Two dimensional hydrodynamics with gauge and gravitational anomalies

UNICOS, PU, Chandigarh, (13-15 May,2014)

Rabin Banerjee
SN Bose National Centre for Basic Sciences, Kolkata

14th May, 2014

References

R R. Banerjee, "Exact results in two dimensional chiral hydrodynamics with gravitational anomalies," arXiv:1303.5593 [gr-qc].Eur. Phys.
J. C 74, 2824 (2014);

目
R. Banerjee, S. Dey, B. R. Majhi, A. K. Mitra; " Two dimensional hydrodynamics with gauge and gravitational anomalies," arXiv:1307.1313 [gr-qc]. Phys Rev.D 89, 104013(2014);
娄
R. Banerjee, S. Dey. " Constitutive relations and response parameters in two dimensional hydrodynamics with gauge and gravitational anomalies," arXiv:1403.7357[gr-qc], Phys. Lett. B733 (2014) 198;

Modern applications of the chiral anomaly

- 1. Quantum wires
- 2. Quantum Hall effect
- 3. Hawking effect
- 4. Chiral magnetic effect
- 5. Chiral vortical effect
- 6. Anomalous hydrodynamics

Relativistic Fluid Dynamics

- Necessity:
- Large velocity (comparable to light) of macroscopic flow.
- Microscopic motion of fluid particles is large.

Relativistic Fluid Dynamics

- Necessity:
- Large velocity (comparable to light) of macroscopic flow.
- Microscopic motion of fluid particles is large.
- Equation of Motion:

$$
\partial_{\mu} T_{\nu}^{\mu}=0
$$

- Conservation of Energy-momentum tensor.
- For a charged fluid this is supplemented with

$$
\partial_{\mu} J^{\mu}=0
$$

Constitutive Relations:

- Additional relations expressing E.M tensor/Charge in terms of the basic fluid variables like velocity, temperature and chemical potential.

Constitutive Relations:

- Additional relations expressing E.M tensor/Charge in terms of the basic fluid variables like velocity, temperature and chemical potential.
- Ideal Fluid Relations:

$$
\begin{gathered}
T_{\mu \nu}=(\varepsilon+\mathcal{P}) u_{\mu \nu}+\mathcal{P} \eta_{\mu \nu} \\
J_{\mu}=n u_{\mu}
\end{gathered}
$$

- $\varepsilon \rightarrow$ energy density, $\mathcal{P} \rightarrow$ pressure, $n \rightarrow$ charge density, $\eta_{\mu \nu} \rightarrow$ metric, $u_{\mu} \rightarrow$ fluid velocity normalised as $u^{\mu} u_{\mu}=-1$.
- Extra terms have to be included in the non ideal case to include effects of dissipation (like viscosity).

Two Approaches

- Landau type approach:

Constitutive relations are derived to ensure positivity of entropy and hence compatibility with a local version of the second law of thermodynamics. Also, it satisfies the appropriate equations of motion.

Two Approaches

- Landau type approach:

Constitutive relations are derived to ensure positivity of entropy and hence compatibility with a local version of the second law of thermodynamics. Also, it satisfies the appropriate equations of motion.

- Derivative expansion approach:

Effective action is expressed as a series in powers of derivatives acting on fluid variables (like velocity). This is the large wavelength approximation.
Likewise, the constitutive relations are also expressed as a power series.
Results from these approaches agree although a general proof of this statement is missing.

Hydrodynamics in presence of gauge/gravity

Turn on a gauge field $\left(A_{\mu}\right)$ and gravity (metric $\left.g_{\mu \nu}\right)$.

- Changes

Replace ordinary derivative by covariant derivative in the conservation laws

$$
D_{\mu} T_{\nu}^{\mu}=0, \quad D_{\mu} J^{\mu}=0
$$

Modify constitutive relations:
Depend on gauge and/or diffeomorphism invariant combinations of the fields $\left(A_{\mu}, g_{\mu \nu}\right)$.
What happens if anomalies are present?

$$
D_{\mu} T_{\nu}^{\mu} \neq 0, \quad D_{\mu} J^{\mu} \neq 0
$$

A hydrodynamic (derivative) expansion is usually adopted

Review on anomalies

- Standard definition

Anomaly is the breakdown of a classical symmetry upon quantization.

Review on anomalies

- Standard definition

Anomaly is the breakdown of a classical symmetry upon quantization.

- Example:

QED

$$
\partial_{\mu} J^{\mu}=0, \quad \partial_{\mu} J^{\mu 5}=0
$$

Both vector/axial vector currents are conserved. Results follow on using the classical equation of motion(Noether's theorem).
More refined calculation yields,

$$
\partial_{\mu} J^{\mu}=0, \quad \partial_{\mu} J^{\mu 5}=\frac{1}{16 \pi^{2}} \epsilon_{\mu \nu \alpha \beta} F^{\mu \nu} F^{\alpha \beta}
$$

Infinities and Anomalies

Anomaly is the breakdown of formal manipulations(ignoring infinities) leading to a modified conservation law.

Infinities and Anomalies

Anomaly is the breakdown of formal manipulations(ignoring infinities) leading to a modified conservation law.

