Kalb-Ramond Fields and the CMBR Talk at UNICOS2014 (AULAKHFEST)
 Department of Physics Panjab University, Chandigarh

Parthasarathi Majumdar

Department of Physics
Ramakrishna Mission Vivekananda University
Belur Math, West Bengal

$$
\text { May 13-15, } 2014
$$

Motivation

Motivation

■ 'Do we live in a stringy world ?'

Motivation

■ 'Do we live in a stringy world ?'
$■$ Dilaton ϕ_{D} and axion ϕ_{A} : massless fields of every closed string theory, but NOT in SM !

Motivation

■ 'Do we live in a stringy world ?'
■ Dilaton ϕ_{D} and axion ϕ_{A} : massless fields of every closed string theory, but NOT in SM !
■ Why have we not seen them ?

Motivation

■ 'Do we live in a stringy world ?'
■ Dilaton ϕ_{D} and axion ϕ_{A} : massless fields of every closed string theory, but NOT in SM !
■ Why have we not seen them ?
■ How do they interact with SM fields, especially with photons (gravitons) ? \rightarrow 'cosmic' optical activity

PM,SenGupta 1999; Kar,PM,SenGupta,Sinha 2002

Motivation

■ 'Do we live in a stringy world ?'
$■$ Dilaton ϕ_{D} and axion ϕ_{A} : massless fields of every closed string theory, but NOT in SM !
■ Why have we not seen them ?
■ How do they interact with SM fields, especially with photons (gravitons) ? \rightarrow 'cosmic' optical activity

PM,SenGupta 1999; Kar,PM,SenGupta,Sinha 2002
■ String-'inspired' Parity-violating extension \rightarrow generation of CMB-B pol! PM 2004

Motivation

■ 'Do we live in a stringy world ?'
■ Dilaton ϕ_{D} and axion ϕ_{A} : massless fields of every closed string theory, but NOT in SM !
■ Why have we not seen them ?
■ How do they interact with SM fields, especially with photons (gravitons) ? \rightarrow 'cosmic' optical activity PM,SenGupta 1999; Kar,PM,SenGupta,Sinha 2002
■ String-'inspired' Parity-violating extension \rightarrow generation of CMB-B pol! PM 2004

- Incorporation into warped $D=5$ spacetime (Randall-Sundrum) \Rightarrow 'antiwarping' \rightarrow large B-pol!? Maity,SenGupta 2003; Maity,PM,SenGupta 2004; Chatterjee,PM 2005

Kalb-Ramond Fields

Kalb-Ramond Fields

- $B_{a b}=-B_{b a}$

Kalb-Ramond Fields

- $B_{a b}=-B_{b a}$

■ Gauge Transformation: $B_{a b} \rightarrow B_{a b}^{(\xi)}=B_{a b}+2 \partial_{[a} \xi_{b]}$

Kalb-Ramond Fields

- $B_{a b}=-B_{b a}$

■ Gauge Transformation: $B_{a b} \rightarrow B_{a b}^{(\xi)}=B_{a b}+2 \partial_{[a} \xi_{b]}$
■ Field strength $H_{a b c} \equiv \partial_{[a} B_{b c]} \rightarrow$ gauge-inv., totally antisymmetric

Kalb-Ramond Fields

- $B_{a b}=-B_{b a}$

■ Gauge Transformation : $B_{a b} \rightarrow B_{a b}^{(\xi)}=B_{a b}+2 \partial_{[a} \xi_{b]}$
$■$ Field strength $H_{a b c} \equiv \partial_{[a} B_{b c]} \rightarrow$ gauge-inv., totally antisymmetric
\square KR Action (massless) $S_{K R} \sim \int H_{a b c} H^{a b c}$

Kalb-Ramond Fields

- $B_{a b}=-B_{b a}$

■ Gauge Transformation : $B_{a b} \rightarrow B_{a b}^{(\xi)}=B_{a b}+2 \partial_{[a} \xi_{b]}$
$■$ Field strength $H_{a b c} \equiv \partial_{[a} B_{b c]} \rightarrow$ gauge-inv., totally antisymmetric
\square KR Action (massless) $S_{K R} \sim \int H_{a b c} H^{a b c}$
\square EoM : $\partial_{a} H^{a b c}=0$

Kalb-Ramond Fields

- $B_{a b}=-B_{b a}$

■ Gauge Transformation : $B_{a b} \rightarrow B_{a b}^{(\xi)}=B_{a b}+2 \partial_{[a} \xi_{b]}$
$■$ Field strength $H_{a b c} \equiv \partial_{[a} B_{b c]} \rightarrow$ gauge-inv., totally antisymmetric
\square KR Action (massless) $S_{K R} \sim \int H_{a b c} H^{a b c}$

- EoM : $\partial_{a} H^{a b c}=0$

■ Bianchi Identity : $\partial_{[a} H_{b c d]} \equiv \partial_{a}{ }^{*} H^{a b c}=0$

Kalb-Ramond Fields

- $B_{a b}=-B_{b a}$

■ Gauge Transformation : $B_{a b} \rightarrow B_{a b}^{(\xi)}=B_{a b}+2 \partial_{[a} \xi_{b]}$
$■$ Field strength $H_{a b c} \equiv \partial_{[a} B_{b c]} \rightarrow$ gauge-inv., totally antisymmetric
\square KR Action (massless) $S_{K R} \sim \int H_{a b c} H^{a b c}$

- EoM : $\partial_{a} H^{a b c}=0$

■ Bianchi Identity : $\partial_{[a} H_{b c d]} \equiv \partial_{a}{ }^{*} H^{a b c}=0$
■ ${ }^{*} H_{a b c} \equiv \epsilon_{a b c}{ }^{d} V_{d}$ (Hodge-duality)

Kalb-Ramond Fields

- $B_{a b}=-B_{b a}$

■ Gauge Transformation: $B_{a b} \rightarrow B_{a b}^{(\xi)}=B_{a b}+2 \partial_{[a} \xi_{b]}$
$■$ Field strength $H_{a b c} \equiv \partial_{[a} B_{b c]} \rightarrow$ gauge-inv., totally antisymmetric
\square KR Action (massless) $S_{K R} \sim \int H_{a b c} H^{a b c}$

- EoM : $\partial_{a} H^{a b c}=0$

■ Bianchi Identity : $\partial_{[a} H_{b c d]} \equiv \partial_{a}{ }^{*} H^{a b c}=0$
■ ${ }^{*} H_{a b c} \equiv \epsilon_{a b c}{ }^{d} V_{d}$ (Hodge-duality)
■ Insert in EoM $\Rightarrow \partial_{[a} V_{b]}=0 \Rightarrow V_{a}=\partial_{a} \phi_{A}$

Kalb-Ramond Fields

- $B_{a b}=-B_{b a}$

■ Gauge Transformation: $B_{a b} \rightarrow B_{a b}^{(\xi)}=B_{a b}+2 \partial_{[a} \xi_{b]}$
$■$ Field strength $H_{a b c} \equiv \partial_{[a} B_{b c]} \rightarrow$ gauge-inv., totally antisymmetric
\square KR Action (massless) $S_{K R} \sim \int H_{a b c} H^{a b c}$

- EoM : $\partial_{a} H^{a b c}=0$

■ Bianchi Identity : $\partial_{[a} H_{b c d]} \equiv \partial_{a}{ }^{*} H^{a b c}=0$
$\square{ }^{*} H_{a b c} \equiv \epsilon_{a b c}{ }^{d} V_{d}$ (Hodge-duality)

- Insert in EoM $\Rightarrow \partial_{[a} V_{b]}=0 \Rightarrow V_{a}=\partial_{a} \phi_{A}$
\square Bianchi Id for $H_{a b c} \rightarrow$ EoM for $\phi_{A}: \square \phi_{A}=0$

Kalb-Ramond Fields

- $B_{a b}=-B_{b a}$

■ Gauge Transformation : $B_{a b} \rightarrow B_{a b}^{(\xi)}=B_{a b}+2 \partial_{[a} \xi_{b]}$
$■$ Field strength $H_{a b c} \equiv \partial_{[a} B_{b c]} \rightarrow$ gauge-inv., totally antisymmetric
\square KR Action (massless) $S_{K R} \sim \int H_{a b c} H^{a b c}$

- EoM : $\partial_{a} H^{a b c}=0$
$■$ Bianchi Identity : $\partial_{[a} H_{b c d]} \equiv \partial_{a}{ }^{*} H^{a b c}=0$
■ ${ }^{*} H_{a b c} \equiv \epsilon_{a b c}{ }^{d} V_{d}$ (Hodge-duality)
■ Insert in EoM $\Rightarrow \partial_{[a} V_{b]}=0 \Rightarrow V_{a}=\partial_{a} \phi_{A}$
■ Bianchi Id for $H_{a b c} \rightarrow$ EoM for $\phi_{A}: \square \phi_{A}=0$
- Vector gauge parameter ξ^{a} has $U(1)$ type of gauge invariance ('ghosts for ghosts') Kaul 1978; Townsend 1979

Interaction with SM Fields and Gravity

$D=4$ Effective Action (minimal coupling)

Interaction with SM Fields and Gravity

$D=4$ Effective Action (minimal coupling)

$$
S=\int \sqrt{-g}\left[\frac{1}{16 \pi G} R-\frac{1}{4} F_{a b} F^{a b}-\frac{1}{2} H_{a b c} H^{a b c}\right]
$$

Interaction with SM Fields and Gravity

$D=4$ Effective Action (minimal coupling)

$$
S=\int \sqrt{-g}\left[\frac{1}{16 \pi G} R-\frac{1}{4} F_{a b} F^{a b}-\frac{1}{2} H_{a b c} H^{a b c}\right]
$$

\Rightarrow No direct KR-photon interaction!

