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Abstract

This thesis deals with the investigation of solitary wave or soliton-like solutions for

nonlinear evolutions equations of physical interest. In general, the nonlinear evolu-

tion equations possess spatially and/or temporally varying coefficients because most

of physical and biological systems are inhomogeneous due to fluctuations in envi-

ronmental conditions and non-uniform media.

There has been considerable interest, experimentally as well as theoretically, in the

use of tapered graded index waveguides in optical communication systems, as it helps

in maximizing light coupled into optical waveguides. We investigate the effects of

modulated tapering profiles on the intensity of self-similar waves, including bright

and dark similaritons, self-similar Akhmediev breathers and self-similar rogue waves,

propagating through tapered graded index waveguide. In this regard, we present a

systematic analytical approach, invoking isospectral Hamiltonian technique, which

enables us to identify a large manifold of allowed tapering profiles. It finds that the

intensity of self-similar waves can be made very large for specific choice of taper-

ing profile and thus paving the way for experimental realization of highly energetic

waves in nonlinear optics.

Two photon absorption (TPA) is an area of research that has been attracting sci-

entific interest over several decades. It is a nonlinear process which is accompanied

by an enhanced nonlinear absorption coefficient of the material and thus finds ap-

plications in all-optical processes. This thesis shows results of the effect of TPA

on soliton propagation in a nonlinear optical medium. We find that localized gain

exactly balance the losses due to TPA and results into chirped optical solitons for

arbitrary value of TPA coefficient.

We study a prototype model for the reaction, diffusion and convection processes with

inhomogeneous coefficients. Employing auxiliary equation method, the kink-type

solitary wave solutions have been found for variable coefficient Burgers- Fisher and

Newell-Whitehead-Segel equations. The soliton-like solutions of complex Ginzburg-

Landau equation can be stabilized either by adding quintic term to it or by using

a external ac-source. We consider the complex Ginzburg-Landau equation driven

by external source and solved it to obtain exact periodic and soliton solutions. The

reported soliton solutions are necessarily of the kink-type and Lorentzian-type con-

taining hyperbolic and pure cnoidal functions.
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Chapter 1

Introduction

In past few decades, modern theories of nonlinear science have been widely developed

to understand the challenging aspects of nonlinear nature of the systems. The

nonlinear science has evolved as a dynamic tool to study the mysteries of complex

natural phenomena. In general, nonlinear science is not a new subject or branch

of science, although it delivers significantly a new set of concepts and remarkable

results. Unlike quantum physics and relativity, it encompasses systems of different

scale and objects moving with any velocity. Hence, due to feasibility of nonlinear

science on every scale, it is possible to study same nonlinear phenomena in very

distinct systems with the corresponding experimental tools. The whole field of

nonlinear science can be divided into six categories, viz., fractals, chaos, solitons,

pattern formation, cellular automata, and complex systems. The general theme

underlying the study of nonlinear systems is nonlinearity present in the system.

Nonlinearity is exciting characteristic of nature which plays an important role

in dynamics of various physical phenomena [1, 2], such as in nonlinear mechani-

cal vibrations, population dynamics, electronic circuits, laser physics, astrophysics

(e.g planetary motions), heart beat, nonlinear diffusion, plasma physics, chemical

reactions in solutions, nonlinear wave motions, time-delay processes etc. A system

is called nonlinear if its output is not proportional to its input. For example, a

dielectric material behaves nonlinearly if the output field intensity is no longer pro-

1



2 Chapter 1

portional to the input field intensity. For most of the real systems, nonlinearity is

more regular feature as compared to the linearity. In general, all natural and social

systems behave nonlinearly if the input is large enough. For example, the behavior

of a spring and a simple pendulum is linear for small displacements. But for large

displacements both of them act as nonlinear systems. A system has a very different

dynamics mechanism in its linear and nonlinear regimes.

Most of the nonlinear phenomena are modelled by nonlinear evolution equa-

tions (NLEEs) having complex structures due to linear and nonlinear effects. The

advancement of high-speed computers, and new techniques in mathematical soft-

wares and analytical methods to study NLEEs with experimental support has stim-

ulated the theoretical and experimental research in this area. The investigation of

the exact solutions, like solitary wave and periodic, of NLEEs play a vital role in

description of nonlinear physical phenomena. The wave propagation in fluid dy-

namics, plasma, optical and elastic media are generally modelled by bell-shaped

and kink-shaped solitary wave solutions. The existence of exact solutions, if avail-

able, to NLEEs help in verification of numerical analysis and are useful in the study

of stability analysis of solutions. Moreover, the search of exact solitary wave solu-

tions led to the discovery of new concepts, such as solitons, rogue waves, vortices,

dispersion-managed solitons, similaritons, supercontinuum generation, modulation

instability, complete integrability, etc.

1.1 Solitary waves and solitons: Properties and

applications

Solitary wave : A solitary wave is a non-singular and localized wave which propa-

gates without change of its properties (shape, velocity etc.). It arises due to delicate

balance between nonlinear and dispersion effects of a medium.

Soliton : A soliton is a self-reinforcing solitary wave solution of a NLEE which

• represents a wave of permanent form.
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• is localized, so that it decays or approaches a constant value at infinity.

• is stable against mutual collisions with other solitons and retains its identity.

Physically it can be seen as, if two solitons with different amplitudes (hence

with different speeds) are kept far apart such that the taller (faster) wave is on left of

the shorter (slower) wave. After some time, the taller one ultimately catches up the

shorter one and crosses it. When this happens, both of them undergo a nonlinear

interaction and evolve from interaction absolutely preserving their shape and speed,

as shown in Fig. 1.1.

Figure 1.1: Collision of solitons

History

The concept of solitary wave was first introduced in the field of hydrodynamics by

Scottish Engineer John Scott Russell in 1834. He observed a peculiar water wave

in the narrow union canal near Edinburgh while he was conducting experiments

to determine the most efficient design for canal boats. He called it as a “wave

of translation” which propagates for miles before losing in the meanders of the

canal. Subsequently, Russell performed experiments in his laboratory to study this

phenomena more carefully and he made two key discoveries

1. The existence of solitary waves which are long and shallow water waves of

permanent form.
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2. The speed of propagation, v, of solitary wave in a channel is given by

v =
√
g(h+ η),

where η is the amplitude of wave, h is the depth of channel and g is the force

due to gravity.

In 1844, Russell published his work on wave of translation, latter known as

solitary wave, in “British Association Reports”. This phenomena attracted a consid-

erable attention of other scientists including Airy (1845), Stokes (1847) and Boussi-

nesq (1871, 1872). But the theoretical basis for this phenomenon was given by

two Dutch physicists, Korteweg and de Vries in 1895, who presented a nonlinear

evolution equation, known as KdV equation, for the evolution of long waves in a

shallow one-dimensional water channel which admits solitary wave solution. In 1965,

Zabusky and Kruskal [3] solved the KdV equation numerically as a model for non-

linear lattice and found that solitary wave solutions interacted elastically with each

other. Due to this particle-like property, they termed these solitary wave solutions

as solitons.