- Same example (QED):

$$
\partial_{\mu} J^{\mu}(x)=\partial_{\mu}\left(\bar{\psi} \gamma^{\mu} \psi\right)=\bar{\psi} \overrightarrow{\not \partial} \psi+\bar{\psi} \overleftarrow{\not \partial} \psi
$$

- Classical equations of motion

$$
\begin{gathered}
\overrightarrow{\not \partial} \psi=m \psi, \quad \bar{\psi} \not{\not}=-m \bar{\psi} \\
\partial_{\mu} J^{\mu}(x)=m \bar{\psi}(x) \psi(x)-m \bar{\psi}(x) \psi(x) \\
=0
\end{gathered}
$$

Infinities and Anomalies

Anomaly is the breakdown of formal manipulations(ignoring infinities) leading to a modified conservation law.

- Same example (QED):

$$
\partial_{\mu} J^{\mu}(x)=\partial_{\mu}\left(\bar{\psi} \gamma^{\mu} \psi\right)=\bar{\psi} \overrightarrow{\not \partial} \psi+\bar{\psi} \overleftarrow{\not \partial} \psi
$$

- Classical equations of motion

$$
\begin{gathered}
\vec{\partial} \psi=m \psi, \quad \bar{\psi} \overleftarrow{\not}=-m \bar{\psi} \\
\partial_{\mu} J^{\mu}(x)=m \bar{\psi}(x) \psi(x)-m \bar{\psi}(x) \psi(x) \\
=0
\end{gathered}
$$

Allowed only if $\bar{\psi}(x) \psi(x)$ is not infinity!

- Fields at identical space-time points not well defined and could lead to infinities.

Infinities and Anomalies

Anomaly is the breakdown of formal manipulations(ignoring infinities) leading to a modified conservation law.

- Same example (QED):

$$
\partial_{\mu} J^{\mu}(x)=\partial_{\mu}\left(\bar{\psi} \gamma^{\mu} \psi\right)=\bar{\psi} \overrightarrow{\not \partial} \psi+\bar{\psi} \overleftarrow{\not \partial} \psi
$$

- Classical equations of motion

$$
\begin{gathered}
\vec{\partial} \psi=m \psi, \quad \bar{\psi} \overleftarrow{\not}=-m \bar{\psi} \\
\partial_{\mu} J^{\mu}(x)=m \bar{\psi}(x) \psi(x)-m \bar{\psi}(x) \psi(x) \\
=0
\end{gathered}
$$

Allowed only if $\bar{\psi}(x) \psi(x)$ is not infinity!

- Fields at identical space-time points not well defined and could lead to infinities.

$$
\langle T \bar{\psi}(x) \psi(y)\rangle=\int \frac{d^{4} p}{(2 \pi)^{4}} \frac{e^{i p .(x-y)}}{\not p-m}
$$

- for $\mathrm{x}=\mathrm{y} \int \frac{d^{4} p}{(2 \pi)^{4}} \frac{1}{p p-m} \rightarrow$ divergent at $p \rightarrow \infty$

Chiral anomaly

Anomaly in the chiral current

$$
\partial_{\mu}\left[\bar{\psi} \gamma^{\mu}\left(\frac{1 \pm \gamma^{5}}{2}\right) \psi\right]=A
$$

No regularisation exists for which $A=0$

Chiral anomaly

Anomaly in the chiral current

$$
\partial_{\mu}\left[\bar{\psi} \gamma^{\mu}\left(\frac{1 \pm \gamma^{5}}{2}\right) \psi\right]=A
$$

No regularisation exists for which $A=0$

- Covariant and consistent anomaly
- Current transforming covariantly under a gauge transformation is called covariant current.
Anomaly of a covariant current also transforms covariantly \rightarrow Covariant anomaly.

Chiral anomaly

Anomaly in the chiral current

$$
\partial_{\mu}\left[\bar{\psi} \gamma^{\mu}\left(\frac{1 \pm \gamma^{5}}{2}\right) \psi\right]=A
$$

No regularisation exists for which $A=0$

- Covariant and consistent anomaly
- Current transforming covariantly under a gauge transformation is called covariant current.
Anomaly of a covariant current also transforms covariantly \rightarrow Covariant anomaly.
- Current defined from the variation of an effective action is called consistent current.

Anomaly of consistent current is consistent anomaly (satisfies W-Z consistency condition).
Covariant and consistent expressions are complementary, related by local polynomials.

Example from 2 dimensions(chiral gauge anomaly)

Covariant anomaly

$$
\partial_{\mu} J^{\mu}=\frac{1}{4 \pi} \epsilon_{\mu \nu} F^{\mu \nu}
$$

- Effective action

$$
W[A]=\int_{0}^{1} d g \int d^{2} x A_{\mu}(x) J^{\mu(g)}(x)
$$

Formal definition is made sensible by specifying a regularisation for $J^{\mu(g)}(x)$.

Example from 2 dimensions(chiral gauge anomaly)

Covariant anomaly

$$
\partial_{\mu} J^{\mu}=\frac{1}{4 \pi} \epsilon_{\mu \nu} F^{\mu \nu}
$$

- Effective action

$$
W[A]=\int_{0}^{1} d g \int d^{2} x A_{\mu}(x) J^{\mu(g)}(x)
$$

Formal definition is made sensible by specifying a regularisation for $J^{\mu(g)}(x)$.