Interaction with SM Fields and Gravity

$D=4$ Effective Action (minimal coupling)

$$
S=\int \sqrt{-g}\left[\frac{1}{16 \pi G} R-\frac{1}{4} F_{a b} F^{a b}-\frac{1}{2} H_{a b c} H^{a b c}\right]
$$

\Rightarrow No direct KR-photon interaction!
Quantum consistency of Heterotic String and requirement of $N=1$ SUSY + compactification to $D=4 \Rightarrow$

Interaction with SM Fields and Gravity

$D=4$ Effective Action (minimal coupling)

$$
S=\int \sqrt{-g}\left[\frac{1}{16 \pi G} R-\frac{1}{4} F_{a b} F^{a b}-\frac{1}{2} H_{a b c} H^{a b c}\right]
$$

\Rightarrow No direct KR-photon interaction !
Quantum consistency of Heterotic String and requirement of $N=1$ SUSY + compactification to $D=4 \Rightarrow$

$$
H_{a b c} \rightarrow \tilde{H}_{a b c} \equiv H_{a b c}+\frac{1}{3 M_{P}}\left(\Omega_{a b c}^{(Y M)}+\Omega_{a b c}^{(G R)}\right)
$$

Interaction with SM Fields and Gravity

$D=4$ Effective Action (minimal coupling)

$$
S=\int \sqrt{-g}\left[\frac{1}{16 \pi G} R-\frac{1}{4} F_{a b} F^{a b}-\frac{1}{2} H_{a b c} H^{a b c}\right]
$$

\Rightarrow No direct KR-photon interaction !
Quantum consistency of Heterotic String and requirement of $N=1$ SUSY + compactification to $D=4 \Rightarrow$

$$
\begin{aligned}
H_{a b c} \rightarrow \tilde{H}_{a b c} & \equiv H_{a b c}+\frac{1}{3 M_{P}}\left(\Omega_{a b c}^{(Y M)}+\Omega_{a b c}^{(G R)}\right) \\
\Omega_{a b c}^{(Y M)} & \equiv A_{[a} \partial_{b} A_{c]}+A_{[a} A_{b} A_{c]} \text { YMChern }- \text { Simons }
\end{aligned}
$$

Interaction with SM Fields and Gravity

$D=4$ Effective Action (minimal coupling)

$$
S=\int \sqrt{-g}\left[\frac{1}{16 \pi G} R-\frac{1}{4} F_{a b} F^{a b}-\frac{1}{2} H_{a b c} H^{a b c}\right]
$$

\Rightarrow No direct KR-photon interaction!
Quantum consistency of Heterotic String and requirement of $N=1$ SUSY + compactification to $D=4 \Rightarrow$

$$
\begin{aligned}
H_{a b c} \rightarrow \tilde{H}_{a b c} & \equiv H_{a b c}+\frac{1}{3 M_{P}}\left(\Omega_{a b c}^{(Y M)}+\Omega_{a b c}^{(G R)}\right) \\
\Omega_{a b c}^{(Y M)} & \equiv A_{[a} \partial_{b} A_{c]}+A_{[a} A_{b} A_{c]} \text { YMChern }- \text { Simons } \\
\Omega_{a b c}^{(G R)} & \equiv \omega_{[a} \partial_{b} \omega_{c]}+\omega_{[a} \omega_{b} \omega_{c]} \text { GRChern }- \text { Simons }
\end{aligned}
$$

Interaction with SM Fields and Gravity

$D=4$ Effective Action (minimal coupling)

$$
S=\int \sqrt{-g}\left[\frac{1}{16 \pi G} R-\frac{1}{4} F_{a b} F^{a b}-\frac{1}{2} H_{a b c} H^{a b c}\right]
$$

\Rightarrow No direct KR-photon interaction !
Quantum consistency of Heterotic String and requirement of $N=1$ SUSY + compactification to $D=4 \Rightarrow$

$$
\begin{aligned}
H_{a b c} \rightarrow \tilde{H}_{a b c} & \equiv H_{a b c}+\frac{1}{3 M_{P}}\left(\Omega_{a b c}^{(Y M)}+\Omega_{a b c}^{(G R)}\right) \\
\Omega_{a b c}^{(Y M)} & \equiv A_{[a} \partial_{b} A_{c]}+A_{[a} A_{b} A_{c]} \text { YMChern - Simons } \\
\Omega_{a b c}^{(G R)} & \equiv \omega_{[a} \partial_{b} \omega_{c]}+\omega_{[a} \omega_{b} \omega_{c]} \text { GRChern - Simons }
\end{aligned}
$$

Compactification details determine $D=4 \mathcal{G}_{\text {gauge }} ;$ for Calabi-Yau $\rightarrow E_{6}$

KR (axion) - Photon Interaction

KR (axion) - Photon Interaction

Restrict $\Omega_{a b c}^{(Y M)}$ to Maxwell-Chern Simons

KR (axion) - Photon Interaction

Restrict $\Omega_{a b c}^{(Y M)}$ to Maxwell-Chern Simons

$$
\Omega_{a b c}^{(M a x)}=M_{P}^{-1} A_{[a} F_{b c]}
$$

KR (axion) - Photon Interaction

Restrict $\Omega_{a b c}^{(Y M)}$ to Maxwell-Chern Simons

$$
\Omega_{a b c}^{(M a x)}=M_{P}^{-1} A_{[a} F_{b c]}
$$

Additional gauge transformation in order for $\tilde{H}_{a b c}$ to be invariant under $U(1)_{E M}: A_{a} \rightarrow A_{a}^{(\omega)}=A_{a}+\partial_{a} \omega$

KR (axion) - Photon Interaction

Restrict $\Omega_{a b c}^{(Y M)}$ to Maxwell-Chern Simons

$$
\Omega_{a b c}^{(M a x)}=M_{P}^{-1} A_{[a} F_{b c]}
$$

Additional gauge transformation in order for $\tilde{H}_{a b c}$ to be invariant under $U(1)_{E M}: A_{a} \rightarrow A_{a}^{(\omega)}=A_{a}+\partial_{a} \omega$

$$
B_{a b} \rightarrow B_{a b}^{(o m e g a)}=B_{a b}-\omega F_{a b}
$$

KR (axion) - Photon Interaction

Restrict $\Omega_{a b c}^{(Y M)}$ to Maxwell-Chern Simons

$$
\Omega_{a b c}^{(M a x)}=M_{P}^{-1} A_{[a} F_{b c]}
$$

Additional gauge transformation in order for $\tilde{H}_{a b c}$ to be invariant under $U(1)_{E M}: A_{a} \rightarrow A_{a}^{(\omega)}=A_{a}+\partial_{a} \omega$

$$
B_{a b} \rightarrow B_{a b}^{(o m e g a)}=B_{a b}-\omega F_{a b}
$$

Effective Interaction Action

$$
S_{K R-M a x}=h \int \phi_{A} F_{a b}^{*} F^{a b}, h \sim M_{P}^{-1}
$$

EoM and Bianchi

EoM and Bianchi

$\nabla_{a} H^{a b c}=0[\mathrm{KR}$ EoM]

EoM and Bianchi

$$
\begin{aligned}
\nabla_{a} H^{a b c} & =0[\mathrm{KR} \mathrm{EoM}] \\
\square_{g} \phi_{A} & =h F_{a b}{ }^{*} F^{a b}+O\left(h^{2}\right)[\mathrm{KR} \text { Bianchi] }
\end{aligned}
$$

EoM and Bianchi

$$
\begin{aligned}
\nabla_{a} H^{a b c} & =0[\mathrm{KR} \text { EoM }] \\
\square_{g} \phi_{A} & =h F_{a b}{ }^{*} F^{a b}+O\left(h^{2}\right)[\mathrm{KR} \text { Bianchi] } \\
\nabla_{a} F^{a b} & =h \partial_{a} \phi_{A} F^{a b}+O\left(h^{2}\right)
\end{aligned}
$$