After that, the concept of soliton was accepted in general and soon Gardner

et al. in 1967 reported the existence of multi-soliton solutions of KdV equation

using inverse scattering method [4]. One year later, Lax generalized these results

and proposed the concept of Lax pair [5]. Zakharov and Shabat [6] used the same

method to obtain exact solutions for nonlinear Schrödinger equation. Hirota [7]

introduced a new method, known as Hirota direct method, to solve the KdV equation

for exact solutions for multiple collision of solitons. In 1974, Ablowitz et al. [8]

showed that inverse scattering method is analog of the Fourier transform and used

it to solve a wide range of new equations, such as the modified KdV equation,

the nonlinear Schrödinger equation, and the classical sine-Gordon equation. These

techniques stimulated the study of soliton theory in various fields such as optical

communications, molecular biology, chemical reactions, oceanography etc.
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Properties of solitons

Solitons have various interesting features, some of which are given below:

• Integrability : Before the concept of soliton, it was believed that a nonlinear

partial differential equation can not be solved exactly. But with the progress of

soliton theory, multi-solitons have been found for NLEEs using inverse scatter-

ing transform, Lax pair, or Hirota techniques, which assures the integrability

of NLEEs. Integrability is a mathematical property which can be used to

obtain more predictive power and qualitative information to understand the

dynamics of system locally and globally because for integrable systems, gov-

erning equation of motion is exactly solvable in terms of elementary functions

which are analytic. So, nature of system is known at every instant of time and

globally. Hence, it gives us a tremendous “window” into what is possible in

nonlinearity.

• Particle-like behavior : Solitons are localized waves which propagate with-

out spreading. They retain their shape after collisions and are also robustly

stable against the perturbations. This particle-like behavior of solitons has

applications in explaining various nonlinear systems. However, there is no

general well developed quantum theory which considers particle as soliton.

But on macroscopic scale, the theory of propagation of waves in optics com-

munications and in oceans are well defined using the concept of solitons.

• Nonlinear superposition : For linear equations, new solutions could be

found from the known solutions using superposition principle, according to

which the linear combination of two or more solutions is again a solution

of the considered equation. However, for NLEEs there was no analogue of

this principle until the solitons had been discovered. But, the existence of

multi-soliton solutions can be viewed as asymptotic (nonlinear) superposition

of separated solitary waves. Hence, it leads to a recognition that there is a

nonlinear superposition principle as well.
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Applications

Solitons have various practical applications due to their interesting properties. Soli-

tons and solitary waves appear in almost all branches of physics, such as hydrody-

namics, plasma physics, nonlinear optics, condensed matter physics, nuclear physics,

particle physics, low temperature physics, biophysics and astrophysics. Some of their

applications are described below:

• Fluid dynamics : Solitary waves are very useful to study the fluid dynamical

problems. Russell’s “wave of translation” was a water-wave soliton, and Ko-

rteweg and de Vries presented the KdV equation to study the propagation of

shallow water waves. Zakharov [9] proposed another nonlinear model, known

as nonlinear Schrödinger equation (NLSE), to study the occurrence of solitary

waves in deep water oceans. Then, with the advent of rational solutions to

NLSE, it was proposed that large amplitude freak waves (or rogue waves) also

behave as solitary waves [10]. In plasma physics, the propagation of waves has

been modeled similar to the solitons on a liquid surface [11]. Washimi and

Taniuti [12] studied the transmission of ion-acoustic waves in cold plasma by

using the KdV model. Afterwards, a large variety of soliton solutions have

been studied in plasma physics [13], which are useful in the description of

different models of strong turbulence theory.

• Nonlinear optics : Solitons have much importance in the study of optical

communication through the optical fiber because soliton pulses can be used as

the digital information carrying ‘bits’ in optical fibers. The main prospects of

optical soliton communication is that it can propagate without distortion over

long distances and it enables high speed communication [14]. The concept

of optical solitons originated in 1973 and was experimentally verified in 1980.

They are formed due to dynamic balance between group velocity dispersion

and the nonlinearity due to Kerr effect [15]. Apart from communications,

optical solitons are also found useful in the construction of optical switches,

logic gates, fiber lasers and pulse compression or amplification processes.



1.1 Solitary waves and solitons: Properties and applications 7

• Bose-Einstein condensates: The process of Bose-Einstein condensation

was first predicted by Bose and Einstein in 1924. It was shown that, at very

low temperatures, a finite fraction of particles in a dilute boson gas condenses

into the same quantum (ground) state, known as the Bose-Einstein condensate

(BEC). In 1995, BECs were realized experimentally when atoms of dilute al-

kali vapors were confined in a magnetic trap and cooled down to extremely low

temperature, of the scale of fractions of microkelvins [16, 17]. In BECs, nonlin-

earity arises due to the interatomic interactions which describes the existence

of nonlinear waves, such as solitons and vortices. Hence, these matter-wave

solitons can be viewed as nonlinear excitations of BECs [18]. Recently, the

existence of matter rogue waves has also been predicted analytically in BECs

[19].

• Josephson junctions : A Josephson junction is an electronic circuit which

is made up of two weakly coupled superconductors, separated by a non-

conducting layer thin enough to permit passage of electrons through this in-

sulating barrier. In Josephson junction, solitary wave theory can be studied

as the propagation of electromagnetic wave between the two strips of super-

conductors [20, 21]. Solitons in long Josephson junction are called fluxons

because each soliton contains one quantum of magnetic flux. Such junctions

are found to be useful in the production of quantum-mechanical circuits such

as superconducting quantum interference devices (SQUIDs).

• Biophysics: Solitary wave formulation is also useful in explaining various bio-

physical processes. The Davydov soliton acts as a energy carrier in hydrogen-

bonded spines which stabilize protein α-helices [22]. These soliton structures

show the excited states of amide-I and connected hydrogen bond distortions.

Solitary waves also arise in the study of nonlinear dynamics of DNA [23] and

play an important role in the explanation of various processes undergone by

the DNA double helix, such as transcription, duplication and denaturation

[24].



8 Chapter 1

• Field theory : Solitons and their relative, such as instantons, play a vital

role in understanding of both classical and quantum field theory [25]. Various

forms of topological solitons such as monopoles, kinks, vortices, and skyrmions

are important in the study of field theory. In quantum field theory, topolog-

ical solitons of the sine-Gordon equation can be considered as fundamental

excitations of the Thirring model.

1.2 Nonlinear evolution equations

Nonlinear evolution equations (NLEEs) arise throughout the nonlinear sciences as

a dynamical description (both in time and space dimensions) to the nonlinear sys-

tems. NLEEs are very useful to describe various nonlinear phenomena of physics,

chemistry, biology and ecology, such as fluid dynamics, wave propagation, popula-

tion dynamics, nonlinear dispersion, pattern formation etc. Hence, NLEEs evolved

as a useful tool to investigate the natural phenomena of science and technology.

A NLEE is represented by a nonlinear partial differential equation (PDE) which

contains a dependent variable (the unknown function) and its partial derivatives

with respect to the independent variables. In literature, there are many NLEEs to

describe various physical phenomena. Some of the well-known NLEEs which are of

great interest are given below:

• KdV equation : The KdV type equations have been the most important class

of NLEE’s, with numerous application in physical sciences and engineering.

The KdV equation is given by

ut + αuux + uxxx = 0. (1.1)

This equation was introduced by Korteweg and de Vries to study the propa-

gation of shallow water waves. It represents the longtime evolution of wave

phenomena in which the steepening effect of nonlinear term is counterbalanced

by broadening effect of dispersion. KdV equation can be used to understand
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the properties of many physical systems which are weekly nonlinear and weakly

dispersive, e.g., nonlinear electric lines, blood pressure waves, internal waves

in oceanography, ion-acoustic solitons in plasma etc.

• Nonlinear Schrödinger equation : The nonlinear Schrödinger equation

(NLSE) is very important in many branches of physics and is represented by

iut + uxx + k|u|2u = 0. (1.2)

This equation has been used to describe the wave propagation in nonlinear

optics and quantum electronics, Langmuir waves in plasma, deep water waves,

and propagation of heat pulses in solids. In (1 + 1) dimensions, NLSE with

nonlinear gain and spectral filtering is related to the complex Ginzburg-Landau

equation (CGLE) which appear in the phenomenon of superconductivity.

