent claims of MR & 4 TeV [73] (or even MR & 10
TeV [74]) in the minimal theory, but these limits depend on the definition
of L− R symmetry and its manifestness. Namely, this limit stems from CP
violation which depends on the definition of L−R symmetry.

Recall that L−R symmetry can be P as in the original works or C as it
happens in SO(10). The authors of [73, 74] use P, but it can be shown that
in the case of C, the freedom in CP phases leaves only the CP conserving
limit MR & 2.4 TeV [73]. This allows for both WR and the accompanying
neutral gauge boson ZR to see seen at LHC.

In the L-R symmetric theories one also predicts type II see-saw as dis-
cussed before. Type II can also exist by itself in which case it can lead to
rather interesting signatures at the colliders if the ∆ triplets are light enough.
In particular, it can lead to the production of doubly charged scalars that
decay into same sign di-lepton pairs [75] as in Fig.6.

Z

+ +

−−

l

l
−

−

l

l

Y

Y

Figure 6: Production of a pair of double charged Higgs scalars and subsequent
decay into pairs of same sign dileptons
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Notice that ∆++ and ∆−− decay through the Yukawas y∆, these decays
thus probe the neutrino mass matrix [76]

Mν = y∆〈∆〉 (153)

One can derive the sum rules for the flavor structure of Fig.6. Of course,
this is valid only when these decays dominate over the decays with W bosons
through〈∆〉.

The relative strength of ∆−− → `` and ∆−− → W−W− depends on y∆.
From

Γ(∆−− → ``) ' y2
∆

8π
M∆ (154)

and

Γ(∆−− → W−W−) ' g2〈∆〉2

8πM∆

(155)

for M∆ �MW one gets

B(∆−− → ``) ≡ Γ(∆−− → ``)

Γ(∆−− → W−W−)
' y2

∆M
2
∆

g2〈∆〉2
(156)

Thus B(∆−− → ``) ≥ 1 requires that the vev of ∆ be as small and y∆

large. Ideally, observing both decays would establish SU(2) gauge triplet
property of ∆ and could measure the form of the neutrino mass matrix. The
widely separated di-lepton pairs in the case of B(∆−− → ``) ≥ 1 provide
a clean manifestation of the Type II see-saw mechanism and allow for the
discovery of ∆++ with M∆ ≤ 800GeV. This can be boosted even more if
one manages to produce the heavy neutral gauge boson ZR, for then one
can sit at its resonance. In any case, even the seesaw is not of type II, the
possibility of the discovery of the doubly charged ∆ scalars remains feasible.
It is important to perform a complete analysis of the L−R symmetric model
at LHC. For an earlier attempt see e.g. [77]. In short, both type I and II
could lead to exciting ∆L = 2 signatures at LHC, if WR and N and/or ∆
are light enough. But, as will be discussed later, in predictive grand unified
theories such as minimal SO(10), they are expected to be rather heavy, out
of reach for LHC.

One can ask the same question in the case of Type III see-saw. As we
said, one would need at least the fermionic triplets in order to have at least
two massive neutrinos, one could have a hybrid situation of of Type I and
Type III see-saw,with a heavy fermionic singlet (N) and triplet (T ). This
case is particularly interesting, since it emerges naturally in the SU(5) grand
unified theory. Again, the process of interest for LHC is a production of same
sign dileptons (but now with 4 jets) as in Fig.7
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Figure 7: The same sign dilepton signature of type III seesaw through the
production of the charged and neutral components of a fermion triplet TF

The main point here is that in the minimal SU(5) theory augmented by
an adjoint fermionic representation 24F the fermion triplet TF is predicted to
lie below TeV , and thus the above process is a realistic possibility at colliders
such as LHC.

8 Summary and outlook

The smallness of neutrino mass is an intriguing fact that gives hope of being
a window into a new physics beyond the standard model. This crucially
depends on the nature of neutrino mass, i.e. whether it is Dirac or Majorana.
In the former case, the standard model is a complete theory and although
the smallness of neutrino mass is attributed to the smallness of Dirac Yukawa
couplings. True, it is not explained, but strictly speaking there may be no
new physics, the same way that there may be no new physics behind the
smallness of electron mass. In the limit of small Yukawas one has more
symmetry, and thus small Yukawas are technically natural, protected from
high energy physics. The Dirac case thus gives no clue where to look for a
new physics. Of course, one can always search for horizontal symmetries as
the explanation of small Yukawas, but here there is a danger of only changing
the language.