EoM and Bianchi

$\begin{aligned} \nabla_{a} H^{a b c} & =0[\mathrm{KR} \text { EoM] } \\ \square_{g} \phi_{A} & =h F_{a b}{ }^{*} F^{a b}+O\left(h^{2}\right) \text { [KR Bianchi] } \\ \nabla_{a} F^{a b} & =h \partial_{a} \phi_{A} F^{a b}+O\left(h^{2}\right) \\ \nabla_{a}{ }^{*} F^{a b} & =0\end{aligned}$

EoM and Bianchi

$$
\begin{aligned}
\nabla_{a} H^{a b c} & =0[\mathrm{KR} \mathrm{EoM}] \\
\square_{g} \phi_{A} & =h F_{a b}{ }^{*} F^{a b}+O\left(h^{2}\right)[\mathrm{KR} \text { Bianchi }] \\
\nabla_{a} F^{a b} & =h \partial_{a} \phi_{A} F^{a b}+O\left(h^{2}\right) \\
\nabla_{a}{ }^{*} F^{a b} & =0
\end{aligned}
$$

In Minkowski sptm, assuming $\phi_{A}=\phi_{A}(t), \dot{\phi}_{A}=f_{0}$, Maxwell eq. $\Rightarrow \square \vec{B}=f_{0} h \nabla \times \vec{B}$

EoM and Bianchi

$$
\begin{aligned}
\nabla_{a} H^{a b c} & =0[\mathrm{KR} \text { EoM }] \\
\square_{g} \phi_{A} & \left.=h F_{a b}{ }^{*} F^{a b}+O\left(h^{2}\right) \text { [KR Bianchi }\right] \\
\nabla_{a} F^{a b} & =h \partial_{a} \phi_{A} F^{a b}+O\left(h^{2}\right) \\
\nabla_{a}^{*} F^{a b} & =0
\end{aligned}
$$

In Minkowski sptm, assuming $\phi_{A}=\phi_{A}(t), \dot{\phi}_{A}=f_{0}$, Maxwell eq. $\Rightarrow \square \vec{B}=f_{0} h \nabla \times \vec{B}$
LC and RC pol have different freq $\omega_{ \pm}=c k\left(k \pm h f_{0}\right) \Rightarrow$

EoM and Bianchi

$$
\begin{aligned}
\nabla_{a} H^{a b c} & =0[\mathrm{KR} \text { EoM }] \\
\square_{g} \phi_{A} & =h F_{a b}{ }^{*} F^{a b}+O\left(h^{2}\right) \text { [KR Bianchi] } \\
\nabla_{a} F^{a b} & =h \partial_{a} \phi_{A} F^{a b}+O\left(h^{2}\right) \\
\nabla_{a}^{*} F^{a b} & =0
\end{aligned}
$$

In Minkowski sptm, assuming $\phi_{A}=\phi_{A}(t), \dot{\phi}_{A}=f_{0}$, Maxwell eq. $\Rightarrow \square \vec{B}=f_{0} h \nabla \times \vec{B}$
LC and RC pol have different freq $\omega_{ \pm}=c k\left(k \pm h f_{0}\right) \Rightarrow$ Cosmic Optical Effect (birefringence) : Rotation of Polarization Plane by

$$
\Delta \Theta_{\cos } \simeq 2 h f_{0} \Delta t
$$

Post-last scattering effects of Cosmic Birefringence

Post-last scattering effects of Cosmic Birefringence

$\square \Delta \Theta_{\text {total }}=\Delta \Theta_{\text {Faraday }}+\Delta \Theta_{\cos }$

Post-last scattering effects of Cosmic Birefringence

■ $\Delta \Theta_{\text {total }}=\Delta \Theta_{\text {Faraday }}+\Delta \Theta_{\text {cos }}$

- $\Delta \Theta_{\text {Faraday }} \sim \lambda^{2}$ while $\Delta \Theta_{\text {cos }} \rightarrow$ achromatic

Post-last scattering effects of Cosmic Birefringence

■ $\Delta \Theta_{\text {total }}=\Delta \Theta_{\text {Faraday }}+\Delta \Theta_{\text {cos }}$

- $\Delta \Theta_{\text {Faraday }} \sim \lambda^{2}$ while $\Delta \Theta_{\text {cos }} \rightarrow$ achromatic
- $\Delta \Theta_{\text {cos }} \sim 2 h f_{0} \Delta t$ in Minkowski space \rightarrow can have observable effects in lab Das, Parthasarathy 2000; Roy,SenGupta 2007

Post-last scattering effects of Cosmic Birefringence

■ $\Delta \Theta_{\text {total }}=\Delta \Theta_{\text {Faraday }}+\Delta \Theta_{\text {cos }}$

- $\Delta \Theta_{\text {Faraday }} \sim \lambda^{2}$ while $\Delta \Theta_{\text {cos }} \rightarrow$ achromatic
- $\Delta \Theta_{\text {cos }} \sim 2 h f_{0} \Delta t$ in Minkowski space \rightarrow can have observable effects in lab Das,Parthasarathy 2000; Roy,SenGupta 2007
■ In Sp flat FRW $f_{0}=f_{0}(a(t))$ in conformal frame $\rightarrow \Delta \Theta_{\text {cos }}=h f_{0}(a) \Delta t(z), \quad z \rightarrow$ redshift, i.e., $\Delta t(z) \rightarrow$ 'Lookback time'

Post-last scattering effects of Cosmic Birefringence

■ $\Delta \Theta_{\text {total }}=\Delta \Theta_{\text {Faraday }}+\Delta \Theta_{\text {cos }}$

- $\Delta \Theta_{\text {Faraday }} \sim \lambda^{2}$ while $\Delta \Theta_{\text {cos }} \rightarrow$ achromatic

■ $\Delta \Theta_{\text {cos }} \sim 2 h f_{0} \Delta t$ in Minkowski space \rightarrow can have observable effects in lab Das,Parthasarathy 2000; Roy,SenGupta 2007
■ In Sp flat FRW $f_{0}=f_{0}(a(t))$ in conformal frame $\rightarrow \Delta \Theta_{\text {cos }}=h f_{0}(a) \Delta t(z), \quad z \rightarrow$ redshift, i.e., $\Delta t(z) \rightarrow$ 'Lookback time'
■ Different from claims of inherent anisotropy of space Jain and Ralston, 1997

Post-last scattering effects of Cosmic Birefringence

■ $\Delta \Theta_{\text {total }}=\Delta \Theta_{\text {Faraday }}+\Delta \Theta_{\text {cos }}$

- $\Delta \Theta_{\text {Faraday }} \sim \lambda^{2}$ while $\Delta \Theta_{\text {cos }} \rightarrow$ achromatic

■ $\Delta \Theta_{\text {cos }} \sim 2 h f_{0} \Delta t$ in Minkowski space \rightarrow can have observable effects in lab Das,Parthasarathy 2000; Roy,SenGupta 2007
■ In Sp flat FRW $f_{0}=f_{0}(a(t))$ in conformal frame $\rightarrow \Delta \Theta_{\text {cos }}=h f_{0}(a) \Delta t(z), \quad z \rightarrow$ redshift, i.e., $\Delta t(z) \rightarrow$ 'Lookback time'
■ Different from claims of inherent anisotropy of space Jain and Ralston, 1997
■ M_{P}^{-1} suppression \Rightarrow effect essentially Pert QG!But, $\Delta \Theta_{\text {cos }} \sim 10^{-9} \Delta t$ too small ?

Post-last scattering effects of Cosmic Birefringence

■ $\Delta \Theta_{\text {total }}=\Delta \Theta_{\text {Faraday }}+\Delta \Theta_{\text {cos }}$

- $\Delta \Theta_{\text {Faraday }} \sim \lambda^{2}$ while $\Delta \Theta_{\text {cos }} \rightarrow$ achromatic
- $\Delta \Theta_{\text {cos }} \sim 2 h f_{0} \Delta t$ in Minkowski space \rightarrow can have observable effects in lab Das,Parthasarathy 2000; Roy,SenGupta 2007
■ In Sp flat FRW $f_{0}=f_{0}(a(t))$ in conformal frame $\rightarrow \Delta \Theta_{\text {cos }}=h f_{0}(a) \Delta t(z), \quad z \rightarrow$ redshift, i.e., $\Delta t(z) \rightarrow$ 'Lookback time'
■ Different from claims of inherent anisotropy of space Jain and Ralston, 1997
■ M_{P}^{-1} suppression \Rightarrow effect essentially Pert QG!But, $\Delta \Theta_{\text {cos }} \sim 10^{-9} \Delta t$ too small ?
■ BICEP2 : negligible pol plane rotation

Beyond Het String : P-violating KR Augmentation

Beyond Het String : P-violating KR Augmentation

New Augmented KR field strength

$$
\tilde{H}_{a b c}=H_{a b c}+h A_{[a}\left[F_{b c]}+\zeta_{-}{ }^{*} F_{b c]}\right], \zeta \leqslant O(1)
$$