• Sine-Gordon equation : The sine-Gordon equation is a nonlinear hyperbolic

partial differential equation. It was introduced by Frenkel and Kontorova in

1939 in the study of crystal dislocations. A mechanical model of the sine-

Gordon equation consists of a chain of heavy pendula coupled to each other

through a spring and constrained to rotate around a horizontal axis [20]. The

equation reads

utt − uxx = sinu. (1.3)

The sine-Gordon equation arises in many fields, such as propagation of dislo-

cations in crystal lattices, Bloch wall motion of magnetic crystals, a unitary

theory of elementary particles, nonlinear dynamics of DNA, in studying prop-

erties of Josephson junctions, charge density waves, liquid helium etc.

• Nonlinear reaction diffusion equation : Reaction diffusion equations are

the mathematical models of those physical or biological systems in which the

concentration of one or more substances distributed in space varies under the

effect of two processes: reaction and diffusion. Nonlinear reaction diffusion

equations (NLRD), with convective term or without it, have attracted con-
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siderable attention, as it can be used to model the evolution systems in real

world. The general form of NLRD type equations is

ut + vumux = Duxx + αu− βun. (1.4)

NLRD equations plays an important role in the qualitative description of many

phenomena such as flow in porous media, heat conduction in plasma, chemical

reactions, population genetics, image processing and liquid evaporation.

1.3 Inhomogeneous nonlinear evolution equations

In the study of NLEEs as a model to an actual physical system, it is generally

essential to consider the factors causing deviation from the actual system, originating

due to the dissipation, environmental fluctuations, spatial modulations and other

forces. In order to consider some or all of these factors, it is necessary to add the

appropriate perturbing terms in NLEEs. Hence, inhomogeneous NLEEs are more

realistic to study the dynamics of physical systems.

1.3.1 NLEEs with variable coefficients

The physical phenomena in which NLEEs with constant coefficients arise tend to

be highly idealized. But for most of the real systems, the media may be inhomo-

geneous and the boundaries may be nonuniform, e.g., in plasmas, superconductors,

optical fiber communications, blood vessels and Bose-Einstein condensates. There-

fore, the NLEEs with variable coefficients are supposed to be more realistic than

their constant-coefficient counterparts in describing a large variety of real nonlin-

ear physical systems. Some phenomena which are governed by variable coefficient

NLEEs, are given as

• In a real optical fiber transmission system, there always exist some non-

uniformities due to the diverse factors that include the variation in the lattice

parameters of the fiber media and fluctuations of the fiber’s diameter. There-
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fore, in real optical fiber, the transmission of soliton is described by the NLSE

with variable coefficients [26]. Sometimes, the optical waveguide is tapered

along the waveguide axis to improve the coupling efficiency between fibers and

waveguides in order to reduce the reflection losses and mode mismatch. The

propagation of beam through tapered graded-index nonlinear waveguides is

governed by the inhomogeneous NLSE [27].

• The evolution equation for the propagation of weakly nonlinear waves in shal-

low water channels of variable depth and width and also in plasmas having

inhomogeneous properties of media, is obtained as a variable coefficient KdV

equation [28, 29].

• The dynamics of the matter wave solitons in BEC can be controlled through

artificially inducing the inhomogeneities in system [30]. It has been achieved

by varying the space distribution of the atomic two-body scattering length us-

ing optical methods, such as the optically induced Feshbach resonance [31].

The dynamical behavior of inhomogeneous BEC is described by the vari-

able coefficient Gross-Pitaevskii equation also known as generalized nonlinear

Schrödinger equation (GNLSE).

• Generally, the NLRD systems are inhomogeneous due to fluctuations in envi-

ronmental conditions and nonuniform media. It makes the relevant parame-

ters space or time dependent because external factors make the density and/or

temperature change in space or time [32, 33].

• To describe waves in an energetically open system with a monotonically vary-

ing external field, sine-Gordon equation with dissipation and variable coeffi-

cient on the nonlinear term is considered [34].

1.3.2 NLEEs in the presence of external source

To control the dynamics of a nonlinear system, it is essential to investigate the ef-

fects of dissipation, noise and external force on the system. Dissipation leads to loss
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of energy and hence affects the dynamics of system under consideration, whereas

the external tunable driving acts as a source of energy and helps in stabilizing the

dynamical system. Barashenkov et al. [35] considered the parametrically driven

damped NLSE and showed the existence of stable solitons only if the strength of the

driving force would be more than the damping constant. The studies of ac-driven

NLSE date back to the works of Malomed et al. [36, 37] and Cohen [38]. Recently,

works on forced NLSE is attracting much attention [39, 40, 41, 42], as it arises in

many physical problems, such as the plasmas driven by rf-fields, pulse propagation

in twin-core fibers, charge density waves with external electric field, double-layer

quantum Hall (pseudo) ferromagnets, etc. (see [39], and references therein). The

ac-driven sine-Gordon equation which arises in the study of DNA dynamics and

Josephson junction under external field has been studied analytically and numeri-

cally (see [43], and references therein). The external feedback also helps in control-

ling the diffusion induced amplitude and phase turbulence (or spatiotemporal) in

CGLE systems [44, 45, 46].

1.4 Outline of thesis

The layout of the thesis is as follows.

In Chapter 2, the discussion begins with the derivation of NLSE followed by

introduction of generalized NLSE for wave propagation in tapered graded-index

waveguides and a short overview of isospectral Hamiltonian approach. We present

a large family of self-similar waves by tailoring the tapering function, through Ric-

cati parameter, in a tapered graded-index nonlinear waveguide amplifier. It has

been achieved using a systematic analytical approach which provides a handle to

find analytically a wide class of tapering function and thus enabling one to control

the self-similar wave structure. This analysis has been done for the sech2-type ta-

pering profile in the presence of only cubic nonlinearity and also for cubic-quintic

nonlinearity. Further, we show the existence of bright and dark similaritons in a

parametrically controlled parabolic tapered waveguide.
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Chapter 3 deals with the effect of two-photon absorption (TPA) on soliton

propagation in a nonlinear optical medium. It is demonstrated that nonlinear losses

due to TPA are exactly balanced by localized gain and induces the optical solitons in

nonlinear optical medium. We present a class of chirped soliton solutions in different

parameter regimes with corresponding chirp and gain profiles.

Chapter 4 shows the existence of solitary wave solutions for two nonlinear

systems in the presence of inhomogeneous conditions. In first section, we consider

the nonlinear reaction diffusion type equations with variable coefficients and ob-

tain propagating kink-type solitary wave solutions by using the auxiliary equation

method. The second section of this chapter deals with the study of dynamics of

the complex Ginzburg-Landau equation (CGLE) in the presence of ac-source. We

consider that external force is out of phase with the complex field and present

Lorentzian-type and kink-type soliton solutions for this model.

In conclusion, Chapter 5 discusses the results obtained in the preceding chap-

ters and provides a summary of key findings.



Bibliography

[1] S Strogatz. Nonlinear dynamics and chaos: With applications to physics, biol-

ogy, chemistry and engineering. Perseus Books Group, 2001.

[2] M Lakshmanan and S Rajaseekar. Nonlinear dynamics: Integrability, chaos

and patterns. Springer, 2003.

[3] NJ Zabusky and MD Kruskal. Interaction of ”solitons” in a collisionless plasma

and the recurrence of initial states. Physical Review Letters, 15(6):240, 1965.

[4] CS Gardner, JM Greene, MD Kruskal, and RM Miura. Method for solving the

Korteweg-de Vries equation. Physical Review Letters, 19:1095–1097, 1967.

[5] PD Lax. Integrals of nonlinear equations of evolution and solitary waves. Com-

munications on Pure and Applied Mathematics, 21(5):467–490, 1968.

[6] AB Shabat and VE Zakharov. Exact theory of two-dimensional self-focusing

and one-dimensional self-modulation of waves in nonlinear media. Soviet

Physics JETP, 34:62–69, 1972.