The Majorana case on the other hand provides a clear window into new
physics for the MSM with Majorana neutrino mass is not a complete theory.
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At the same time, this case implies a violation of lepton number through a
neutrino-less double beta decay as is well known and the possible production
of the same sign di-leptons, less known but becoming a new hot field in itself.
The completion of the MSM that produces small neutrino Majorana mass
results in the celebrated seesaw mechanism which comes in three different
varieties. In order to be predictive, though, the seesaw mechanism needs a
theory behind, for otherwise it is simply a linguistic variation on the effective
d=5 operator that we saw necessarily describes neutrino mass after the new
states are integrated out. One important theory which leads to both type I
and II seesaw is based on L-R symmetry, and has been a principle source of
neutrino mass and seesaw. If the scale of L-R symmetry breaking were to
be in the TeV region, one would have a possibility of seeing both the parity
restoration and the origin of the neutrino mass through the production of a
right handed charged boson and right-handed neutrinos. Similarly, one could
in principle produce the scalar triplet responsible for the type II seesaw. The
scale of L-R breaking can be predicted only in grand unification and in simple,
predictive models it is quite large, far above the TeV scale of colliders. Still,
one may be able to connect the values of neutrino masses and mixings with
the predictions for the branching ratios of proton decay an thus have a check
on the theory, albeit indirect.

On the other hand, the type III seesaw finds its natural realization in
SU(5) grand unified theory, when the minimal model od Georgi and Glashow
is augmented by an adjoint fermion representation. This allows for the uni-
fication of gauge couplings and provides a hybrid type I and III seesaw.
One predicts one massless neutrino and more important a light weak triplet
fermion, with a mass below TeV. The decays of the triplet probe neutrino
masses and mixings through the lepton number violating production of same
sign dileptons accompanied by four jets. The hope of finding the origin of
neutrino mass becomes feasible at colliders such as LHC.

In summary, I tried to argue in these lectures in favor of Majorana masses
of neutrinos, and the possibility of seeing its origin through lepton number
violation or the connection with proton decays. The lepton number violation
will be searched for in the new generation of neutrino-less double beta decay
and at LHC. Hopefully, a serious effort will be put in the next generation of
proton decay experiments; they could be simultaneously a probe of baryon
number violation in nature and an origin of neutrino masses and mixings.
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A Dirac and Majorana masses

The irreducible spin 1/2 representations of the Lorentz group are the two-
component left- and right-handed chiral fermion Weyl fields uL and uR, which
transform under the Lorentz group as

uL,R → ΛL,R uL,R (157)

with

ΛL ≡ ei~σ/2(~θ+i~φ)

ΛR ≡ ei~σ/2(~θ−i~φ) (158)

The three Euler angles ~θ stand for rotations, ad ~φ denotes the boosts. The
spinors ψL and ψR transform the same under the rotations, but in an opposite
manner under the boosts.

It is straightforward to show that the following bilinear combinations are
Lorentz invariant

(M) uTLiσ2uL and uTRiσ2uR (Majorana type)

(D) u†LuR and u†RuL (Dirac type) (159)

Historically, the Dirac type came first, but in a sense the Majorana in-
variant is even more fundamental for it needs only one species of fermions.

To bridge the gap with Dirac four-component fermions, we need the Dirac
algebra

{γµ, γν} = 2gµν gµν = diag(1,−1,−1,−1) (160)

with

γi =

(
0 σi

−σi 0

)
, γ0 =

(
0 12

12 0

)
(161)

γ5 = iγ1γ2γ3γ0 =

(
12 0
0 −12

)
(162)

where

Σµν =
1

4i
[γµ,Γν ] (163)

generate Lorentz algebra and where γ5 has the properties

γ2
5 = 1, [γ5,Σµν ] = 0, {γ5, γµ} = 0. (164)

One can define L and R projectors

PL.R ≡
1± γ5

2
(165)
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A four component spinor ψ transforms under Lorentz transformations

ψ → Λψ (166)

where
Λ ≡ eiΣµνθ

µν

(167)

One can write
ψ ≡ ψL + ψR (168)

with
ψL = PLψ ψR = PRψ (169)