Beyond Het String : P-violating KR Augmentation

New Augmented KR field strength
$\tilde{H}_{a b c}=H_{a b c}+h A_{[a}\left[F_{b c]}+\zeta_{-}{ }^{*} F_{b c]}\right], \zeta \leqslant O(1)$
\Rightarrow Hodge-dual $\phi_{A} \rightarrow \underbrace{\phi_{A}}_{P-\text { odd }}+\zeta_{-} \underbrace{\phi_{S}}_{P-\text { even }}$

Beyond Het String : P-violating KR Augmentation

New Augmented KR field strength
$\tilde{H}_{a b c}=H_{a b c}+h A_{[a}\left[F_{b c]}+\zeta_{-}{ }^{*} F_{b c]}\right], \zeta \leqslant O(1)$
\Rightarrow Hodge-dual $\phi_{A} \rightarrow \underbrace{\phi_{A}}_{P-\text { odd }}+\zeta_{-} \underbrace{\phi_{S}}_{P-\text { even }}$
Modified KR-Maxwell action

$$
S_{K R-M a x}=\int \mathcal{L}, \mathcal{L}=\mathcal{L}_{P-\text { sym }}+\mathcal{L}_{P-\text { vio }}
$$

Beyond Het String : P-violating KR Augmentation

New Augmented KR field strength
$\tilde{H}_{a b c}=H_{a b c}+h A_{[a}\left[F_{b c]}+\zeta_{-}{ }^{*} F_{b c]}\right], \zeta \leqslant O(1)$
\Rightarrow Hodge-dual $\phi_{A} \rightarrow \underbrace{\phi_{A}}_{P-\text { odd }}+\zeta_{-} \underbrace{\phi_{S}}_{P-\text { even }}$
Modified KR-Maxwell action

$$
S_{K R-M a x}=\int \mathcal{L}, \mathcal{L}=\mathcal{L}_{P-\text { sym }}+\mathcal{L}_{P-\text { vio }}
$$

where

$$
\begin{aligned}
\mathcal{L}_{P-\text { sym }} & =h\left[\begin{array}{lll}
\phi_{A} & F_{a b}{ }^{*} F^{a b}+\zeta_{-} \phi_{S} & F_{a b} F^{a b}
\end{array}\right] \\
\mathcal{L}_{P-\text { vo }} & =h\left[\begin{array}{lll}
\phi_{A} & F_{a b} F^{a b}+\zeta_{-} \phi_{S} & F_{a b}{ }^{*} F^{a b}
\end{array}\right]
\end{aligned}
$$

Consequences of P-violating Augmentation (Kamionkowski et. al.
1999)

Consequences of P-violating Augmentation (Kamionkowski et. al.
1999)

■ $\phi_{S} F \cdot{ }^{*} F$ term both P and $\pi \rightarrow$ 'arrow of time' generates P naturally

Consequences of P-violating Augmentation (Kamionkowski et. al.
1999)

■ $\phi_{S} F \cdot{ }^{*} F$ term both P and $\pi \rightarrow$ 'arrow of time' generates P naturally
■ Cf P in weak int : \mathcal{C} important except for small $<P$. Here P is charge-blind

Consequences of P-violating Augmentation (Kamionkowski et. al.
1999)

■ $\phi_{S} F \cdot{ }^{*} F$ term both P and $\pi \rightarrow$ 'arrow of time' generates P naturally

- Cf $P P$ in weak int : \mathcal{C} important except for small $\ P$. Here P is charge-blind
■ Easily embedded in $N=1$ SUSY gauge theory: gauge-kinetic function $\chi(\mathcal{S}) \rightarrow \chi(\mathcal{S})+\zeta_{-} \tilde{\chi}(i \mathcal{S})$

Consequences of P-violating Augmentation (Kamionkowski et. al.

1999)

■ $\phi_{S} F \cdot{ }^{*} F$ term both P and $\pi \rightarrow$ 'arrow of time' generates P naturally
■ Cf P in weak int : \mathcal{C} important except for small $K P$. Here P is charge-blind
■ Easily embedded in $N=1$ SUSY gauge theory: gauge-kinetic function $\chi(\mathcal{S}) \rightarrow \chi(\mathcal{S})+\zeta_{-} \tilde{\chi}(i \mathcal{S})$
■ For $\phi_{S}=\phi_{S}(t)$ in cosmol context, fine structure constant becomes time-dep
$: \alpha^{-1} \rightarrow \alpha^{-1}+h \zeta_{-} \phi_{S}(t) \rightarrow \alpha$ smaller earlier

Consequences of P-violating Augmentation (Kamionkowski et. al.

1999)

■ $\phi_{S} F \cdot{ }^{*} F$ term both P and $\pi \rightarrow$ 'arrow of time' generates P naturally
■ Cf P in weak int : \mathcal{C} important except for small $\ P$. Here P is charge-blind
■ Easily embedded in $N=1$ SUSY gauge theory: gauge-kinetic function $\chi(\mathcal{S}) \rightarrow \chi(\mathcal{S})+\zeta_{-} \tilde{\chi}(i \mathcal{S})$
$■$ For $\phi_{S}=\phi_{S}(t)$ in cosmol context, fine structure constant becomes time-dep $: \alpha^{-1} \rightarrow \alpha^{-1}+h \zeta_{-} \phi_{S}(t) \rightarrow \alpha$ smaller earlier
■ Has potential for generation of P CMB pol anisotropy correlations from P-sym correlations

Generation of P CMB pol anisotropy correlations

Generation of $P \mathrm{CMB}$ pol anisotropy correlations

Recall : temperature anisotropy

Generation of $P \mathrm{CMB}$ pol anisotropy correlations

Recall : temperature anisotropy

$$
\frac{\Delta T}{T}(\vec{n})=\sum_{l, m} a_{l m}^{T} Y_{l m}^{T}(\vec{n})
$$

Generation of $P \mathrm{CMB}$ pol anisotropy correlations

Recall : temperature anisotropy

$$
\frac{\Delta T}{T}(\vec{n})=\sum_{l, m} a_{l m}^{T} Y_{l m}^{T}(\vec{n})
$$

Measure temp-temp correlations (covariances) $C_{l}^{T T} \equiv\left\langle a_{l m}^{T} a_{I m}^{T}\right\rangle_{\text {univ }}$

Generation of $P \mathrm{CMB}$ pol anisotropy correlations

Recall : temperature anisotropy

$$
\frac{\Delta T}{T}(\vec{n})=\sum_{l, m} a_{l m}^{T} Y_{l m}^{T}(\vec{n})
$$

Measure temp-temp correlations (covariances) $C_{l}^{T T} \equiv\left\langle a_{l m}^{T} a_{I m}^{T}\right\rangle_{\text {univ }}$
Similarly, Polarization anisotropy : pol tensor $\mathcal{P}_{\alpha \beta}, \alpha, \beta=1,2$

Generation of $P \mathrm{CMB}$ pol anisotropy correlations

Recall : temperature anisotropy

$$
\frac{\Delta T}{T}(\vec{n})=\sum_{l, m} a_{l m}^{T} Y_{l m}^{T}(\vec{n})
$$

Measure temp-temp correlations (covariances) $C_{l}^{T T} \equiv\left\langle a_{l m}^{T} a_{I m}^{T}\right\rangle_{\text {univ }}$
Similarly, Polarization anisotropy : pol tensor $\mathcal{P}_{\alpha \beta}, \alpha, \beta=1,2$

$$
\begin{aligned}
\mathcal{P}_{\alpha \beta} & \equiv \frac{E_{\alpha} E_{\beta}^{*}}{\left|E_{1}\right|^{2}+\left|E_{2}\right|^{2}} \\
& =\frac{1}{2} I_{\alpha \beta}+\xi_{1}\left(\sigma_{1}\right)_{\alpha \beta}+\xi_{2}\left(\sigma_{2}\right)_{\alpha \beta}+\xi_{3}\left(\sigma_{3}\right)_{\alpha \beta}
\end{aligned}
$$

Generation of $P \mathrm{CMB}$ pol anisotropy correlations

Recall : temperature anisotropy

$$
\frac{\Delta T}{T}(\vec{n})=\sum_{l, m} a_{l m}^{T} Y_{l m}^{T}(\vec{n})
$$

Measure temp-temp correlations (covariances) $C_{l}^{T T} \equiv\left\langle a_{l m}^{T} a_{I m}^{T}\right\rangle_{\text {univ }}$
Similarly, Polarization anisotropy : pol tensor $\mathcal{P}_{\alpha \beta}, \alpha, \beta=1,2$

$$
\begin{aligned}
\mathcal{P}_{\alpha \beta} & \equiv \frac{E_{\alpha} E_{\beta}^{*}}{\left|E_{1}\right|^{2}+\left|E_{2}\right|^{2}} \\
& =\frac{1}{2} I_{\alpha \beta}+\xi_{1}\left(\sigma_{1}\right)_{\alpha \beta}+\xi_{2}\left(\sigma_{2}\right)_{\alpha \beta}+\xi_{3}\left(\sigma_{3}\right)_{\alpha \beta}
\end{aligned}
$$