[7] R Hirota. Exact solution of the Kortewegde Vries equation for multiple colli-

sions of solitons. Physical Review Letters, 27(18):1192–1194, 1971.

[8] MJ Ablowitz, DJ Kaup, AC Newell, and H Segur. The inverse scattering

transform-fourier analysis for nonlinear problems. Studies in Applied Mathe-

matics, 53:249–315, 1974.

14



BIBLIOGRAPHY 15

[9] VE Zakharov. Stability of periodic waves of finite amplitude on the surface of a

deep fluid. Journal of Applied Mechanics and Technical Physics, 9(2):190–194,

1968.

[10] DH Peregrine. Water waves, nonlinear Schrödinger equations and their solu-

tions. The Journal of the Australian Mathematical Society, 25(01):16–43, 1983.

[11] RZ Sagdeev. Cooperative phenomena and shock waves in collisionless plasmas.

Reviews of Plasma Physics, 4:23, 1966.

[12] H Washimi and T Taniuti. Propagation of ion-acoustic solitary waves of small

amplitude. Physical Review Letters, 17(19):996, 1966.

[13] EA Kuznetsov, AM Rubenchik, and VE Zakharov. Soliton stability in plasmas

and hydrodynamics. Physics Reports, 142(3):103–165, 1986.

[14] A Hasegawa. An historical review of application of optical solitons for high

speed communications. Chaos: An Interdisciplinary Journal of Nonlinear Sci-

ence, 10(3):475–485, 2000.

[15] YS Kivshar and GP Agrawal. Optical solitons: from fibers to photonic crystals.

Academic Press, London, 2003.

[16] MH Anderson, JR Ensher, MR Matthews, CE Wieman, and EA Cornell. Ob-

servation of Bose–Einstein condensation in a dilute atomic vapor. Science,

269(5221):198–201, 1995.

[17] KB Davis, MO Mewes, MR Van Andrews, NJ Van Druten, DS Durfee,

DM Kurn, and W Ketterle. Bose-Einstein condensation in a gas of sodium

atoms. Physical Review Letters, 75(22):3969, 1995.
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Chapter 2

Controlled self-similar waves in

tapered graded-index waveguides

2.1 Introduction

There has been considerable interest, experimentally as well as theoretically, in the

use of tapered graded-index waveguides in optical communication systems. The rea-

son behind this is the potential applications achievable through the tapering effect.

It helps in maximizing light coupled into optical fibers, and integrated-optic devices

and waveguides by reducing the reflection losses and mode mismatch. Nowadays

work is being done on the study of the propagation of the self-similar waves in the

tapered graded-index waveguides. Self-similar waves are the waves which main-

tain their shape but the amplitude and width changes with the modulating system

parameters such as dispersion, nonlinearity, and gain. Hence, these waves are of

interest for various applications in ultra fast optics.

In this chapter, a large family of self-similar waves is presented by tailoring the

tapering function, through Riccati parameter, in a tapered graded-index nonlinear

waveguide amplifier. It has been achieved using a analytical approach, known as

isospectral Hamiltonian approach, which provides a handle to find analytically a
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wide class of tapering function and thus enabling one to control the self-similar

wave structure. First this analysis is done for bright and dark similaritons, and also

for self-similar Akhmediev breathers and rogue waves in a cubic nonlinear medium.

Then this formalism is extended to cubic-quintic nonlinear medium by presenting

the double-kink and Lorentzian-type similaritons. The discussion begins with the

wave propagation equation in optical waveguides, referred as nonlinear Schrödinger

equation (NLSE), which is followed by wave propagation in tapered waveguides

and also self-similar solutions for generalized NLSE. Then a short introduction of

isospectral Hamiltonian approach is given before presenting the main work.

2.2 Wave propagation in optical waveguides

In recent years, a lot of work has been done in the field of nonlinear optics for the ad-

vancement of optical technologies like telecommunications, information storage etc..

For a better understanding of nonlinear optical systems, it is necessary to study the

propagation of electromagnetic waves in optical waveguides. An optical waveguide

is a general structure in which a high refractive index region is surrounded by a

low refractive index dielectric material and the light propagates through the high

refractive index region by total internal reflection. The nonlinear equation governing

the light wave propagation in optical waveguide is the famous nonlinear Schrödinger

equation (NLSE) for the complex envelope of the light field. The NLSE in ideal Kerr

nonlinear medium is completely integrable using the inverse scattering theory and

hence all solitary wave solutions to NLSE are called as solitons. In most nonlinear

systems of physical interest, we have non-Kerr or other types of nonlinearities and

hence can be modelled by non-integrable generalized NLSE. The wave solutions for

non-integrable equations are generally referred as optical solitary waves to distin-

guish them from solitons in integrable systems. But in recent literature on nonlinear

optics, there is no nomenclature distinction and all solitary wave solutions in optics

are referred as optical solitons.
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2.2.1 Optical solitons

In nonlinear optics, the term soliton represents a light field which does not change

during propagation in an optical medium. The optical solitons have been the subject

of intense theoretical and experimental studies because of their practical applications

in the field of fiber-optic communications. These solitons evolve from a nonlinear

change in the refractive index of a material induced by the light field. This phe-

nomenon of change in the refractive index of a material due to an applied field is

known as optical Kerr effect. The Kerr effect, i.e. the intensity dependence of the

refractive index, leads to nonlinear effects responsible for soliton formation in an

optical medium [1].

The optical solitons can be further classified as being spatial or temporal de-

pending upon the confinement of light in space or time during propagation. The

spatial self-focusing (or self-defocusing) of optical beams and temporal self-phase

modulation (SPM) of pulses are the nonlinear effects responsible for the evolution

of spatial and temporal solitons in a nonlinear optical medium. When self-focusing

of an optical beam exactly compensate the spreading due to diffraction, it results

into the formation of spatial soliton, and a temporal soliton is formed when SPM

balances the effect of dispersion-induced broadening of an optical pulse. For both

soliton solutions, the wave propagates without change in its shape and is known as

self-trapped. Self-trapping of a continuous-wave (CW) optical beam was first discov-

ered in a nonlinear medium in 1964 [2]. But, these self-trapped beams were not said

to be spatial solitons due to their unstable nature. First stable spatial soliton was

observed in 1980 in an optical medium in which diffraction spreading was confined

in only one transverse direction [3]. The first observation of the temporal soliton

is linked to the nonlinear phenomenon of self-induced trapping of optical pulses in

a resonant nonlinear medium [4]. Later, temporal solitons was found in an optical

fiber both theoretically [5] and experimentally [6].
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2.2.2 Nonlinear Schrödinger equation: Derivation and

solutions

The basic equation governing the propagation of light field in optical waveguide is

known as the nonlinear Schrödinger equation (NLSE) [1], whose general form is

i
∂ψ

∂z
+ a1

∂2ψ

∂x2
+ a2|ψ|2ψ = 0. (2.1)

where ψ(z, x) is the complex envelope of the electric field, a1 is the parameter of

group velocity dispersion, a2 represents cubic nonlinearity. As its name suggests, Eq.

(2.1) is similar to the well-known Schrödinger equation of quantum mechanics. Here,

of course, it has nothing to do with quantum mechanics. Rather, it is just Maxwells

equations, adapted to study the field propagation in optical medium. However, the

analogy with quantum mechanics can be made by considering the nonlinear term as

analogous to a negative potential energy, which allows the possibility of self-focused

solutions.

The solutions represented by ψ(z, x) of Eq. (2.1) directly yield the spa-

tial/temporal form of the field as seen by an observer at the location z. The second

term in the equation, the second derivative of ψ(z, x), represents the effects of dis-

persion, whereas the third term in the equation corresponds to the nonlinear term.

