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Introduction
Proof using 2+2 formalism

Discussions

Black hole and the entropy puzzle.

Classically, black holes cannot emit.

Take a box of gas and throw into a black hole.Entopy of the
gas vanishes into the singularity and thus decreases the
entropy of the universe.Violation of the second law of
entropy.

Bekenstein (1973): Entropy of the hole goes up when it
swallows the box of gas.Black holes have entropy
proportional to their area.

SBek =
A

4G
.
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The change in the total entropy is

dStotal

dt
=

dSmatter

dt
+

dSBek

dt
≥ 0.

Hawking (1973- 1975): Black holes have surface gravity
(which behaves like temperature) and obey a law similar to
the second law of thermodynamics.But to call them laws of
thermodymanics, one must consider quantum fluctuations.
Black holes radiate just like an ordinary thermal object.
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Hawking’s proof uses global geometry

I

I

i

i

i +  

−

0

−

+  

Singularity

Horizon

In the collapsing
geometry, data can
only be specified on I−

and on
I+ ∪ Horizon.
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Give +ve freq modes fi on I− .Give +ve freq modes gi on I+

but no data on ∆. Give +ve freq modes hi on ∆ but no data
on I+.

Any field configuration is then expanded in these bases.

φ =
∑

i

(

ai fi + a†f ∗i
)

.

φ =
∑

i

(

bi gi + ci hi + b†
i g∗

i + c†
i h∗

i

)

.
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Vacuum can be defined in I− with respect to fi basis:
ai |0 >= 0, ∀i .
But this vacuum contains particles as seen by an observer
in the future infinity I+.

The number of particles are determined to be |B|2, where
Bij is the Bogoliubov coefficient of the expansion

gi =
∑

j

(

Aij fj + Bij f ∗j
)

.

|B|2 ∼ 1
exp (2πω/κ)−1 .

This is a Planckian spectrum at temperature κ/2π.
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Hawking’s proof is independent of the gravitational field
equations.Relies only on the beheviour of quantum fields in
a spacetime formed out of collapse.

Wald and Kay (1991): Any globally hyperbolic spacetime,
with bifurcate Killing horizon has a vacuum thermal state at
temperature κ/2π and remains invariant under isometries
generating the horizon.

All so well for global geometries.Can we extend Hawking’s
proof if we know the existence of horizon only but not the
infinity ? (Chatterjee, Chatterjee and Ghosh, 2013.)
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A local proof

Hawking radiation as a tunelling phenomenon (Parikh and
Wilczek,2000).

Consider the classically forbidden s-wave emission from
inside the horizon.Use WKB approximation to obtain the
tunelling probability for a classically forbidden trajectory,
Γ = exp{−2ImS}, S being the classical action.Compare
with exp{−βE} and get the Hawking temperature.
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The formalism is local and has also been applied to
horizons which are dynamical (evolving).
(Hayward, 2007,2009)

Two problems: The method is highly semiclassical.While
evaluating the imaginary part of S, a singular integral
appears with pole at the location of the horizon.How to
evaluate it for a evolving horizon ?
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Future outward trapping horizon

Consider spherical symmetrical geometry in 2 + 2
formalism

ds2 = −2e−f dx+dx− + r2
(

dθ2 + sin2 θ dφ2
)

,

where x± = t ± x and f and r are smooth functions of x±.

Definition: FOTH is defined to be a three dimensional
surface such that on each foliation, one null normal has
zero expansion (θ+ = 0) and another has negative
expansion (θ− < 0). Further, the directional derivative of θ+

along the other null normal (∂−θ+) is negative.
(Hayward 1994,1998)
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Can be shown that the FOTH is timelike iff the out-out
component of the energy- momentum tensor T++ < 0.This
implies that for emitting Hawking radiation the horizon must
remain timelike for some affine time.Further, it can be
shown that the area and the (Misner-Sharp) energy of the
FOTH decreases in the process.

Physically, this implies that the horizon receives an
incoming negative energy flux.

How to define positive frequency modes in a dynamical
spacetime ? No time like Killing vector exists to give
preffered time. But can define Kodama vector which
matches with the Killing vector at spatial infinity, becomes
null on FOTH and gives a preferred timelike direction.
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Defining the field modes on curved spacetime

Define the modes of positive frequency using the Kodama
vector K a.

iKZω = ωZω,

where Zω are the eigenfunctions and are given by

Zω ≃ exp
(

iω
∫

r

dθ+

κθ+

)

,

has singularities at the location of the horizon.
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Quantum fields are operator valued distributions. Using
results from distribution theory, we can find modes which
are well defined for all values of θ+.We evaluate the
probablity density in a single particle Hilbert space

ρ(ω) = ω outside the horizon

= ω exp{2πω/κ} inside the horizon

Thus the conditional probability that the particle emits
when it is incident from inside is exp{−2πωκ}. Comparing
with the Boltzmann factor, T = κ/2π.
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Emission of matter flux

We can also evaluate the outgoing flux of matter energy
that crosses the dynamical horizon.Let na be the normal to
the 3- surface then the flux is

F =

∫

dµTabnaK b.

F ∼ (r1 − r2).Since area is decreasing, the outgoing flux is
positive definite.
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What We Have Shown

Dynamical horizons can be assigned a temperature. It is
given by κ/2π, where κ is slowly varying.

The outgoing flux is positive definite and is exactly equal to
the difference of radius at the start and the end of the
emission process.

The results are valid for large black holes (κ is slowly
varying) and spherical geometry.
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