Stokes parameter $\xi_{1,3} \in[-1,1] \rightarrow$ lin pol. Circ pol $\xi_{2}=0$ for Thomson scattering $\Rightarrow \mathcal{P}_{\alpha \beta}=\mathcal{P}_{\beta \alpha}$

Decomposition into E, B

$$
\mathcal{P}_{\alpha \beta}(\vec{n})=\mathcal{P}_{\alpha \beta}^{E}(\vec{n})+\mathcal{P}_{\alpha \beta}^{B}(\vec{n}), E \rightarrow \operatorname{grad}, B \rightarrow \text { curl }
$$

Decomposition into E, B

$$
\mathcal{P}_{\alpha \beta}(\vec{n})=\mathcal{P}_{\alpha \beta}^{E}(\vec{n})+\mathcal{P}_{\alpha \beta}^{B}(\vec{n}), E \rightarrow \text { grad }, B \rightarrow \text { curl }
$$

Multipole Expansion of Pol tensors

$$
\mathcal{P}_{\alpha \beta}^{(E)}=\sum_{l, m} a_{l m}^{E} Y_{l m, \alpha \beta}^{E}(\vec{n})
$$

Decomposition into E, B

$$
\mathcal{P}_{\alpha \beta}(\vec{n})=\mathcal{P}_{\alpha \beta}^{E}(\vec{n})+\mathcal{P}_{\alpha \beta}^{B}(\vec{n}), E \rightarrow \text { grad }, B \rightarrow \text { curl }
$$

Multipole Expansion of Pol tensors

$$
\begin{aligned}
\mathcal{P}_{\alpha \beta}^{(E)} & =\sum_{l, m} a_{l m}^{E} Y_{l m, \alpha \beta}^{E}(\vec{n}) \\
\mathcal{P}_{\alpha \beta}^{(B)} & =\sum_{l, m} a_{l m}^{B} Y_{l m, \alpha \beta}^{B}(\vec{n})
\end{aligned}
$$

Decomposition into E, B

$$
\mathcal{P}_{\alpha \beta}(\vec{n})=\mathcal{P}_{\alpha \beta}^{E}(\vec{n})+\mathcal{P}_{\alpha \beta}^{B}(\vec{n}), E \rightarrow \text { grad }, B \rightarrow \text { curl }
$$

Multipole Expansion of Pol tensors

$$
\begin{aligned}
\mathcal{P}_{\alpha \beta}^{(E)} & =\sum_{l, m} a_{l m}^{E} Y_{l m, \alpha \beta}^{E}(\vec{n}) \\
\mathcal{P}_{\alpha \beta}^{(B)} & =\sum_{l, m} a_{l m}^{B} Y_{l m, \alpha \beta}^{B}(\vec{n})
\end{aligned}
$$

$P\left[Y_{l m, \alpha \beta}^{E}\right]=(-)^{\prime}=P\left[Y_{l m}^{T}\right], \quad P\left[Y_{l m, \alpha \beta}^{B}\right]=(-)^{I+1} \Rightarrow$

Decomposition into E, B

$$
\mathcal{P}_{\alpha \beta}(\vec{n})=\mathcal{P}_{\alpha \beta}^{E}(\vec{n})+\mathcal{P}_{\alpha \beta}^{B}(\vec{n}), E \rightarrow \text { grad }, B \rightarrow \text { curl }
$$

Multipole Expansion of Pol tensors

$$
\begin{aligned}
\mathcal{P}_{\alpha \beta}^{(E)} & =\sum_{l, m} a_{l m}^{E} Y_{l m, \alpha \beta}^{E}(\vec{n}) \\
\mathcal{P}_{\alpha \beta}^{(B)} & =\sum_{l, m} a_{l m}^{B} Y_{l m, \alpha \beta}^{B}(\vec{n})
\end{aligned}
$$

$P\left[Y_{l m, \alpha \beta}^{E}\right]=(-)^{\prime}=P\left[Y_{l m}^{T}\right], \quad P\left[Y_{l m, \alpha \beta}^{B}\right]=(-)^{I+1} \Rightarrow$ Mixed-parity correlations $C_{1}^{T B}=0=C_{1}^{E B}$ if temp or pol distribution is P-sym which allows $C_{l}^{X X} \neq 0, X=T, E, B$

Decomposition into E, B

$$
\mathcal{P}_{\alpha \beta}(\vec{n})=\mathcal{P}_{\alpha \beta}^{E}(\vec{n})+\mathcal{P}_{\alpha \beta}^{B}(\vec{n}), E \rightarrow \operatorname{grad}, B \rightarrow \text { curl }
$$

Multipole Expansion of Pol tensors

$$
\begin{aligned}
\mathcal{P}_{\alpha \beta}^{(E)} & =\sum_{l, m} a_{l m}^{E} Y_{l m, \alpha \beta}^{E}(\vec{n}) \\
\mathcal{P}_{\alpha \beta}^{(B)} & =\sum_{l, m} a_{l m}^{B} Y_{l m, \alpha \beta}^{B}(\vec{n})
\end{aligned}
$$

$P\left[Y_{l m, \alpha \beta}^{E}\right]=(-)^{\prime}=P\left[Y_{l m}^{T}\right], \quad P\left[Y_{l m, \alpha \beta}^{B}\right]=(-)^{I+1} \Rightarrow$ Mixed-parity correlations $C_{1}^{T B}=0=C_{1}^{E B}$ if temp or pol distribution is P-sym which allows $C_{1}^{X X} \neq 0, X=T, E, B$

If KR field dynamics appropriate, cosmic birefringence $+P \Rightarrow$ generation of $C_{l}{ }^{T B}$ from $C_{l}{ }^{T E}$

P covariance from P-sym covariance

P covariance from P-sym covariance

$Y_{l m}^{E}$ and $Y_{l m}^{B}$ tensors are orthogonal at every point in sky for same I, m

P covariance from P-sym covariance

$Y_{l m}^{E}$ and $Y_{l m}^{B}$ tensors are orthogonal at every point in sky for same I, m Cosmic birefringence rotates pol axes equally everywhere $\Rightarrow E, B$ pol modes mix

P covariance from P-sym covariance

$Y_{l m}^{E}$ and $Y_{l m}^{B}$ tensors are orthogonal at every point in sky for same I, m Cosmic birefringence rotates pol axes equally everywhere $\Rightarrow E, B$ pol modes mix

$$
C_{1}^{T B}=C_{1}^{T E} \sin \Delta \Theta_{\cos }
$$

covariance from P-sym covariance

$Y_{l m}^{E}$ and $Y_{l m}^{B}$ tensors are orthogonal at every point in sky for same I, m Cosmic birefringence rotates pol axes equally everywhere $\Rightarrow E, B$ pol modes mix

$$
\begin{aligned}
& C_{l}^{T B}=C_{l}^{T E} \sin \Delta \Theta_{\cos } \\
& C_{1}^{E B}=C_{1}^{E E} \sin \Delta \Theta_{\cos }
\end{aligned}
$$

covariance from P-sym covariance

$Y_{l m}^{E}$ and $Y_{l m}^{B}$ tensors are orthogonal at every point in sky for same I, m Cosmic birefringence rotates pol axes equally everywhere $\Rightarrow E, B$ pol modes mix

$$
\begin{aligned}
C_{l}^{T B} & =C_{l}^{T E} \sin \Delta \Theta_{\cos } \\
C_{l}^{E B} & =C_{l}^{E E} \sin \Delta \Theta_{\cos } \\
\Delta \Theta_{c o s} & \sim h \dot{\phi}_{S} \Delta t(z)
\end{aligned}
$$

covariance from P-sym covariance

$Y_{l m}^{E}$ and $Y_{l m}^{B}$ tensors are orthogonal at every point in sky for same I, m Cosmic birefringence rotates pol axes equally everywhere $\Rightarrow E, B$ pol modes mix

$$
\begin{aligned}
C_{l}^{T B} & =C_{l}^{T E} \sin \Delta \Theta_{\cos } \\
C_{l}^{E B} & =C_{l}^{E E} \sin \Delta \Theta_{\cos } \\
\Delta \Theta_{\cos } & \sim h \dot{\phi}_{S} \Delta t(z)
\end{aligned}
$$

$\dot{\phi}_{S}$ determined by cosmol evol of $\phi_{S}(t) \rightarrow \Delta \Theta_{\cos }$ Planck-suppressed in std cosmol, hence immeasurably small ?

covariance from P-sym covariance

$Y_{l m}^{E}$ and $Y_{l m}^{B}$ tensors are orthogonal at every point in sky for same I, m Cosmic birefringence rotates pol axes equally everywhere $\Rightarrow E, B$ pol modes mix

$$
\begin{aligned}
C_{l}^{T B} & =C_{l}^{T E} \sin \Delta \Theta_{\cos } \\
C_{l}^{E B} & =C_{l}^{E E} \sin \Delta \Theta_{\cos } \\
\Delta \Theta_{\cos } & \sim h \dot{\phi}_{S} \Delta t(z)
\end{aligned}
$$

$\dot{\phi}_{S}$ determined by cosmol evol of $\phi_{S}(t) \rightarrow \Delta \Theta_{\cos }$ Planck-suppressed in std cosmol, hence immeasurably small ?