The nonlinearity is based on the fact that the index of refraction is dependent on

the light intensity.

Derivation

The propagation of light wave in optical medium can be studied by using the uni-

fied theory of electric and magnetic fields given by James Clerk Maxwell in 1860s.

He gave the set of four equations, known as Maxwell’s equations, to describe the

relationship between four field vectors such as the electric field E, the electric dis-

placement D, the magnetic field H and the magnetic flux density B. Maxwell’s
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equations in vector forms are

∇ × E = −∂ B

∂ t
, (2.2)

∇ × H = J+
∂ D

∂ t
, (2.3)

∇ . D = ρ, (2.4)

∇ . B = 0, (2.5)

where J and ρ are free current and charge densities, respectively. In a non-magnetic

medium, such as dielectric material, the free charge in a medium is equal to zero,

that is J = 0 and ρ = 0, and the flux densities have the form

D = ϵ0E+P, (2.6)

B = µ0H, (2.7)

where P is the induced electric polarization in the medium, ϵ0 and µ0 are the per-

mittivity and permeability of free space, respectively.

The wave equation for the electric field associated with an optical wave prop-

agating into the medium can be derived by first taking the curl of Eq. (2.2) and

using the other relations:

∇2E− 1

c2
∂2 E

∂ t2
=

1

ϵ0c2
∂2 P

∂ t2
, (2.8)

where c is the speed of light in vacuum and c2 = 1
ϵ0µ0

.

The electric polarization is a vector field that represents the density of perma-

nent or induced electric dipole moments in a dielectric material. The polarization

induced in a dielectric material, when a material is placed in an external electric field

and its molecules gain electric dipole moment. This induced electric dipole moment

per unit volume of the dielectric material is known as the electric polarization of

the dielectric. Hence, the induced polarization in a nonlinear dielectric medium is
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related to the electric field by the following expression

P = ϵ0
[
χ(1) . E+ χ(2) . EE+ χ(3) . EEE+ .....

]
, (2.9)

where χ(i) is the i-th order susceptibility tensor. For linear dielectric materials, only

χ(1) contributes significantly as χ(1) = n2 − 1, where n is the refractive index of

material. The second order susceptibility tensor χ(2) is responsible for the second

harmonic generation and nonlinear wave mixing processes. But, we consider the

isotropic optical materials, that is a centrosymmetric material, for which χ(2) = 0.

The third order susceptibility tensor χ(3) is the lowest-order nonlinear effect which

give rise to very important nonlinear effect of intensity dependent refractive index

and other nonlinear phenomena such as third-order harmonic generation, four-wave

mixing.

Now assuming that the electric field is polarized in the y-axis, confined in the

x-axis and propagating along z-axis, the general solution of Eq. (2.8) can be written

as

E =
1

2
{u(z, x) exp[i(β0z − ω0t)] + c.c.} x̂ (2.10)

where β0 is the propagation constant given by β0 = k0n0 = 2πn0

λ
such that λ is

optical wavelength and ω0 is carrier frequency. Substituting Eq. (2.10) into the Eq.

(2.9), the induced polarization will take the form

P = ϵ0

(
χ(1) +

3

4
χ(3)|E|2

)
E. (2.11)

Now susceptibility χ = χl + χnl can be considered as combination of linear and

nonlinear contribution to polarization given by χl = χ(1) and χnl =
3
4
χ(3)|E|2. Hence,

due to this the refractive index of an optical material also depends on the intensity

of wave as

n = n0 + n2|E|2, (2.12)

where n0 is the linear coefficient of refractive index and n2 is the nonlinear or Kerr

coefficient of refractive index. For high light intensities, the refractive index deviates
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from linear dependance of intensity and in general can be written as

n = n0 + nnl(I), (2.13)

where nnl(I) represents the variation in the refractive index due to the light intensity

I = |E|2. For Kerr medium, nnl(I) = n2I and for cubic-quintic medium nnl(I) =

n2I + n4I
2.

Substituting Eq. (2.10) into Eq. (2.8), and assuming the slowly varying enve-

lope approximation (SVEA), the Eq. (2.8) reduces to NLSE

i
∂u

∂z
+

1

2β0

∂2u

∂x2
+ k0|u|2u = 0. (2.14)

Introducing the dimensionless variables

X =
x

w0

, Z =
z

LD

, U = (k0|n2|LD)
1/2u, (2.15)

where LD = β0 w
2
0 is the diffraction length, the dimensionless form of NLSE reads

[1]

i
∂U

∂Z
+

1

2

∂2U

∂X2
± |U |2U = 0, (2.16)

where the sign (±) depends on the type of nonlinearity, the negative sign for self-

defocusing case (i.e. for n2 < 0) and positive sign for self-focusing case (i.e. for

n2 > 0).

Solutions

In standard form, the NLSE can be written as

i
∂ψ

∂z
+

1

2

∂2ψ

∂x2
± |ψ|2ψ = 0, (2.17)

where sign + (-) corresponds to self-focusing (self-defocusing) nonlinearity. In 1971,

Zakharov and Shabat [7] showed that NLSE is completely integrable through the

inverse scattering transform. The NLSE has a class of exact localized solutions which
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have applications not only in nonlinear optics but also in the fields of hydrodynamics,

plasma studies, electromagnetism and many more. Here we have given expressions

of some localized solutions of NLSE which have been used further in this thesis.

(a) Bright and dark solitons

The NLSE has bright and dark solitons depending upon the sign of nonlinearity.

For self-focusing case, the NLSE admits bright solitons which decay to background

state at infinity. The general form of bright soliton for NLSE is given as [7]

ψ(z, x) = a sech [a(x− vz)] ei(vx+(a2−v2)z/2), (2.18)

where a represents the amplitude of soliton and v gives the transverse velocity of

propagating soliton. The intensity expression for bright soliton will take the form

IB = |ψ(z, x)|2

= a2 sech2 [a(x− vz)] . (2.19)

The evolution of bright soliton for NLSE is shown in Fig. 2.1 for typical values of a

and v.
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Figure 2.1: Evolution of bright soliton of the NLSE for a = 1 and v = 1.

For self-defocusing case, the NLSE have soliton solutions which do not vanish

at infinity called dark solitons. These solitons have a nontrivial background and, as
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name suggests, exist in the form of intensity dips on the CW background [8]. The

fundamental dark soliton for NLSE has the following general form [9]

ψ(z, x) = u0 [B tanh(u0B(x− Au0z)) + iA] e−iu2
0z, (2.20)

where u0 is CW background, and A and B satisfy the realation A2 + B2 = 1.