- Choose a gauge invariant regularisation

$$
\begin{gathered}
W[A-\partial \alpha]=\int_{0}^{1} d g \int d^{2} x\left(A_{\mu}-\partial_{\mu} \alpha\right) J^{\mu(g)} \\
\int d^{2} x\left(\partial_{\mu} \frac{\delta W}{\delta A_{\mu}}\right) \alpha=\int_{0}^{1} d g \int d^{2} x \alpha(x) \partial_{\mu} J^{\mu(g)} \\
\partial_{\mu} \frac{\delta W}{\delta A_{\mu}}=\int_{0}^{1} d g\left(\frac{g}{4 \pi} \epsilon_{\mu \nu} F^{\mu \nu}\right)=\frac{1}{8 \pi} \epsilon_{\mu \nu} F^{\mu \nu}
\end{gathered}
$$

This is the consistent anomaly.

Example continued

Covariant: $\frac{1}{4 \pi} \epsilon_{\mu \nu} F^{\mu \nu}$; Consistent: $\frac{1}{8 \pi} \epsilon_{\mu \nu} F^{\mu \nu}$

- For any $d=2 n$ dimensions

Consistent anomaly $=\frac{1}{n+1}$ Covariant anomaly
Follows from homogeneous nature of anomaly

Example continued

Covariant: $\frac{1}{4 \pi} \epsilon_{\mu \nu} F^{\mu \nu}$; Consistent: $\frac{1}{8 \pi} \epsilon_{\mu \nu} F^{\mu \nu}$

- For any d=2n dimensions

Consistent anomaly $=\frac{1}{n+1}$ Covariant anomaly
Follows from homogeneous nature of anomaly

- Relation between covariant and consistent currents

$$
J_{\mu}^{C o v}=J_{\mu}^{C o n s t}+\frac{1}{4 \pi} \epsilon_{\mu \nu} A^{\nu}
$$

Example continued

Covariant: $\frac{1}{4 \pi} \epsilon_{\mu \nu} F^{\mu \nu}$; Consistent: $\frac{1}{8 \pi} \epsilon_{\mu \nu} F^{\mu \nu}$

- For any d=2n dimensions

Consistent anomaly $=\frac{1}{n+1}$ Covariant anomaly
Follows from homogeneous nature of anomaly

- Relation between covariant and consistent currents

$$
J_{\mu}^{C o v}=J_{\mu}^{\text {Const }}+\frac{1}{4 \pi} \epsilon_{\mu \nu} A^{\nu}
$$

- Extra piece (local polynomial) does not contribute to the effective action.

$$
\int_{0}^{1} d g \int d^{2} x A_{\mu}\left(\frac{1}{4 \pi}\right) \epsilon^{\mu \nu} A_{\nu}=0
$$

W is therefore unaffected by the regularisation prescription.

Gravitational anomaly(2 dimensions)

- Occurs in (4n-2) dimension. $(2,6,10, .$.
- For a usual (non-chiral) theory, one can trade between the conformal (trace) and general coordinate (diffeomorphism) symmetries.

$$
T_{\mu}^{\mu}=0, \nabla_{\mu} T_{\nu}^{\mu} \neq 0 \quad \text { OR } \quad T_{\mu}^{\mu} \neq 0, \nabla_{\mu} T_{\nu}^{\mu}=0
$$

Gravitational anomaly(2 dimensions)

- Occurs in (4n-2) dimension. $(2,6,10, .$.
- For a usual (non-chiral) theory, one can trade between the conformal (trace) and general coordinate (diffeomorphism) symmetries.

$$
T_{\mu}^{\mu}=0, \nabla_{\mu} T_{\nu}^{\mu} \neq 0 \quad \text { OR } \quad T_{\mu}^{\mu} \neq 0, \nabla_{\mu} T_{\nu}^{\mu}=0
$$

- For a chiral theory, both conformal and general coordinate invariances are broken

$$
T_{\mu}^{\mu} \neq 0, \quad \nabla_{\mu} T_{\nu}^{\mu} \neq 0
$$

Gravitational anomaly(2 dimensions)

- Occurs in (4n-2) dimension. $(2,6,10, .$.
- For a usual (non-chiral) theory, one can trade between the conformal (trace) and general coordinate (diffeomorphism) symmetries.

$$
T_{\mu}^{\mu}=0, \nabla_{\mu} T_{\nu}^{\mu} \neq 0 \quad \text { OR } \quad T_{\mu}^{\mu} \neq 0, \nabla_{\mu} T_{\nu}^{\mu}=0
$$

- For a chiral theory, both conformal and general coordinate invariances are broken

$$
T_{\mu}^{\mu} \neq 0, \quad \nabla_{\mu} T_{\nu}^{\mu} \neq 0
$$

- As in the gauge theory, here also there are covariant and consistent expressions for the diffeomorphism anomaly.