The ΛL,R introduced in (??????????) are simply

ΛL,R = PL,RΛ (170)

The Dirac charge conjugation, defined through

CTγµC = −γTµ , CT = −C (171)

is with my conventions
C = iγ2γ0 (172)

In other words, the Majorana mass term can be written as

(M) mM(ψTLCψL + h.c.) (173)

and the Dirac one as

(D) mD(ψ̄LψR + ψ̄RψL) ≡ mDψ̄DψD ψD ≡ ψL + ψR (174)

This in turn gives

ψD =

(
uL
uR

)
(175)

since

ψL =

(
uL
0

)
and ψR =

(
0
uR

)
(176)

It is convenient to work with left-handed antiparticles instead of right-
handed particles

(ψC)L ≡ Cψ̄TR (177)

in which case one can write a mass matrix for ψL and (ψC)L in he Majorana
notation (ψT1 Cψ2) (

mL mD

mD mR

)
(178)

where mL and mR are the Majorana mass terms of ψL and ψR respectively.
The case of a pure Dirac fermion simply means mL = mR = 0.

If neutrino mass is of the Majorana type on the other hand, it will imply
a violation of the lepton number and a new rich physics associated with it.
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B Majorana spinors: Feynman rules

Take a two-component spinor with left-handed chirality ψL with the following
Lagrangian

LM = iψ̄Lγ
µ∂µΨL −

(mM

2
ψTLCψL + h.c.

)
(179)

where the subscript M indicates the Majorana nature of the mass term. In
order to bridge the gap with the familiar 4-component Dirac case, introduce
by analogy

ψM ≡ ψL + Cψ̄TL (180)

or

ψM =

(
uL

iσ2u
∗
L

)
(181)

In other words, Majorana spinor is real and can denote only a neutral particle
such as neutrino. This is manifest in the original Majorana representation
[22].

From
ψ̄Mγ

µ∂µψM = 2ψ̄Lγ
µ∂µψL (182)

and
ψ̄MψM = ψTLCψL + h.c. (183)

we get

LM =
1

2

[
iψ̄Mγ

µ∂µ −mM ψ̄MψM
]

(184)

Two important facts emerge

1. mM is the (Majorana) mass of ψM

2. one can use the usual Dirac case Feynman rules

C SU(N) group theory

On a fundamental N-dimensional complex representation Φ, the SU(N)
group acts as

Φ→ UΦ, U †U = 1, det(U) = 1 (185)

and U can be written as

U = e−iθaTa a = 1..N2 − 1 (186)

where the group generators Ta satisfy

Ta = T †a , T r(Ta) = 0, [Ta, Tb] = ifabcTc (187)
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where fabc are the group structure constants. There is also a complex conju-
gate representation

Φ∗ → U∗Φ∗ (188)

and an (N2 − 1)-dimensional adjoint representation

A→ UAU † = A− iθa[Ta, A] + ... (189)

In other words, the generators act on A as commutators. One can write
A = AaTa, so that Aa transforms under a small group rotation as

Aa → Aa + fabcθbAc (190)

Examples of fields transforming as the adjoint representation are the
gauge bosons A of SU(N) and the heavy scalars Σ employed to break the
grand unified symmetry. The reason for the latter is the fact that under a
unitary transformation 〈Σ〉 → U〈Σ〉U †, one can have 〈Σ〉 diagonal, which in
turn implies

[〈Σ〉, Ta ∈ Cartan] = 0 (191)

The adjoint Higgs preserves the rank of the group after the symmetry break-
ing. This is specially important in SU(5) since it has the same rank (=4) as
the SM gauge group.

All other representations are built out of the fundamental Φ (and/or
Φ∗) by symmetrizing and antisymmetrizing (and subtracting the trace when
necessary). For example

ΦiΦj = Φ[i,j]+ Φ{i,j} (192)

N(N−1)
2

N(N + 1)

2
(193)

This means that all the charges get summed up

Q(ΦiΦj) = Q(Φi) +Q(Φj) (194)

D SO(2N) group theory

SO(2N) is the group of real orthogonal transformations, OTO = OOT = 1,
with det(O) = 1. It can be generated by N(N − 1)/2 Hermitean antisym-
metric matrices

O = e−iθijLij (195)

with
(Lij)kl = −i(δikδjl − δilδjk) (196)