Introducing a single parameter ϕ, we have A = sinϕ and B = cosϕ such that angle

2ϕ gives the total phase shift across the dark soliton. The intensity expression for

dark soliton will take the form

ID = u20
[
cos2 ϕ tanh2(u0 cosϕ(x− u0 sinϕ z)) + sin2 ϕ

]
. (2.21)

Hence, u0 sinϕ represents the velocity of the dark soliton and cos2 ϕ gives the mag-

nitude of the dip at the center. The evolution of dark soliton for NLSE is shown in

Fig. 2.2 (a) for typical values of u0 and ϕ. For ϕ = 0, the velocity of dark soliton is

zero i.e. it is a stationary soliton and at the dip center intensity also drops to zero

(shown in Fig. 2.2 (b)), and hence it is called as black soliton. For other values of ϕ,

the intensity of soliton does not drop to zero and these are referred as gray solitons.
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Figure 2.2: (a) Evolution of dark soliton of the NLSE for u0 = 1 and ϕ = 0. (b)

Intensity plots at z = 0 for different values of ϕ. Curves A,B and C correspond to

ϕ = π/4, π/8 and 0 respectively.
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(b) Rational solutions

Apart from bell-shaped (bright) and kink-shaped (dark) solitons, the NLSE also ad-

mits rational solutions which are localized in both x and Z directions. These rational

solutions play an important role in the field of hydrodynamics as the self-focusing

NLSE also applicable to the theory of ocean waves. These solutions are also known

by the name of “rogue waves”,“freak waves”,“killer waves” related to the giant single

waves appearing in the ocean, with amplitude significantly larger than those of the

surrounding waves. They manifest from nowhere, are extremely rare, and disappear

without a trace [10]. In recent years, apart from hydrodynamics the study of rogue

waves has been extended to other physical systems, such as nonlinear fiber optics

[11, 12, 13] and Bose-Einstein condensates [14, 15]. In particular, the study of rogue

waves has gained fundamental significance in nonlinear optical systems, because it

opens the possibility of producing high intensity optical pulses. The first observation

of optical rogue solitons (the optical equivalent of oceanic rogue waves) in nonlinear

optical systems was reported by Solli et al. in 2007 [11]. The role of optical rogue

solitons in supercontinuum generation in fibers [16] and in the context of optical

turbulence [17] has been recently investigated.

The fundamental cause of rogue wave formation is modulation instability, which

makes the small amplitude waves grow into higher amplitude ones, resulting in the

formation of Akhmediev breathers (ABs) [18]. Subsequently, double and triple col-

lisions of these breathers lead to the creation of rogue waves, whose amplitudes are

two to three times higher than that of the average wave crest. ABs are the spa-

tially periodic solutions of the NLSE which consist of an evolving train of ultra-short

pulses. The AB solution of the NLSE is given by [10]

ψ(z, x) =
(1− 4a) cosh(βz) +

√
2a cos(px) + iβ sinh(βz)√

2a cos(px)− cosh(βz)
eiz, (2.22)

where a is a free parameter, and the coefficients β and p are related to a by:

β =
√

8a(1− 2a) and p = 2
√
1− 2a. The characteristics of AB depends on the

modulation parameter a. As the value of a increases, the separation between adja-
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cent peaks increases and the width of each individual peak decreases, as shown in

Fig. 2.3.
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Figure 2.3: (a) Intensity profiles for ABs of the NLSE for modulation parameter:

a = 0.25 and a = 0.45, respectively.

For the limiting case a→ 1/2, the AB solution reduces to the rational solution

known as rogue wave solution, first given by Peregrine [19] in 1983. The next-

order rational solution was proposed by Akhmediev et al. [10] in 2009, which gives

the possible explanation for the existence of high amplitude rogue waves. Indeed,

here is a hierarchy of rational solutions of the self-focusing NLSE with progressively

increasing central amplitude [20]. The basic structure of these rational solutions is

given by

ψ(z, x) =

[
1− K + iH

D

]
eiz, (2.23)

where K,H and D are the polynomials in z and x. For first-order rogue wave

solution, obtained by taking the limiting case a → 1/2 in AB solution, one can

obtain K = 4, H = 8z and D = 1 + 4z2 + 4x2. Thus the full solution reads

ψ(z, x) =

[
1− 4

1 + 2iz

1 + 4z2 + 4x2

]
eiz. (2.24)

The intensity expression for first-order rogue wave is given by

IR1 = 1 + 8
1 + 4z2 − 4x2

(1 + 4z2 + 4x2)2
. (2.25)
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The second-order rogue wave solution has the form given by Eq. (2.23) with K,H

and D given by

K =

(
χ2 + ζ2 +

3

4

)(
χ2 + 5ζ2 +

3

4

)
− 3

4
,

H = ζ

(
ζ2 − 3χ2 + 2(χ2 + ζ2)2 − 15

8

)
,

D =
1

3

(
χ2 + ζ2

)3
+

1

4

(
χ2 − 3ζ2

)2
+

3

64

(
12χ2 + 44ζ2 + 1

)
, (2.26)

And, the intensity expression for second-order rogue waves will take the form

IR2 =

(
D −K

D

)2

+

(
H

D

)2

. (2.27)

The intensity plots for first- and second-order rogue waves are shown in the Fig.

2.4.

HaL

-5
0

5
X

-2
-1

0
1

2

Z
0

5

10

IR1

HbL

-2
-1

0
1

2
X

-2
-1

0
1

2

Z
0

10

20

30

IR2

Figure 2.4: Intensity profiles for (a) first-order, and (b) second-order rogue waves

of the NLSE, respectively.

2.2.3 Tapered waveguides - Generalized NLSE

In recent years, the design and properties of the tapered optical waveguides have

been studied extensively both theoretically as well as experimentally [21]. The rea-

son behind this is the potential applications achievable through the tapering effect.

It helps in improving the coupling efficiency between fibers and waveguides by reduc-
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ing the reflection losses and mode mismatch [22]. Tapering also finds applications

for the phenomena which require longitudinally varying waveguide properties, for

instance, in highly efficient Raman amplification [23] and extended broadband su-

percontinuum generation [24].

The refractive index distribution inside the tapered graded index waveguide

can be written as [21]

n(x, z) = n0 + n1F (z)x
2 + n2|u|2, (2.28)

where the first two terms correspond to the linear part of refractive index and the

last term is Kerr-type nonlinearity. The function F (z) describes the geometry of ta-

pered waveguide along the waveguide axis. The quadratic variation of the refractive

index in transverse direction is a good approximation to the true refractive index

distribution, and is often known as lens-like medium. Such waveguides have applica-

tions in image-transmitting processes because they possess a very wide bandwidth.

The shape of a taper i.e. F (z) can be modelled appropriately depending upon the

practical requirements. A taper can be made by heating of one or more fibers up to

the material softening point and then stretching it until a desired shape has been

obtained. Here, we have studied the propagation of similaritons in two types of

tapered waveguides (a) sech2-type taper, and (b) parabolic taper. The parabolic

taper waveguide, given by F (z) = F0(1 + γz2) [25, 26], is the optimum shape for

fiber couplers which can be fabricated by the use of Ag-ion exchange in soda-lime

glass [27]. Recently, authors [21, 28, 13] have also worked on the wave propaga-

tion through sech2-type tapered waveguide by considering the lowest-order mode of

sech2-profile waveguide [29].

The propagation of beam through tapered graded-index nonlinear waveguide

amplifier is governed by generalized nonlinear Schrödinger equation (GNLSE)

i
∂u

∂z
+

1

2k0

∂2u

∂x2
+

1

2
k0n1F (z)x

2u− i(g(z)− α(z))

2
u+ k0n2|u|2u = 0, (2.29)

where u(x, z) is the complex envelope of the electrical field, g and α account for
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linear gain and loss, respectively, k0 = 2πn0/λ, λ being the wavelength of the

optical source generating the beam, n1 is the linear defocusing parameter (n1 > 0),

and n2 represents Kerr-type nonlinearity. The dimensionless profile function F (z)

can be negative or positive, depending on whether the graded-index medium acts as

a focusing or defocusing linear lens. Introducing the normalized variablesX = x/w0,

Z = z/LD, G = [g(z)− α(z)]LD, and U = (k0|n2|LD)
1/2u, where LD = k0w

2
0 is the

diffraction length associated with the characteristic transverse scale w0 = (k20n1)
−1/4,

Eq. (2.29) can be rewritten in a dimensionless form [21, 13],

i
∂U

∂Z
+

1

2

∂2U

∂X2
+ F (Z)

X2

2
U − i

2
G(Z)U ± |U |2U = 0. (2.30)

2.2.4 Self-similar waves

In some cases, the underlying equations governing the wave propagation in a physical

system are mathematically integrable and can be solved directly to obtain solitary

wave-type solutions, e.g. NLSE, KdV equation etc.. However, in the presence of

non-uniformities and gain/loss in the system, the evolution equations are more com-

plicated and can not be solved directly using integrable techniques. Recently, a new

mathematical technique, known as “symmetry reduction”, has been introduced to

obtain solutions of complex differential equations. In particular, the evolution of a

physical system often exhibits some form of symmetry such that the dynamics of

system at one time can be mapped onto its dynamics at some other time using a

suitable scaling transformation, known as “similarity transformation”. This trans-

formation led to the discovery of a new class of solutions called self-similar solutions.