BICEP2: $C_{I}{ }^{T B}, C_{I}^{E B} \sim 0$ L Shriramkumar's talk yesterday

covariance from P-sym covariance

$Y_{l m}^{E}$ and $Y_{l m}^{B}$ tensors are orthogonal at every point in sky for same I, m Cosmic birefringence rotates pol axes equally everywhere $\Rightarrow E, B$ pol modes mix

$$
\begin{aligned}
C_{l}^{T B} & =C_{l}^{T E} \sin \Delta \Theta_{\cos } \\
C_{l}^{E B} & =C_{l}^{E E} \sin \Delta \Theta_{\cos } \\
\Delta \Theta_{\cos } & \sim h \dot{\phi}_{S} \Delta t(z)
\end{aligned}
$$

$\dot{\phi}_{S}$ determined by cosmol evol of $\phi_{S}(t) \rightarrow \Delta \Theta_{\cos }$ Planck-suppressed in std cosmol, hence immeasurably small ?

BICEP2: $C_{I}{ }^{T B}, C_{I}^{E B} \sim 0$ L Shriramkumar's talk yesterday
But even $C_{l}^{B B}$ was thought earlier to be vanishingly small, so await confirmation of BICEP2

Randall-Sundrum Scenario : 'Antiwarping' of KR coupling

Randall-Sundrum Scenario : 'Antiwarping' of KR coupling

$A d S_{5}$ sptm compactified on $\mathcal{M}_{4} \times S^{1} / Z_{2}$

Randall-Sundrum Scenario : 'Antiwarping' of KR coupling

$A d S_{5} \mathrm{sptm}$ compactified on $\mathcal{M}_{4} \times S^{1} / Z_{2}$ $g_{a b}, B_{a b}$ fields in $D=5$ bulk sptm, SM fields on 'visible' 3-brane; superheavy fields on 'hidden' 3-brane

Randall-Sundrum Scenario : 'Antiwarping' of KR coupling

$A d S_{5}$ sptm compactified on $\mathcal{M}_{4} \times S^{1} / Z_{2}$ $g_{a b}, B_{a b}$ fields in $D=5$ bulk sptm, SM fields on 'visible' 3-brane; superheavy fields on 'hidden' 3-brane

RS metric : $\sigma(y)=|\kappa| y, y \in[0, \ell]$

Randall-Sundrum Scenario : 'Antiwarping' of KR coupling

$A d S_{5}$ sptm compactified on $\mathcal{M}_{4} \times S^{1} / Z_{2}$
$g_{a b}, B_{a b}$ fields in $D=5$ bulk sptm, SM fields on 'visible' 3-brane; superheavy fields on 'hidden' 3-brane

RS metric : $\sigma(y)=|\kappa| y, y \in[0, \ell]$

$$
d s_{R S}^{2}=\exp -2 \sigma(y) \eta_{a b} d x^{a} d x^{b}-d y^{2}
$$

Randall-Sundrum Scenario : 'Antiwarping' of KR coupling

$A d S_{5} \mathrm{sptm}$ compactified on $\mathcal{M}_{4} \times S^{1} / Z_{2}$
$g_{a b}, B_{a b}$ fields in $D=5$ bulk sptm, SM fields on 'visible' 3-brane; superheavy fields on 'hidden' 3-brane

RS metric : $\sigma(y)=|\kappa| y, y \in[0, \ell]$

$$
d s_{R S}^{2}=\exp -2 \sigma(y) \eta_{a b} d x^{a} d x^{b}-d y^{2}
$$

$D=5 \mathrm{KR}$
$H_{A B C}=\epsilon_{A B C D E} \partial^{D} V^{E}, V^{E}=\left(V^{a}, \Phi\right), A, B, \ldots=0, \ldots 4$

Randall-Sundrum Scenario : 'Antiwarping' of KR coupling

$A d S_{5}$ sptm compactified on $\mathcal{M}_{4} \times S^{1} / Z_{2}$
$g_{a b}, B_{a b}$ fields in $D=5$ bulk sptm, SM fields on 'visible' 3-brane; superheavy fields on 'hidden' 3-brane

RS metric : $\sigma(y)=|\kappa| y, y \in[0, \ell]$

$$
d s_{R S}^{2}=\exp -2 \sigma(y) \eta_{a b} d x^{a} d x^{b}-d y^{2}
$$

$D=5 \mathrm{KR}$
$H_{A B C}=\epsilon_{A B C D E} \partial^{D} V^{E}, V^{E}=\left(V^{a}, \Phi\right), A, B, \ldots=0, \ldots 4$
$D=5$ KR Bianchi Identity (after std Heterotic string augmentation with Maxwell-Chern Simons in $D=5$)

Randall-Sundrum Scenario : 'Antiwarping' of KR coupling

$A d S_{5} \mathrm{sptm}$ compactified on $\mathcal{M}_{4} \times S^{1} / Z_{2}$
$g_{a b}, B_{a b}$ fields in $D=5$ bulk sptm, SM fields on 'visible' 3-brane; superheavy fields on 'hidden' 3-brane

RS metric : $\sigma(y)=|\kappa| y, y \in[0, \ell]$

$$
d s_{R S}^{2}=\exp -2 \sigma(y) \eta_{a b} d x^{a} d x^{b}-d y^{2}
$$

$D=5 \mathrm{KR}$
$H_{A B C}=\epsilon_{A B C D E} \partial^{D} V^{E}, V^{E}=\left(V^{a}, \Phi\right), A, B, \ldots=0, \ldots 4$
$D=5 \mathrm{KR}$ Bianchi Identity (after std Heterotic string augmentation with Maxwell-Chern Simons in $D=5$)

$$
\square_{R S} V^{M}=M_{5}^{-3 / 2} * F^{M N P} F_{N P}
$$

Antiwarping (contd.)

Antiwarping (contd.)

$A_{A}=A_{a}(x) \Rightarrow F_{4 a}=0, \Phi$ satisfies

$$
\square_{R S} \Phi=M_{5}^{-3 / 2} * F_{a b} F_{a b} \delta(y-\ell)
$$

Antiwarping (contd.)

$A_{A}=A_{a}(x) \Rightarrow F_{4 a}=0, \Phi$ satisfies

$$
\square_{R S} \Phi=M_{5}^{-3 / 2}{ }^{*} F_{a b} F_{a b} \delta(y-\ell)
$$

Eigenfunction expansion

$$
\Phi(x, y)=\sum_{n} \Phi_{n}(x) \chi_{n}(y)
$$

Antiwarping (contd.)

$A_{A}=A_{a}(x) \Rightarrow F_{4 a}=0, \Phi$ satisfies

$$
\square_{R S} \Phi=M_{5}^{-3 / 2} * F_{a b} F_{a b} \delta(y-\ell)
$$

Eigenfunction expansion

$$
\Phi(x, y)=\sum_{n} \Phi_{n}(x) \chi_{n}(y)
$$

Zero modes $\Phi_{0}(x)$ satisfy $D=4$ (Minkowski) EoM

$$
\square \Phi_{0}=\frac{\exp \sigma(\ell)}{M_{P}} F \cdot{ }^{*} F, M_{P} \simeq\left(M_{5}^{3} / \kappa\right)^{1 / 2}
$$

Antiwarping (contd.)