57



so that one has the following commutation relations

[Lij, Lkl] = i(δikLjl − δjlLik) (197)

The N-dimensional Cartan subalgebra is spanned by

Cartan = {L12, L34, ..., L2N−1,2N} (198)

whose eigenvalues are ±1. The fundamental (vector) representation trans-
forms as

Φi → OijΦj (199)

and is generated by Lij in 196. One can construct the general N-index irre-
ducible representation by antisymmetrizing or symmetrizing (and subtract-
ing traces) N times the vector representation. Rather interesting are the [N]-
index antisymmetric ones, for one can complexify them by introducing

Φ±[a1..aN ] = Φ[a1..aN ] ±
iN

N !
εa1...aN b1...bNΦb1...bN (200)

We illustrate this on a simple example below in SO(2) where this amounts
to just complexifying a fundamental representation. It turns out that such 5
index antisymmetric 126 dimensional representation of SO(10) plays a pro-
found role in a physics of neutrino mass; this is discussed in the section 6.

D.0.1 SO(2N): spinors

By analogy with the Dirac algebra in Minkowski space, an Euclidean version
is based on the Clifford algebra of the Γi matrices (i = 1...2N)

{Γi,Γj} = 2δij (201)

out of which one can construct N(N − 1)/2 generators

Σij =
1

4i
[Γi,Γj] (202)

which satisfy the usual commutation relations of the SO(2N) generators in
197. It is easy to see that the Cartan subalgebra consists of N generators

Cartan = {Σ12, ...,Σ2N−1,2N} (203)

whose eigenvalues are ±1/2.
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The appropriate 2N -dimensional complex representation Ψ is called a
spinor of SO(2N). Adding a spinor changes of course a group, just as SO(3)
becomes SU(2). One often calls SO(2N) with spinors: Spin(2N). The spinors
transforms in the following manner

Ψ→ e−iθijΣijΨ (204)

Again, by analogy with Dirac γ5 matrix one can introduce

ΓFIVE = (−1)NΓ1...Γ2N (205)

with the properties

Γ2
FIVE = 1, [ΓFIVE,Σij] = 0, {ΓFIVE,Γi} = 0 (206)

By using the projectors

Γ+(−) ≡
1± ΓFIVE

2
(207)

one can construct the irreducible 2N−1 dimensional spinors

Ψ± ≡ Γ+(−)Ψ (208)

by analogy with Weyl spinors of the Lorentz group.
One can also introduce the analogue of the usual charge conjugation by

demanding that

ΨTBΨ = invariant⇔ Ψc ≡ BΨ∗ (209)

which amounts to

ΣTB +BΣ = 0 (210)

There are two possible solutions for B

B(1) = Γ1...Γ2N−1 , ;B(2) = Γ2...Γ2N (211)

D.0.2 The ket notation for spinors

From
ΓFIVE = 2Σ12..2Σ2N−1,2N (212)

one can write
ΓFIVE = ε1ε2...εN (213)
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where εi are ±1 , the eigenvalues of Σ2i−1,2i. Then one can denote the Ψ+

spinors as a ket
Ψ+ ≡ |ε1...εN〉; ε1..εN = +1 (214)

For example, take the spinors Ψ+ of SO(10)

Ψ+ ≡ |ε1...ε5〉; ε1..ε5 = +1 (215)

The 16-component Ψ+ can be decomposed as

Ψ+ =



1 field |+ + + ++〉

10 fields
|+ + +−−〉, |+ +−+−〉, |+ +−−+〉
|+−+ +−〉, |+−+−+〉, |+−−++〉
| −+ + +−〉, | −+ +−+〉, | −+−++〉, | − −+ ++〉

5 fields
|+−−−−〉, | −+−−−〉
| − −+−〉, | − − −+−〉, | − − −−+〉

(216)
We will see that this can be interpreted as a decomposition under SU(5)

16 = 10 + 5 + 1 (217)

n other words, a family of fermions augmented by a right-handed neutrino
makes and irreducible spinorial representation of SO(10). The unification
of matter, on top of gauge interactions, points strongly towards SO(10).
However, in order to appreciate this fact and have fun with SO(10), we first
go through some pedagogical exposition of smaller groups.