These solutions obey relatively some scaling laws in such a way that their evolution

can be regarded as self-similar [30]. These self-similar solutions corresponds to the

self-similar waves propagation in a highly nonlinear medium which maintain their

shape but the amplitude and width changes with the modulating system parame-

ters such as dispersion, nonlinearity, and gain [31, 32]. Their temporal and spectral
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profile is independent of the input pulse profile, but are determined with the in-

put pulse energy and amplifier parameter. In comparison to optical solitons which

become unstable at high power, self-similar waves are most robust with increasing

intensity [33].

Although the study on self-similarity techniques is very common in the fields involv-

ing nonlinear physical phenomena such as hydrodynamics and plasma physics, but

yet these techniques has not been used widespread in the field of optics. Recently,

there has been a lot of interest in self-similar effects in the study of nonlinear wave

propagation in optical waveguide amplifiers [21, 31, 34, 35]. Waveguide amplifiers

play an important role in optical communications systems and high-power ultra-

fast transmission. The first experimental observation of self-similar pulses, known

as similaritons, was reported by Fermann et al. in a nonlinear fiber amplifier [34].

By analogy with the soliton behavior of solitary wave solutions, these self-similar

solutions are known as similaritons. Apart from fundamental interest in self-similar

waves (as they provide a new set of solutions to the NLSE with gain), it is ex-

pected that these solutions will also find applications in optical systems in both the

laboratory and in industry.

Mathematical approach

The functional form of the self-similar solution is invariant such that the solution

at one stage can be found from a solution at another stage using a similarity trans-

formation. Mathematically, self-similar solutions can be obtained by reformulating

the differential equation in terms of a certain combinations of the original variables,

known as a similarity variable [36]. It helps to solve a complicated partial differential

equation by recasting it into a reduced system of differential equations which can be

simplified easily. Exactly how this technique is carried out, depends on the specific

problem.
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2.3 An introduction to isospectral Hamiltonian

approach

From supersymmetric (SUSY) quantum mechanics, it is known that for a given

ground state wave function and energy, isospectral deformation of the Hamiltonian

can always be done [37]. For two isospectral Hamiltonians, the energy eigenvalue

spectrum is exactly same whereas the wave functions and their dependent quanti-

ties are different. The fact that such Hamiltonians exist has been known for a long

time from Gefland-Levitan approach or the Darboux procedure, but these meth-

ods are much complicated in comparison to isospectral Hamiltonian approach of

SUSY quantum mechanics. Thus, starting from an one-dimensional potential, one

can construct an one-parameter family of strictly isospectral potentials, that is the

potentials which have same eigenvalues, reflection and transmission coefficients as

of those for original potential. Before the advent of SUSY quantum mechanics, this

aspect was discussed by Infeld and Hull [38] and also by Mielnik [39] to construct

new potentials from a given potential. This formalism has been proved to be ad-

vantageous in various physical situations [40, 41, 42, 43]. Recently this approach

has been used to control the dynamical behavior of rogue waves in nonlinear fiber

optics [13, 44] and in BEC’s [15] .

Formalism

A single particle quantum Hamiltonian can be written as

H1 = − d2

dx2
+ V1(x), (2.31)

for h̄ = 2m = 1. Choosing ground state energy to be zero, the Schrödinger equation

for the ground state wavefunction ψ0(x) is

−d
2ψ0(x)

dx2
+ V1(x)ψ0(x) = 0, (2.32)
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so that potential V1(x) is of the form

V1(x) =
1

ψ0(x)

d2ψ0(x)

dx2
. (2.33)

We can factorize the Hamiltonian, given by Eq. (2.31), as follows

H1 = A†A, (2.34)

where A = d
dx
+Λ(x) and A† = − d

dx
+Λ(x). Here, A and A† are the SUSY operators

and Λ(x) is the superpotential given by

Λ(x) = − d

dx
[lnψ0(x)] . (2.35)

It allows us to identify V1(x) as

V1(x) = Λ2(x)− dΛ(x)

dx
. (2.36)

In SUSY theory, a SUSY partner Hamiltonian can be generated by reversing the

order of A and A† in H1, that is H2 = AA†. The new potential V2(x) corresponding

to SUSY partner Hamiltonian

H2 = − d2

dx2
+ V1(x), (2.37)

is

V2(x) = Λ2(x) +
dΛ(x)

dx
. (2.38)

The potentials V1(x) and V2(x) are known as SUSY partner potentials.

Now, following Mielnik [39], question can arise whether the factorization H2 =

AA† is unique or not, in the definition of the partner potential V2(x). Suppose H2

has another factorization as H2 = BB†, where B = d
dx
+Λ̂(x) and B† = − d

dx
+Λ̂(x).
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For superpotential Λ̂(x), the partner potential reads

V2(x) = Λ̂2(x) +
dΛ̂(x)

dx
. (2.39)

Comparing it with Eq. (2.38), the particular solution is Λ̂(x) = Λ(x). But, in order

to find the most general solution, let

Λ̂(x) = Λ(x) + ϕ(x), (2.40)

which yields
dϕ(x)

dx
+ 2Λ(x)ϕ(x) + ϕ2(x) = 0. (2.41)

This is a Riccati equation whose solution is

ϕ(x) =
ψ0

2(x)

c+
∫ x

−∞ ψ0
2(x′)dx′

, (2.42)

where c is constant of integration, known as Riccati parameter, and chosen in such

a way that ϕ(x) is non-singular.

Thus, the most general Λ̂(x) satisfying the Eq. (2.39) is

Λ̂(x) = Λ(x) +
ψ0

2(x)

c+
∫ x

−∞ ψ0
2(x′)dx′

. (2.43)

Hence, H2 = AA† = BB† but H = B†B is not equal to A†A rather it defines a

new class of isospectral Hamiltonians which have same energy spectrum as H1. The

corresponding one parameter family of isospectral potentials is given as

V̂1(x) = V1(x)− 2
d

dx

(
ψ0

2(x)

c+
∫ x

−∞ ψ0
2(x′)dx′

)
, (2.44)

which have the same SUSY partner potential V2(x). The normalized ground state
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wavefunction corresponding to the potential V̂1(x) reads

ψ̂0(x) =

√
c(c+ 1)ψ0(x)

c+
∫ x

−∞ ψ0
2(x′)dx′

. (2.45)

Thus, we have a class of potentials V̂1(x) which have exactly same energy spectrum

as that of V1(x).

2.4 Riccati parameterized self-similar waves in

sech2-type tapered waveguide

In this section, we have studied the GNLSE given by Eq. (2.30) and obtained a class

of self-similar solutions for sech2-type tapered waveguides. Serkin and his collabo-

rators, in a series of papers [45, 46], considered the GNLSE arising in the context

of Bose-Einstein condensates (BEC) and fiber optics, and obtained nonautonomous

1- and 2-soliton solutions using inverse scattering technique. Control of solitons in

BEC has been demonstrated in Ref. [47]. Ponomarenko and Agrawal [21] studied

the paraxial wave evolution in the tapered, graded-index nonlinear waveguide am-

plifier and obtained optical similaritons by reducing the GNLSE to standard NLSE

using similarity transformation. Later, Raju and Panigrahi [28] solved this equa-

tion in the presence of external source which describes the similariton propagation

through asymmetric twin-core fiber amplifiers. Recently, the self-similar rogue wave

solutions have also been explored for the GNLSE using similarity transformation

[15, 48, 49].