$A_{A}=A_{a}(x) \Rightarrow F_{4 a}=0, \Phi$ satisfies

$$
\square_{R S} \Phi=M_{5}^{-3 / 2}{ }^{*} F_{a b} F_{a b} \delta(y-\ell)
$$

Eigenfunction expansion

$$
\Phi(x, y)=\sum_{n} \Phi_{n}(x) \chi_{n}(y)
$$

Zero modes $\Phi_{0}(x)$ satisfy $D=4$ (Minkowski) EoM

$$
\square \Phi_{0}=\frac{\exp \sigma(\ell)}{M_{P}} F \cdot{ }^{*} F, M_{P} \simeq\left(M_{5}^{3} / \kappa\right)^{1 / 2}
$$

Similarly $D=4$ Maxwell eq

$$
\partial_{a} F^{a b}=\frac{\sqrt{6} \exp \sigma(\ell)}{M_{P}} * F^{b c} \partial_{c} \Phi_{0}
$$

Cosmic Birefringence in RS scenario

Cosmic Birefringence in RS scenario

Easy generalization to $D=4 \mathrm{sp}$ flat FRW bkgd

Cosmic Birefringence in RS scenario

Easy generalization to $D=4 \mathrm{sp}$ flat FRW bkgd

$$
\Delta \Theta_{c o s}=\left|\omega_{+}-\omega_{-}\right| \Delta t(z)=\frac{2 \sqrt{6} \exp \sigma(\ell)}{M_{P}} \Delta t(z)
$$

Cosmic Birefringence in RS scenario

Easy generalization to $D=4 \mathrm{sp}$ flat FRW bkgd

$$
\Delta \Theta_{\cos }=\left|\omega_{+}-\omega_{-}\right| \Delta t(z)=\frac{2 \sqrt{6} \exp \sigma(\ell)}{M_{P}} \Delta t(z)
$$

For RS scenario to accommodate a light Higgs, must choose $\exp \sigma(\ell) \sim O\left(10^{16}\right)$!

Cosmic Birefringence in RS scenario

Easy generalization to $D=4 \mathrm{sp}$ flat FRW bkgd

$$
\Delta \Theta_{\cos }=\left|\omega_{+}-\omega_{-}\right| \Delta t(z)=\frac{2 \sqrt{6} \exp \sigma(\ell)}{M_{P}} \Delta t(z)
$$

For RS scenario to accommodate a light Higgs, must choose $\exp \sigma(\ell) \sim O\left(10^{16}\right)$!

Huge enhancement in Cosmic Birefringence! Detectable?

Cosmic Birefringence in RS scenario

Easy generalization to $D=4 \mathrm{sp}$ flat FRW bkgd

$$
\Delta \Theta_{c o s}=\left|\omega_{+}-\omega_{-}\right| \Delta t(z)=\frac{2 \sqrt{6} \exp \sigma(\ell)}{M_{P}} \Delta t(z)
$$

For RS scenario to accommodate a light Higgs, must choose $\exp \sigma(\ell) \sim O\left(10^{16}\right)$!

Huge enhancement in Cosmic Birefringence! Detectable?
Decompose $\Phi=\Phi_{-}+\zeta_{-} \Phi_{+}, P\left[\Phi_{ \pm}\right]= \pm \Rightarrow$

Cosmic Birefringence in RS scenario

Easy generalization to $D=4 \mathrm{sp}$ flat FRW bkgd

$$
\Delta \Theta_{c o s}=\left|\omega_{+}-\omega_{-}\right| \Delta t(z)=\frac{2 \sqrt{6} \exp \sigma(\ell)}{M_{P}} \Delta t(z)
$$

For RS scenario to accommodate a light Higgs, must choose $\exp \sigma(\ell) \sim O\left(10^{16}\right)$!

Huge enhancement in Cosmic Birefringence! Detectable?
Decompose $\Phi=\Phi_{-}+\zeta_{-} \Phi_{+}, P\left[\Phi_{ \pm}\right]= \pm \Rightarrow$
Generation of $C_{1}^{T B}$ from $C_{l}{ }^{T E}$ via $C_{l}^{T B}=C_{l}^{T E} \sin \Delta \Theta_{c o s} \rightarrow$ within observable realm ?

Cosmic Birefringence in RS scenario

Easy generalization to $D=4 \mathrm{sp}$ flat FRW bkgd

$$
\Delta \Theta_{c o s}=\left|\omega_{+}-\omega_{-}\right| \Delta t(z)=\frac{2 \sqrt{6} \exp \sigma(\ell)}{M_{P}} \Delta t(z)
$$

For RS scenario to accommodate a light Higgs, must choose $\exp \sigma(\ell) \sim O\left(10^{16}\right)$!

Huge enhancement in Cosmic Birefringence! Detectable?
Decompose $\Phi=\Phi_{-}+\zeta_{-} \Phi_{+}, P\left[\Phi_{ \pm}\right]= \pm \Rightarrow$
Generation of $C_{1}^{T B}$ from $C_{l}{ }^{T E}$ via $C_{l}^{T B}=C_{l}^{T E} \sin \Delta \Theta_{c o s} \rightarrow$ within observable realm ? Calculation of generated P correlations $C_{1}{ }^{T B}$ to be done soon

Cosmic Birefringence in RS scenario

Easy generalization to $D=4 \mathrm{sp}$ flat FRW bkgd

$$
\Delta \Theta_{c o s}=\left|\omega_{+}-\omega_{-}\right| \Delta t(z)=\frac{2 \sqrt{6} \exp \sigma(\ell)}{M_{P}} \Delta t(z)
$$

For RS scenario to accommodate a light Higgs, must choose $\exp \sigma(\ell) \sim O\left(10^{16}\right)$!

Huge enhancement in Cosmic Birefringence! Detectable?
Decompose $\Phi=\Phi_{-}+\zeta_{-} \Phi_{+}, P\left[\Phi_{ \pm}\right]= \pm \Rightarrow$
Generation of $C_{1}^{T B}$ from $C_{l}{ }^{T E}$ via $C_{l}^{T B}=C_{l}^{T E} \sin \Delta \Theta_{c o s} \rightarrow$ within observable realm ? Calculation of generated P correlations $C_{1}{ }^{T B}$ to be done soon

Gauge-free Electrodynamics

Bhattacharjee, PM 2013

Gauge-free Electrodynamics

Bhattacharjee, PM 2013 Unique projection of 4-potential (Minkowski sptm)

$$
A_{a}^{T} \equiv A_{a}-\partial_{a} \square^{-1} \partial \cdot A
$$

Gauge-free Electrodynamics

Bhattacharjee, PM 2013 Unique projection of 4-potential (Minkowski sptm)

$$
\begin{aligned}
A_{a}^{T} \equiv A_{a} & -\partial_{a} \square^{-1} \partial \cdot A \\
\partial \cdot A^{T} & =0
\end{aligned}
$$

Gauge-free Electrodynamics

Bhattacharjee, PM 2013 Unique projection of 4-potential (Minkowski sptm)

$$
\begin{aligned}
A_{a}^{T} \equiv A_{a} & -\partial_{a} \square^{-1} \partial \cdot A \\
\partial \cdot A^{T} & =0 \\
A_{a} \rightarrow A_{a}^{(\omega)} & =A_{a}+\partial_{a} \omega \Rightarrow A^{T(\omega)}=A_{a}^{T}
\end{aligned}
$$

Gauge-free Electrodynamics

Bhattacharjee, PM 2013 Unique projection of 4-potential (Minkowski sptm)

$$
\begin{aligned}
A_{a}^{T} \equiv A_{a} & -\partial_{a} \square^{-1} \partial \cdot A \\
\partial \cdot A^{T} & =0 \\
A_{a} \rightarrow A_{a}^{(\omega)} & =A_{a}+\partial_{a} \omega \Rightarrow A^{T(\omega)}=A_{a}^{T} \\
F_{a b}=2 \partial_{[a} A_{b]}^{T} & \rightarrow \square A_{a}^{T}=0
\end{aligned}
$$

Gauge-free Electrodynamics

Bhattacharjee, PM 2013 Unique projection of 4-potential (Minkowski sptm)

$$
\begin{aligned}
A_{a}^{T} \equiv A_{a} & -\partial_{a} \square^{-1} \partial \cdot A \\
\partial \cdot A^{T} & =0 \\
A_{a} \rightarrow A_{a}^{(\omega)} & =A_{a}+\partial_{a} \omega \Rightarrow A^{T(\omega)}=A_{a}^{T} \\
F_{a b}=2 \partial_{[a} A_{b]}^{T} & \rightarrow \square A_{a}^{T}=0
\end{aligned}
$$

If $\square \omega=0$, define modified 4 -pot (Fourier space)

$$
A_{a}^{T T} \equiv A_{a}^{T}-k_{a}\left(n \cdot A^{T}\right)
$$

Gauge-free Electrodynamics

Bhattacharjee, PM 2013 Unique projection of 4-potential (Minkowski sptm)

$$
\begin{aligned}
A_{a}^{T} \equiv A_{a} & -\partial_{a} \square^{-1} \partial \cdot A \\
\partial \cdot A^{T} & =0 \\
A_{a} \rightarrow A_{a}^{(\omega)} & =A_{a}+\partial_{a} \omega \Rightarrow A^{T(\omega)}=A_{a}^{T} \\
F_{a b}=2 \partial_{[a} A_{b]}^{T} & \rightarrow \square A_{a}^{T}=0
\end{aligned}
$$

If $\square \omega=0$, define modified 4-pot (Fourier space)

$$
\begin{aligned}
& A_{a}^{T T} \equiv A_{a}^{T}-k_{a}\left(n \cdot A^{T}\right) \\
& k^{2}=0=n^{2}=k \cdot A^{T}, n \cdot k=1
\end{aligned}
$$