Anomalous Ward identities

- Diffeomorphism anomaly:

$$
\nabla_{\nu} T^{\nu \mu}=F_{\nu}^{\mu} J^{\nu}+C_{g} \bar{\epsilon}^{\mu \nu} \nabla_{\nu} R
$$

Anomalous Ward identities

- Diffeomorphism anomaly:

$$
\nabla_{\nu} T^{\nu \mu}=F_{\nu}^{\mu} J^{\nu}+C_{g} \bar{\epsilon}^{\mu \nu} \nabla_{\nu} R
$$

- Conformal anomaly:

$$
T_{\mu}^{\mu}=C_{w} R
$$

Anomalous Ward identities

- Diffeomorphism anomaly:

$$
\nabla_{\nu} T^{\nu \mu}=F_{\nu}^{\mu} J^{\nu}+C_{g} \bar{\epsilon}^{\mu \nu} \nabla_{\nu} R
$$

- Conformal anomaly:

$$
T_{\mu}^{\mu}=C_{w} R
$$

- Gauge anomaly:

$$
\nabla_{\mu} J^{\mu}=C_{s} \bar{\epsilon}^{\mu \nu} F_{\mu \nu}
$$

Anomalous Ward identities

- Diffeomorphism anomaly:

$$
\nabla_{\nu} T^{\nu \mu}=F_{\nu}^{\mu} J^{\nu}+C_{g} \bar{\epsilon}^{\mu \nu} \nabla_{\nu} R
$$

- Conformal anomaly:

$$
T_{\mu}^{\mu}=C_{w} R
$$

- Gauge anomaly:

$$
\nabla_{\mu} J^{\mu}=C_{s} \bar{\epsilon}^{\mu \nu} F_{\mu \nu}
$$

Follows from purely algebraic arguments. $J^{\mu}, T^{\mu \nu}$ are covariant current/stress tensor, R is the Ricci scalar, $F_{\mu \nu}=\nabla_{\mu} A_{\nu}-\nabla_{\nu} A_{\mu}$ is field strength

General set up($1+1$ dimensional static space-time)

- Metric:

$$
d s^{2}=-e^{2 \sigma(r)} d t^{2}+g_{11}(r) d r^{2}
$$

General set up($1+1$ dimensional static space-time)

- Metric:

$$
d s^{2}=-e^{2 \sigma(r)} d t^{2}+g_{11}(r) d r^{2}
$$

- Null Coordinates: $u=t-r^{*}, \quad v=t+r^{*}$

$$
\frac{d r}{d r^{*}}=-\frac{e^{\sigma}}{\sqrt{g_{11}}}
$$

General set up($1+1$ dimensional static space-time)

- Metric:

$$
d s^{2}=-e^{2 \sigma(r)} d t^{2}+g_{11}(r) d r^{2}
$$

- Null Coordinates: $u=t-r^{*}, \quad v=t+r^{*}$

$$
\frac{d r}{d r^{*}}=-\frac{e^{\sigma}}{\sqrt{g_{11}}}
$$

- New form of metric

$$
d s^{2}=-\frac{1}{2} e^{2 \sigma}(d u d v+d v d u)
$$

General set up($1+1$ dimensional static space-time)

- Metric:

$$
d s^{2}=-e^{2 \sigma(r)} d t^{2}+g_{11}(r) d r^{2}
$$

- Null Coordinates: $u=t-r^{*}, \quad v=t+r^{*}$

$$
\frac{d r}{d r^{*}}=-\frac{e^{\sigma}}{\sqrt{g_{11}}}
$$

- New form of metric

$$
d s^{2}=-\frac{1}{2} e^{2 \sigma}(d u d v+d v d u)
$$

- Notation:

$$
g=\operatorname{det}_{\mu \nu}=-\frac{e^{4 \sigma}}{4}
$$

General set up($1+1$ dimensional static space-time)

- Metric:

$$
d s^{2}=-e^{2 \sigma(r)} d t^{2}+g_{11}(r) d r^{2}
$$

- Null Coordinates: $u=t-r^{*}, \quad v=t+r^{*}$

$$
\frac{d r}{d r^{*}}=-\frac{e^{\sigma}}{\sqrt{g_{11}}}
$$

- New form of metric

$$
d s^{2}=-\frac{1}{2} e^{2 \sigma}(d u d v+d v d u)
$$

- Notation:

$$
g=\operatorname{det}_{\mu \nu}=-\frac{e^{4 \sigma}}{4}
$$

- Antisymmetric tensor:

$$
\begin{gathered}
\bar{\epsilon}_{\mu \nu}=\sqrt{-g} \epsilon_{\mu \nu}=\frac{e^{2 \sigma}}{2} \epsilon_{\mu \nu} \\
\epsilon_{u v}=-\epsilon_{v u}=1
\end{gathered}
$$

Passage to hydrodynamics

- Introduce the velocity u^{μ} of the time independent equilibrium fluid fields, satisfying $u^{\mu} u_{\mu}=-1$ (comoving frame)

$$
u^{\mu}=e^{-\sigma(r)}(1,0), u_{\mu}=-e^{\sigma(r)}(1,0), \quad(\mu=t, r)
$$

Passage to hydrodynamics

- Introduce the velocity u^{μ} of the time independent equilibrium fluid fields, satisfying $u^{\mu} u_{\mu}=-1$ (comoving frame)

$$
u^{\mu}=e^{-\sigma(r)}(1,0), u_{\mu}=-e^{\sigma(r)}(1,0), \quad(\mu=t, r)
$$

- Null Coordinates

$$
u_{\mu}=-\frac{e^{\sigma(r)}}{2}(1,1), \quad u^{\mu}=e^{-\sigma(r)}(1,1), \quad(\mu=u, v)
$$

Passage to hydrodynamics

- Introduce the velocity u^{μ} of the time independent equilibrium fluid fields, satisfying $u^{\mu} u_{\mu}=-1$ (comoving frame)

$$
u^{\mu}=e^{-\sigma(r)}(1,0), u_{\mu}=-e^{\sigma(r)}(1,0), \quad(\mu=t, r)
$$

- Null Coordinates

$$
u_{\mu}=-\frac{e^{\sigma(r)}}{2}(1,1), \quad u^{\mu}=e^{-\sigma(r)}(1,1), \quad(\mu=u, v)
$$