D.0.3 SO(2): a prototype for SO(4n+ 2)

We choose
Γ1 = σ1, Γ2 = σ2 (218)

so that
ΓFIVE = σ3 Σ12 =

σ3

2
(219)

which illustrates clearly [ΓFIVE,Σi,j] = 0. The irreducible 1-component
spinors transform as

Ψ+ → e−iθ/2Ψ+ , Ψ− → e+iθ/2Ψ− (220)

since

Ψ ≡
(

Ψ+

Ψ−

)
→ e−iθσ3/2

(
Ψ+

Ψ−

)
(221)
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On the other hand, the two-component vectors transform as(
φ1

φ2

)
→
(

cos θ sin θ
− sin θ cos θ

) (
φ1

φ2

)
(222)

or
φ1 ± iφ2 → e±iθ(φ1 ± iφ2) (223)

Eqs. 220 and 223 simply account for the fact SO(2) ' U(1).
The internal “charge” conjugation B can be chosen as B1 = σ1, so that

ΨTBΨ = Ψ+Ψ− (224)

However, only Ψ+ (or Ψ−) is an irreducible spinor, therefore there is no mass
term for an irreducible spinor of SO(2). In other words, the spinors Ψ+ (Ψ−)
are chiral and can represent physical particles such as the fermions of the
SM. This is true in any SO(4n+ 2) theory. In particular, in SO(10), which
means that it offers hope of being realistic.

Dual representation From

εijdetO = OikOjlεkl (225)

is is easy to see that φi and εijφi transform in the same way. We can introduce
the self (anti-self) dual representation

Φi(±) =
1√
2

(φi ± iεijφj) (226)

which is nothing else but the complex representation of U(1) 223. This
should make clear the generic concept of self dual representations in SO(2N)
discussed before.

Yukawa couplings We have seen that there is no direct mass term. There
are Yukawa couplings, though, of the type

LY = ΨTBσiΨφi

= Ψ+Ψ+(φ1 − iφ2) + Ψ−Ψ−(φ1 + iφ2) (227)

as dictated by U(1) charges.
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D.0.4 SO(4)

One knows that SO(4) is isomorphic to SU(2) × SU(2), and it plays an
important role in providing a left-right symmetric subgroup of SO(10). It
is an Euclidean analog of the Lorentz group and the Clifford algebra can be
generated by

Γ1 =

(
0 σ1

σ1 0

)
Γ2 =

(
0 σ2

σ2 0

)
Γ3 =

(
0 σ3

σ3 0

)
Γ4 =

(
0 −i
i 0

)
(228)

so that

ΓFIVE =

(
1 0
0 −1

)
(229)

and “charge” conjugation can be taken as

B(1) = Γ1Γ3 =

(
−iσ2 0

0 −iσ2

)
(230)

or

B(2) = Γ2Γ4 =

(
iσ2 0
0 −iσ2

)
(231)

The mass term
ΨTBΨ ∝ ΨT

+iσ2Ψ+ + ... (232)

where

Ψ± =
1± Γ5

2
Ψ± (233)

In other words, the mass term for Ψ+ (or Ψ−) is invariant, which means that
we can have no chiral fermions in SO(4). This is true for all SO(4n) groups.

In the ket notation

Ψ+ = |ε1ε2〉; ε1ε2 = 1; ε1,2 = ±1 (234)

or

Ψ+ =

(
|+ +〉
| − −〉

)
(235)

Introduce the neutral generator of SU(2)L and SU(2)R

T3L ≡
1

2
(Σ12 + Σ34) , T3R ≡

1

2
(Σ12 − Σ34) (236)

and you see that Ψ+ is an SU(2)L doublet, SU(2)R singlet field, an analog of
left-handed Weyl spinors of the Lorentz group. Similarly, Ψ− is an SU(2)L
singlet, SU(2)R doublet field.
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D.0.5 SO(6)

SO(6) ∼ SU(4)C is the Pati-Salam group of quark-lepton symmetry, with
leptons as the fourth color. It deserves a brief description.

Start with a six-dimensional vector Φi (i=1..6). It is easy to see that
the components (φ1 ± φ2), (φ3 ± φ4), (φ5 ± φ6) transform as 3 and 3∗ of its
subgroup SU(3) which we identify with the color.