Gauge-free Electrodynamics

Bhattacharjee, PM 2013 Unique projection of 4-potential (Minkowski sptm)

$$
\begin{aligned}
A_{a}^{T} \equiv A_{a} & -\partial_{a} \square^{-1} \partial \cdot A \\
\partial \cdot A^{T} & =0 \\
A_{a} \rightarrow A_{a}^{(\omega)} & =A_{a}+\partial_{a} \omega \Rightarrow A^{T(\omega)}=A_{a}^{T} \\
F_{a b}=2 \partial_{[a} A_{b]}^{T} & \rightarrow \square A_{a}^{T}=0
\end{aligned}
$$

If $\square \omega=0$, define modified 4-pot (Fourier space)

$$
\begin{aligned}
A_{a}^{T T} & \equiv A_{a}^{T}-k_{a}\left(n \cdot A^{T}\right) \\
k^{2}=0 & =n^{2}=k \cdot A^{T}, n \cdot k=1 \\
k \cdot A^{T T}=0 & =n \cdot A^{T T} \Rightarrow A^{T T} \rightarrow 2 \text { indep pol }
\end{aligned}
$$

Generalization to Einstein-Maxwell system

Generalization to Einstein-Maxwell system

$$
A_{a}^{T} \equiv A_{a}-\nabla_{a} \square_{g} \nabla \cdot A
$$

Generalization to Einstein-Maxwell system

$$
\begin{aligned}
A_{a}^{T} \equiv A_{a} & -\nabla_{a} \square_{g} \nabla \cdot A \\
\nabla \cdot & =0
\end{aligned}
$$

Generalization to Einstein-Maxwell system

$$
\begin{gathered}
A_{a}^{T} \equiv A_{a}-\nabla_{a} \square_{g} \nabla \cdot A \\
\nabla \cdot=0
\end{gathered}
$$

Gen Cov Maxwell Eq

$$
\nabla_{a} F^{a b}=0=\square_{g} A^{T b}-\nabla_{a} \nabla^{b} A^{T a}
$$

Generalization to Einstein-Maxwell system

$$
\begin{gathered}
A_{a}^{T} \equiv A_{a}-\nabla_{a} \square_{g} \nabla \cdot A \\
\nabla \cdot=0
\end{gathered}
$$

Gen Cov Maxwell Eq

$$
\begin{aligned}
\nabla_{a} F^{a b} & =0=\square_{g} A^{T b}-\nabla_{a} \nabla^{b} A^{T a} \\
& =\square_{g} A^{T b}-\left[\nabla_{a}, \nabla^{b}\right] A^{T a}
\end{aligned}
$$

Generalization to Einstein-Maxwell system

$$
\begin{gathered}
A_{a}^{T} \equiv A_{a}-\nabla_{a} \square_{g} \nabla \cdot A \\
\nabla \cdot=0
\end{gathered}
$$

Gen Cov Maxwell Eq

$$
\begin{aligned}
\nabla_{a} F^{a b} & =0=\square_{g} A^{T b}-\nabla_{a} \nabla^{b} A^{T a} \\
& =\square_{g} A^{T b}-\left[\nabla_{a}, \nabla^{b}\right] A^{T a} \\
& =\square_{g} A^{T b}-R_{a}^{b} A^{T a}
\end{aligned}
$$

Generalization to Einstein-Maxwell system

$$
\begin{gathered}
A_{a}^{T} \equiv A_{a}-\nabla_{a} \square_{g} \nabla \cdot A \\
\nabla \cdot=0
\end{gathered}
$$

Gen Cov Maxwell Eq

$$
\begin{aligned}
\nabla_{a} F^{a b} & =0=\square_{g} A^{T b}-\nabla_{a} \nabla^{b} A^{T a} \\
& =\square_{g} A^{T b}-\left[\nabla_{a}, \nabla^{b}\right] A^{T a} \\
& =\square_{g} A^{T b}-R_{a}^{b} A^{T a}
\end{aligned}
$$

Einstein eq

$$
R_{a}^{b}=2 G\left(F_{a c} F^{b c}-\frac{1}{4} \delta_{a}^{b} F^{2}\right)
$$

Gravitationally induced nonlinear electrodynamics

Gravitationally induced nonlinear electrodynamics

$$
\square_{g} A^{T b}=2 G\left(F_{a c} F^{b c}-\frac{1}{4} \delta_{a}^{b} F^{2}\right) A^{T a}
$$

Gravitationally induced nonlinear electrodynamics

$$
\square_{g} A^{T b}=2 G\left(F_{a c} F^{b c}-\frac{1}{4} \delta_{a}^{b} F^{2}\right) A^{T a}
$$

Reminiscent of EM wave propagation in anisotropic media with nonlinear susceptibility

Gravitationally induced nonlinear electrodynamics

$$
\square_{g} A^{T b}=2 G\left(F_{a c} F^{b c}-\frac{1}{4} \delta_{a}^{b} F^{2}\right) A^{T a}
$$

Reminiscent of EM wave propagation in anisotropic media with nonlinear susceptibility

Known consequences : For spherically symmetric metrics \rightarrow Reissner-Nordstrom black hole solution; for relatively small curvatures \rightarrow gravitational lensing (light bending under gravity). Other consequence?

Gravitationally induced nonlinear electrodynamics

$$
\square_{g} A^{T b}=2 G\left(F_{a c} F^{b c}-\frac{1}{4} \delta_{a}^{b} F^{2}\right) A^{T a}
$$

Reminiscent of EM wave propagation in anisotropic media with nonlinear susceptibility

Known consequences : For spherically symmetric metrics \rightarrow Reissner-Nordstrom black hole solution; for relatively small curvatures \rightarrow gravitational lensing (light bending under gravity). Other consequence?
KR fields serve as sources for completely antisymmetric torsion \rightarrow Einstein-Cartan sptm

Gravitationally induced nonlinear electrodynamics

$$
\square_{g} A^{T b}=2 G\left(F_{a c} F^{b c}-\frac{1}{4} \delta_{a}^{b} F^{2}\right) A^{T a}
$$

Reminiscent of EM wave propagation in anisotropic media with nonlinear susceptibility

Known consequences : For spherically symmetric metrics \rightarrow Reissner-Nordstrom black hole solution; for relatively small curvatures \rightarrow gravitational lensing (light bending under gravity). Other consequence?
KR fields serve as sources for completely antisymmetric torsion \rightarrow Einstein-Cartan sptm
Does the projection to gauge-inert physical part of vector potential go through ? If so, $F_{a b}$ in EC sptm is not gauge-dependent \rightarrow need to explore.

Summary

- Cosmic birefringence inevitable consequence of KR dynamics induced by augmentation due to quantum consistency of Heterotic String Theory

Summary

- Cosmic birefringence inevitable consequence of KR dynamics induced by augmentation due to quantum consistency of Heterotic String Theory
- If augmentation of KR fields generalized to include parity-violation, cosmic birefringence generates parity-violating $C_{I}^{T B}, C_{I}^{E B}$ type correlations from parity-sym correlations

Summary

- Cosmic birefringence inevitable consequence of KR dynamics induced by augmentation due to quantum consistency of Heterotic String Theory
- If augmentation of KR fields generalized to include parity-violation, cosmic birefringence generates parity-violating $C_{I}^{T B}, C_{I}^{E B}$ type correlations from parity-sym correlations
- Embedding in warped extra dimensional Randall-Sundrum scenario leads to huge enhancement in these parity-violating correlations due to antiwarping \rightarrow is it possible that BICEP2 has missed these ?

Summary

- Cosmic birefringence inevitable consequence of KR dynamics induced by augmentation due to quantum consistency of Heterotic String Theory
- If augmentation of KR fields generalized to include parity-violation, cosmic birefringence generates parity-violating $C_{1}^{T B}, C_{1}^{E B}$ type correlations from parity-sym correlations
- Embedding in warped extra dimensional Randall-Sundrum scenario leads to huge enhancement in these parity-violating correlations due to antiwarping \rightarrow is it possible that BICEP2 has missed these?
- Alternatively, if these are really absent, there is a tension between augmentation and antiwarping

Summary

- Cosmic birefringence inevitable consequence of KR dynamics induced by augmentation due to quantum consistency of Heterotic String Theory
- If augmentation of KR fields generalized to include parity-violation, cosmic birefringence generates parity-violating $C_{1}^{T B}, C_{I}^{E B}$ type correlations from parity-sym correlations
- Embedding in warped extra dimensional Randall-Sundrum scenario leads to huge enhancement in these parity-violating correlations due to antiwarping \rightarrow is it possible that BICEP2 has missed these ?
- Alternatively, if these are really absent, there is a tension between augmentation and antiwarping
- Need to explore thoroughly gravity-induced nonlinear electrodynamics for vector potential for possible polarization effects