- Dual vector

$$
\begin{aligned}
\tilde{u_{\mu}} & =\bar{\epsilon}_{\mu \nu} u^{\mu}=\frac{e^{\sigma(r)}}{2}(1,-1) \\
\tilde{u^{\mu}} & =e^{-\sigma(r)}(1,-1), \quad(\mu=u, v)
\end{aligned}
$$

normalised as $\tilde{u}^{\mu} \tilde{u}_{\mu}=1$

Passage to hydrodynamics

- Introduce the velocity u^{μ} of the time independent equilibrium fluid fields, satisfying $u^{\mu} u_{\mu}=-1$ (comoving frame)

$$
u^{\mu}=e^{-\sigma(r)}(1,0), u_{\mu}=-e^{\sigma(r)}(1,0), \quad(\mu=t, r)
$$

- Null Coordinates

$$
u_{\mu}=-\frac{e^{\sigma(r)}}{2}(1,1), \quad u^{\mu}=e^{-\sigma(r)}(1,1), \quad(\mu=u, v)
$$

- Dual vector

$$
\begin{aligned}
\tilde{u_{\mu}} & =\bar{\epsilon}_{\mu \nu} u^{\mu}=\frac{e^{\sigma(r)}}{2}(1,-1) \\
\tilde{u^{\mu}} & =e^{-\sigma(r)}(1,-1), \quad(\mu=u, v)
\end{aligned}
$$

normalised as $\tilde{u}^{\mu} \tilde{u}_{\mu}=1$

- Chiral vector

$$
u_{\mu}^{c}=u_{\mu}-\tilde{u}_{\mu}=-\bar{\epsilon}_{\mu \nu} u^{\nu c}
$$

Passage to hydrodynamics

- Chemical potential

$$
\mu=A_{t}(r) / \sqrt{-g_{00}}=A_{t}(r) e^{-\sigma}
$$

Passage to hydrodynamics

- Chemical potential

$$
\mu=A_{t}(r) / \sqrt{-g_{00}}=A_{t}(r) e^{-\sigma}
$$

- U(1) gauge field

$$
A_{\mu}=\left(A_{t}(r), 0\right)
$$

Passage to hydrodynamics

- Chemical potential

$$
\mu=A_{t}(r) / \sqrt{-g_{00}}=A_{t}(r) e^{-\sigma}
$$

- $\mathrm{U}(1)$ gauge field

$$
A_{\mu}=\left(A_{t}(r), 0\right)
$$

- Temperature

$$
T=T_{0} e^{-\sigma}
$$

where T_{0} is the equilibrium temperature

Passage to hydrodynamics

- Chemical potential

$$
\mu=A_{t}(r) / \sqrt{-g_{00}}=A_{t}(r) e^{-\sigma}
$$

- $\mathrm{U}(1)$ gauge field

$$
A_{\mu}=\left(A_{t}(r), 0\right)
$$

- Temperature

$$
T=T_{0} e^{-\sigma}
$$

where T_{0} is the equilibrium temperature

- Ricci scalar

$$
R=\frac{1}{g_{11}^{2}}\left(g_{11}^{\prime} \sigma^{\prime}-2 g_{11} \sigma^{\prime 2}-2 g_{11} \sigma^{\prime \prime}\right)=-2 u^{\mu} \nabla^{\nu} \nabla_{\mu} u_{\nu}
$$

Constitutive relations

- Energy-momentum Tensor:

$$
\begin{gathered}
T_{\mu \nu}=\left[C_{1} T^{2}-C_{w}\left(u^{\alpha} \nabla^{\beta} \nabla_{\beta} u_{\alpha}\right)+\mu^{2}\left(\frac{1}{2 \pi}-C_{s}\right)\right] g_{\mu \nu} \\
+\left[2 C_{w}\left(u^{\alpha} \nabla^{\beta}-u^{\beta} \nabla^{\alpha}\right) \nabla_{\alpha} u_{\beta}+2 C_{1} T^{2}+2 \mu^{2}\left(\frac{1}{2 \pi}-C_{s}\right)\right] u_{\mu} u_{\nu} \\
-\left[2 C_{g}\left(u^{\alpha} \nabla^{\beta}-u^{\beta} \nabla^{\alpha}\right) \nabla_{\alpha} u_{\beta}+C_{2} T^{2}+C_{s} \mu^{2}\right]\left(u_{\mu} \tilde{u}_{\nu}+\tilde{u}_{\mu} u_{\nu}\right) \\
+\left\{\left(\frac{C}{\pi}-2(C+P) C_{s}\right) \frac{T}{T_{0}} \mu+\left(\frac{C^{2}+P^{2}}{2 \pi}-C_{s}(C+P)^{2}\right) \frac{T^{2}}{T_{0}^{2}}\right\}\left(2 u_{\mu} u_{\nu}+g_{\mu \nu}\right) \\
+\left\{\left(\frac{P}{\pi}-2(C+P) C_{s}\right) \frac{T}{T_{0}} \mu+\left(\frac{C P}{\pi}-C_{s}(C+P)^{2}\right) \frac{T^{2}}{T_{0}^{2}}\right\}\left(u_{\mu} \tilde{u}_{\nu}+\tilde{u}_{\mu} u_{\nu}\right)
\end{gathered}
$$