The neutral generators are identified as

T3C =
1

2
(Σ12 − Σ34)

T8C =
1

2
(Σ12 + Σ34 − 2Σ56) (237)

The additional neutral generator of SU(4), identifiable as B − L, can be
written as

B − L = −2

3
(Σ12 + Σ34 + Σ56) (238)

Regarding spinors, the positive chirality can be written as

Ψ+ =


color singlet |+ ++〉

color triplet (B− L) = 1/3 |+−−〉, | −+−〉, | − −+〉
(239)

It says simply that the irreducible 4-component spinor of SO(6) is a funda-
mental of SU(4) with the decomposition under SU(3)C (with B − L)

Ψ+ = 4 = 1−1 + 31/3 (240)

which is precisely a combination of a lepton and a colored quark. Similarly,
Ψi = 4∗ = 1+1 + 3−1/3 stands for an antilepton and antiquark.

Exercise:
As a check, show that 4 × 4 = 6 + 10. Show that 6 of SO(6) has the

quantum number of the 6 (antisymmetric) of SU(4).

Yukawa couplings in SO(6) We know that the irreducible spinors of
SO(6) are fundamental representations of SU(4) and 4× 4 = 6 + 10. There
are then two types of Yukawa couplings

LY = y6ΨTBΓiΨΦi + y10ΨTBΓiΓjΓkΨΦ−[ijk] (241)
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where it is a simple exercise to show that Φ−[ijk]is an anti-self-dual represen-
tation

Φ−ijk = Φ−[ijk] =
i

3!
εijklmnΦ[lmn] (242)

and where Φ−[ijk] is the 3-index antisymmetric tensor of SO(6).

Exercise: Construct the self-dual and anti-self-dual representation of
SO(6) out of the 3-index antisymmetric representation Φ[ijk]. Show that 20 =
10 + 10. Then prove equation 241 and show that there are no other couplings

Exercise: Take the Pati-Salam group SO(4)×SO(6) ' SU(2)L×SU(2)R×
SU(4)c. Show that the representations (2, 1, 4) and (1, 2, 4) give a family of
quarks and leptons augmented by a right-handed neutrino

Exercise: The chiral anomalies are proportional to Λijk = Tr({Ti, Tj}Tk).
Show that the SO(2N) groups are anomaly free, except for the SO(6). Com-
ment on why SO(6) must have an anomaly
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G. Senjanović, arXiv:0904.2390 [hep-ph].

[53] A. Ibarra and G. G. Ross, Phys. Lett. B 591, 285 (2004) [arXiv:hep-
ph/0312138].

[54] F. R. Joaquim and A. Rossi, Phys. Rev. Lett. 97, 181801 (2006)
[arXiv:hep-ph/0604083].

F. R. Joaquim and A. Rossi, Nucl. Phys. B 765, 71 (2007) [arXiv:hep-
ph/0607298].

[55] R. N. Mohapatra, Phys. Rev. D 34, 3457 (1986). A. Font, L. E. Ibáñez
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[64] B. Bajc and G. Senjanović, Phys. Rev. Lett. 95, 261804 (2005)
[arXiv:hep-ph/0507169].

[65] See e.g. D. Chang, R. N. Mohapatra, J. Gipson, R. E. Marshak and
M. K. Parida, Phys. Rev. D 31 (1985) 1718.

[66] G. Dvali and A. Vilenkin, arXiv:hep-th/0304043. G. Dvali, arXiv:hep-
th/0410286.

[67] B. Bajc, A. Melfo, G. Senjanović and F. Vissani, Phys. Rev. D 73
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P. Fileviez Pérez, T. Han, G. Y. Huang, T. Li and K. Wang, Phys.
Rev. D 78, 071301 (2008) [arXiv:0803.3450 [hep-ph]].

[77] K. Huitu, J. Maalampi, A. Pietila and M. Raidal, Nucl. Phys. B 487,
27 (1997) [arXiv:hep-ph/9606311].

[78] K. Inoue, A. Kakuto, H. Komatsu and S. Takeshita, Prog. Theor. Phys.
68 (1982) 927 [Erratum-ibid. 70 (1983) 330].

[79] L. Alvarez-Gaume, J. Polchinski and M. B. Wise, Nucl. Phys. B 221
(1983) 495.

[80] P. Nath and P. F. Perez, arXiv:hep-ph/0601023.

[81] For a review of the seesaw in the context of SO(10), see e.g. G. Sen-
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