Constitutive relations

- Energy-momentum Tensor:

$$
\begin{gathered}
T_{\mu \nu}=\left[C_{1} T^{2}-C_{w}\left(u^{\alpha} \nabla^{\beta} \nabla_{\beta} u_{\alpha}\right)+\mu^{2}\left(\frac{1}{2 \pi}-C_{s}\right)\right] g_{\mu \nu} \\
+\left[2 C_{w}\left(u^{\alpha} \nabla^{\beta}-u^{\beta} \nabla^{\alpha}\right) \nabla_{\alpha} u_{\beta}+2 C_{1} T^{2}+2 \mu^{2}\left(\frac{1}{2 \pi}-C_{s}\right)\right] u_{\mu} u_{\nu} \\
-\left[2 C_{g}\left(u^{\alpha} \nabla^{\beta}-u^{\beta} \nabla^{\alpha}\right) \nabla_{\alpha} u_{\beta}+C_{2} T^{2}+C_{s} \mu^{2}\right]\left(u_{\mu} \tilde{u}_{\nu}+\tilde{u}_{\mu} u_{\nu}\right) \\
+\left\{\left(\frac{C}{\pi}-2(C+P) C_{s}\right) \frac{T}{T_{0}} \mu+\left(\frac{C^{2}+P^{2}}{2 \pi}-C_{s}(C+P)^{2}\right) \frac{T^{2}}{T_{0}^{2}}\right\}\left(2 u_{\mu} u_{\nu}+g_{\mu \nu}\right) \\
+\left\{\left(\frac{P}{\pi}-2(C+P) C_{s}\right) \frac{T}{T_{0}} \mu+\left(\frac{C P}{\pi}-C_{s}(C+P)^{2}\right) \frac{T^{2}}{T_{0}^{2}}\right\}\left(u_{\mu} \tilde{u}_{\nu}+\tilde{u}_{\mu} u_{\nu}\right)
\end{gathered}
$$

- Gauge current

$$
\begin{aligned}
J_{\mu}=-2 C_{s} \mu\left(u_{\mu}+\tilde{u}_{\mu}\right)+\frac{\mu}{\pi} u_{\mu} & +\left(\frac{C}{\pi}-2(C+P) C_{s}\right) \frac{T}{T_{0}} u_{\mu} \\
& +\left(\frac{P}{\pi}-2(C+P) C_{s}\right) \frac{T}{T_{0}} \tilde{u}_{\mu}
\end{aligned}
$$

Here, C_{1}, C_{2}, P and C are constants.

Derivative expansion approach

- Covariant stress tensor

$$
T^{\mu \nu}=\varepsilon u^{\mu} u^{\nu}+\mathcal{P} \tilde{u}^{\mu} \tilde{u}^{\nu}+\theta\left(\tilde{u}^{\mu} u^{\nu}+u^{\mu} \tilde{u}^{\nu}\right)
$$

- General form of a symmetric second rank tensor constructed from u_{μ} and \tilde{u}_{μ}.

Derivative expansion approach

- Covariant stress tensor

$$
T^{\mu \nu}=\varepsilon u^{\mu} u^{\nu}+\mathcal{P} \tilde{u}^{\mu} \tilde{u}^{\nu}+\theta\left(\tilde{u}^{\mu} u^{\nu}+u^{\mu} \tilde{u}^{\nu}\right)
$$

- General form of a symmetric second rank tensor constructed from u_{μ} and \tilde{u}_{μ}.

$$
\begin{aligned}
\varepsilon & =C_{1} T^{2}+C_{w}\left(u^{\nu} \nabla^{\mu} \nabla_{\mu} u_{\nu}\right)+2 C_{w}\left(u^{\mu} \nabla^{\nu}-u^{\nu} \nabla^{\mu}\right) \nabla_{\mu} u_{\nu} \\
\mathcal{P} & =C_{1} T^{2}-C_{w}\left(u^{\nu} \nabla^{\mu} \nabla_{\mu} u_{\nu}\right) \\
\theta & =-C_{2} T^{2}-2 C_{g}\left(u^{\mu} \nabla^{\nu}-u^{\nu} \nabla^{\mu}\right) \nabla_{\mu} u_{\nu}
\end{aligned}
$$

Derivative expansion approach

- Covariant stress tensor

$$
T^{\mu \nu}=\varepsilon u^{\mu} u^{\nu}+\mathcal{P} \tilde{u}^{\mu} \tilde{u}^{\nu}+\theta\left(\tilde{u}^{\mu} u^{\nu}+u^{\mu} \tilde{u}^{\nu}\right)
$$

- General form of a symmetric second rank tensor constructed from u_{μ} and \tilde{u}_{μ}.

$$
\begin{aligned}
\varepsilon & =C_{1} T^{2}+C_{w}\left(u^{\nu} \nabla^{\mu} \nabla_{\mu} u_{\nu}\right)+2 C_{w}\left(u^{\mu} \nabla^{\nu}-u^{\nu} \nabla^{\mu}\right) \nabla_{\mu} u_{\nu} \\
\mathcal{P} & =C_{1} T^{2}-C_{w}\left(u^{\nu} \nabla^{\mu} \nabla_{\mu} u_{\nu}\right) \\
\theta & =-C_{2} T^{2}-2 C_{g}\left(u^{\mu} \nabla^{\nu}-u^{\nu} \nabla^{\mu}\right) \nabla_{\mu} u_{\nu}
\end{aligned}
$$

- C_{1} and C_{2} are undetermined parameters expressed in terms of the normalisation factors $\left(C_{w}, C_{g}\right)$ of the trace/diffeomorphism anomalies. Non-trivial relations,

$$
C_{1}=4 \pi^{2} C_{w}, \quad C_{2}=8 \pi^{2} C_{g}
$$

Israel-Hartle-Hawking condition

- Defined by taking $T_{\mu \nu} / J_{\mu}$ in Kruskal coordinates, corresponding to both outgoing and ingoing modes, as regular, near the horizon.

Israel-Hartle-Hawking condition

- Defined by taking $T_{\mu \nu} / J_{\mu}$ in Kruskal coordinates, corresponding to both outgoing and ingoing modes, as regular, near the horizon.
- Implies $T_{u u}, T_{v v}, J_{u}, J_{v} \rightarrow 0$ near the horizon
- Horizon $\left(r=r_{0}\right)$ defined as $\left.e^{2 \sigma}\right|_{r_{0}}=\left.\frac{1}{g_{11}}\right|_{r_{0}}=0$

Israel-Hartle-Hawking condition

- Defined by taking $T_{\mu \nu} / J_{\mu}$ in Kruskal coordinates, corresponding to both outgoing and ingoing modes, as regular, near the horizon.
- Implies $T_{u u}, T_{v v}, J_{u}, J_{v} \rightarrow 0$ near the horizon
- Horizon $\left(r=r_{0}\right)$ defined as $\left.e^{2 \sigma}\right|_{r_{0}}=\left.\frac{1}{g_{11}}\right|_{r_{0}}=0$
- Fixes all the undetermined constants:

C and P fixed from $J_{u}, J_{v} \rightarrow 0$
For $J_{u} \rightarrow 0, \quad P-C=\left.\mu e^{\sigma}\right|_{r_{0}}=0$
For $J_{v} \rightarrow 0, \quad P+C=-\left.\mu e^{\sigma}\right|_{r_{0}}=0$

$$
\mathbf{P}=\mathbf{C}=\mathbf{0} ;
$$

Israel-Hartle-Hawking condition

- Defined by taking $T_{\mu \nu} / J_{\mu}$ in Kruskal coordinates, corresponding to both outgoing and ingoing modes, as regular, near the horizon.
- Implies $T_{u u}, T_{v v}, J_{u}, J_{v} \rightarrow 0$ near the horizon
- Horizon $\left(r=r_{0}\right)$ defined as $\left.e^{2 \sigma}\right|_{r_{0}}=\left.\frac{1}{g_{11}}\right|_{r_{0}}=0$
- Fixes all the undetermined constants:

C and P fixed from $J_{u}, J_{v} \rightarrow 0$
For $J_{u} \rightarrow 0, \quad P-C=\left.\mu e^{\sigma}\right|_{r_{0}}=0$
For $J_{v} \rightarrow 0, \quad P+C=-\left.\mu e^{\sigma}\right|_{r_{0}}=0$

$$
\mathbf{P}=\mathbf{C}=\mathbf{0}
$$

- C_{1} and C_{2} fixed from the condition on stress tensor.

$$
\mathbf{C}_{1}=4 \pi^{2} \mathbf{C}_{\mathrm{w}}, \quad \mathbf{C}_{2}=8 \pi^{2} \mathbf{C}_{\mathrm{g}}
$$

Response parameters and anomaly coefficients

-

$$
J_{\mu}=-2 C_{s} \mu\left(u_{\mu}+\tilde{u_{\mu}}\right)+\frac{\mu}{\pi} u_{\mu}
$$

Response parameters and anomaly coefficients

$$
J_{\mu}=-2 C_{s} \mu\left(u_{\mu}+\tilde{u_{\mu}}\right)+\frac{\mu}{\pi} u_{\mu}
$$

- In the hydrodynamic expansion approach

$$
J_{\mu}=-2 C_{s} \mu \tilde{u}_{\mu}+\left(\frac{\partial P}{\partial \mu}-\frac{a_{2}^{\prime}}{T^{2}} S_{2}+\frac{a_{2}}{T} S_{4}\right) u_{\mu}
$$

Response parameters and anomaly coefficients

$$
J_{\mu}=-2 C_{s} \mu\left(u_{\mu}+\tilde{u_{\mu}}\right)+\frac{\mu}{\pi} u_{\mu}
$$

- In the hydrodynamic expansion approach

$$
J_{\mu}=-2 C_{s} \mu \tilde{u}_{\mu}+\left(\frac{\partial P}{\partial \mu}-\frac{a_{2}^{\prime}}{T^{2}} S_{2}+\frac{a_{2}}{T} S_{4}\right) u_{\mu}
$$

- s_{2}, s_{4} are certain combinations of gauge field that occur in the second order expansion, and,

$$
P=T^{2} p_{0}\left(\frac{\mu}{T}\right)
$$

Response parameters and anomaly coefficients

$$
J_{\mu}=-2 C_{s} \mu\left(u_{\mu}+\tilde{u_{\mu}}\right)+\frac{\mu}{\pi} u_{\mu}
$$

- In the hydrodynamic expansion approach

$$
J_{\mu}=-2 C_{s} \mu \tilde{u}_{\mu}+\left(\frac{\partial P}{\partial \mu}-\frac{a_{2}^{\prime}}{T^{2}} S_{2}+\frac{a_{2}}{T} S_{4}\right) u_{\mu}
$$

- s_{2}, s_{4} are certain combinations of gauge field that occur in the second order expansion, and,

$$
P=T^{2} p_{0}\left(\frac{\mu}{T}\right)
$$

- Comparison yields

$$
\frac{\partial P}{\partial \mu}=T^{2} \frac{\partial p_{0}}{\partial \mu}=\left(-2 C_{s}+\frac{1}{\pi}\right) \mu ; \quad a_{2}=a^{\prime}{ }_{2}=0
$$

Final Expressions

-

$$
p_{0}=\left(\frac{1}{\pi}-C_{s}\right) \frac{\mu^{2}}{T^{2}}+Q(\text { int.const })
$$

- In the absence of gauge field

$$
p_{0}=C_{1}=4 \pi^{2} C_{w}
$$

- General solution:

$$
p_{0}=4 \pi^{2} C_{w}+\left(\frac{1}{\pi}-C_{s}\right) \frac{\mu^{2}}{T^{2}}
$$

The other relation is unchanged,

- $C_{2}=8 \pi^{2} C_{g}$

Final Expressions

-

$$
p_{0}=\left(\frac{1}{\pi}-C_{s}\right) \frac{\mu^{2}}{T^{2}}+Q(\text { int.const })
$$

- In the absence of gauge field

$$
p_{0}=C_{1}=4 \pi^{2} C_{w}
$$

- General solution:

$$
p_{0}=4 \pi^{2} C_{w}+\left(\frac{1}{\pi}-C_{s}\right) \frac{\mu^{2}}{T^{2}}
$$

The other relation is unchanged,

- $C_{2}=8 \pi^{2} C_{g}$
- Consistency check

The constitutive relation for $T_{\mu \nu}$ agrees with the form obtained by the derivative expansion provided the above identifications are used.

Conclusions

- Hydrodynamics governed by its eq. of motion (Conservation laws) supplemented by constitutive relations expressing stress tensor/charge in terms of fluid variables like velocity,temperature etc.

Conclusions

- Hydrodynamics governed by its eq. of motion (Conservation laws) supplemented by constitutive relations expressing stress tensor/charge in terms of fluid variables like velocity,temperature etc.
- Anomalous conservation laws modify such constitutive relations.

Conclusions

- Hydrodynamics governed by its eq. of motion (Conservation laws) supplemented by constitutive relations expressing stress tensor/charge in terms of fluid variables like velocity,temperature etc.
- Anomalous conservation laws modify such constitutive relations.
- Usual approach employs the gradient expansion scheme. Yields results in two/four dimensions etc.

Conclusions

- Hydrodynamics governed by its eq. of motion (Conservation laws) supplemented by constitutive relations expressing stress tensor/charge in terms of fluid variables like velocity,temperature etc.
- Anomalous conservation laws modify such constitutive relations.
- Usual approach employs the gradient expansion scheme. Yields results in two/four dimensions etc.
- In $\mathrm{d}=2$, exact results are obtained since the metric is conformally flat.

Conclusions

- Hydrodynamics governed by its eq. of motion (Conservation laws) supplemented by constitutive relations expressing stress tensor/charge in terms of fluid variables like velocity,temperature etc.
- Anomalous conservation laws modify such constitutive relations.
- Usual approach employs the gradient expansion scheme. Yields results in two/four dimensions etc.
- In $\mathrm{d}=2$, exact results are obtained since the metric is conformally flat.
- We have given exact constitutive relations in $\mathrm{d}=2$ in the presence of both gauge and gravitational anomalies. Also, the connection between response parameters and anomaly coefficients was given.

Conclusions

- Hydrodynamics governed by its eq. of motion (Conservation laws) supplemented by constitutive relations expressing stress tensor/charge in terms of fluid variables like velocity,temperature etc.
- Anomalous conservation laws modify such constitutive relations.
- Usual approach employs the gradient expansion scheme. Yields results in two/four dimensions etc.
- In $\mathrm{d}=2$, exact results are obtained since the metric is conformally flat.
- We have given exact constitutive relations in $d=2$ in the presence of both gauge and gravitational anomalies. Also, the connection between response parameters and anomaly coefficients was given.
- Apart from providing an alternative viewpoint, we have given new results in the context of simultaneous gauge and gravitational anomalies.

Conclusions

- Hydrodynamics governed by its eq. of motion (Conservation laws) supplemented by constitutive relations expressing stress tensor/charge in terms of fluid variables like velocity,temperature etc.
- Anomalous conservation laws modify such constitutive relations.
- Usual approach employs the gradient expansion scheme. Yields results in two/four dimensions etc.
- In $\mathrm{d}=2$, exact results are obtained since the metric is conformally flat.
- We have given exact constitutive relations in $d=2$ in the presence of both gauge and gravitational anomalies. Also, the connection between response parameters and anomaly coefficients was given.
- Apart from providing an alternative viewpoint, we have given new results in the context of simultaneous gauge and gravitational anomalies.
- Only covariant anomalies were used.

Thank You