Here, we demonstrate that the intensity of self-similar waves can be made signifi-

cantly large, creating the possibility to produce highly energetic optical waves for

practical applications. This has been achieved by making use of the observation that

the mathematical structure of the equation governing the width of the self-similar

wave is similar to the Schrödinger equation of quantum mechanics, with a tapering

function as the potential. It enables one to analytically identify a large manifold
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of allowed tapering profiles with compatible gain functions. The allowed profiles

are governed by a free Riccati parameter c, which provides a control for tuning the

self-similar wave amplitude and width. The choice of its value changes the intensity

of the optical wave quite intensively from that of the original one.

2.4.1 Self-similar transformation

The propagation of beam through tapered graded-index nonlinear waveguide am-

plifier is governed by GNLSE [50]

i
∂U

∂Z
+

1

2

∂2U

∂X2
+ F (Z)

X2

2
U − i

2
G(Z)U ± |U |2U = 0. (2.46)

Eq. (2.46) has been solved for self-similar solutions by transforming it into standard

homogeneous NLSE, using the gauge and similarity transformation, together with

a generalized scaling with respect to the Z variable [21, 48],

U(X,Z) = A(Z)Ψ

[
X −Xc(Z)

W (Z)
, ζ(Z)

]
eiΦ(X,Z), (2.47)

where A,W and Xc are the dimensionless amplitude, width and center position of

the self-similar wave. The phase is given by

Φ(X,Z) = C1(Z)
X2

2
+ C2(Z)X + C3(Z), (2.48)

where C1(Z), C2(Z) and C3(Z) are, the parameters related to the phase-front cur-

vature, the frequency shift, and the phase offset, respectively, to be determined.

Now substituting Eqs. (2.47) and (2.48) into Eq. (2.46), one obtains the NLSE

i
∂Ψ

∂ζ
+

1

2

∂2Ψ

∂χ2
± |Ψ|2Ψ = 0. (2.49)

Here the amplitude, effective propagation distance, similarity variable, guiding-
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center position and phase are given respectively as

A(Z) =
1

W (Z)
, ζ(Z) = ζ0 +

∫ Z

0

dS

W 2(S)
,

χ(X,Z) =
X −Xc(Z)

W (Z)
, Xc(Z) = W (Z)

(
X0 + C02

∫ Z

0

dS

W 2(S)

)
,

Φ(X,Z) =
X2

2W

dW

dZ
+
C02X

W
− C2

02

2

∫ Z

0

dS

W 2(S)
, (2.50)

where C2(0) = C02, Xc(0) = X0, and we choose W (0) = 1. Further, the tapering

function, gain and similariton width W (Z) are related as

d2W/dZ2 − F (Z)W = 0, (2.51)

G(Z) = −d[lnW (Z)]/dZ. (2.52)

Interestingly, Eq. (2.51) can be observed as Schrödinger eigenvalue problem, by

identifying F (Z) as potential and W (Z) as corresponding wave function with zero

energy. As Schrödinger equation is exactly solvable for a variety of potentials, so

this identification enables us to study Eq. (2.46) for a variety of tapering profiles.

Moreover, using the fact that for a given ground state wave function and energy,

isospectral deformation of the Hamiltonian can always be done, as described in

Section 2.3, one can write a class of width and tapering functions using Eqs. (2.44)

and (2.45) as

Ŵ (Z) =

√
c(c+ 1) W (Z)

c+
∫ Z

−∞W 2(S)dS
, (2.53)

F̂ (Z) = F (Z)− 2
d

dZ

(
W 2(Z)

c+
∫ Z

−∞W 2(S)dS

)
, (2.54)

where c is an integration constant, known as Riccati parameter, which is to be chosen

in a way so as to avoid singularities. Hence, the modified gain function becomes

Ĝ(Z) = −d[ln Ŵ (Z)]/dZ. (2.55)
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As stated earlier, transformation (2.47) reduces Eq. (2.46) to the exactly integrable

homogeneous NLSE, so for all the solutions of NLSE the self-similar solutions of

GNLSE can be obtained.

2.4.2 Bright and dark similaritons

The exact form of the bright and dark solitons for Eq. (2.49) with +ve and -ve signs

of Kerr nonlinearity, respectvely, can be found from the Eqs. (2.19) and (2.21).

Hence, the intensity expression of the bright similariton for GNLSE (with +ve Kerr

nonlinearity in Eq. (2.46)) is given by

IB =
a2

W 2
sech2[a(χ− vζ)], (2.56)

where a and v are the soliton amplitude and velocity. In the similar way, the intensity

expression of the dark similariton for GNLSE with -ve sign of Kerr nonlinearity is

given by

ID =
u20
W 2

[cos2(ϕ) tanh2(Θ) + sin2(ϕ)], (2.57)

where u0 is the background amplitude and ϕ governs the grayness and speed of the

dark soliton. The soliton phase Θ is given as

Θ(Z,X) = u0 cos(ϕ)[χ− u0ζ sin(ϕ)]. (2.58)

The intensity profiles of bright and dark similaritons is studied by Ponomarenko

et al. [21] for sech2-type tapered waveguide. The main theme of this work is to

study the controlling of these similaritons through modified tapering given by Eq.

(2.54). Hence, armed with the modified functions F̂ (Z), Ŵ (Z) and Ĝ(Z), one can

discuss the effect of these new functions on the intensity profiles of the bright and

dark similaritons given by Eqs. (2.56) and (2.57), respectively, taking an explicit

example of sech2-type tapering.
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For general form of sech2-type tapering, given by

F (Z) = n2 − n(n+ 1) sech2Z, (2.59)

where n is a positive integer, the width and gain profiles from Eqs. (2.51) and (2.52)

are

W (Z) = sechnZ, (2.60)

G(Z) = n tanhZ. (2.61)

For the present analysis, the work has been done for two cases n = 1 and 2.

Case (i) : For n = 1, Eqs. (2.59)-(2.61) reads

F (Z) = 1− 2 sech2Z, W (Z) = sech Z, G(Z) = tanhZ. (2.62)
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Figure 2.5: Profiles of tapering, width and gain, respectively, for n = 1.

In Fig. 2.5, the profiles for tapering, width and gain is shown for the expres-

sions given by Eq. (2.62). For this choice of tapering, the evolution of bright and

dark similaritons is shown in Fig. 2.6 [32].

Now, using Eq. (2.62) in Eq. (2.53), a class of width profile Ŵ (Z) correspond-
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Figure 2.6: Evolution of bright and dark similaritons for tapering profile given by

Eq. (2.62). The parameters used in the plots are C02 = 0.3, X0 = 0, ζ0 = 0, v =

0.3, a = 1, u0 = 1 and ϕ = 0.

ing to generalized tapering profiles can be written as

Ŵ (Z) =

√
c(c+ 1) sech Z

c+ (1 + tanhZ)
. (2.63)
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Figure 2.7: Profiles of tapering, width and gain, respectively, for n = 1. Curve

A corresponds to profile given by Eq. (2.62) and curves B, C, D, E correspond

to generalized class for different values of c; c = 0.1, c = 0.3, c = 1, c = 10

respectively.

In the similar way, F̂ (Z) and Ĝ(Z) can also be found from Eqs. (2.54) and

(2.55). In order to see the effect of c, we have plotted F̂ (Z), Ŵ (Z) and Ĝ(Z) for

different values of c (see Fig. 2.7). It can be seen from the figure that for large value

of Riccati parameter the generalized profiles, of all the three functions, approach to

the profiles given by Eq. (2.62). For c = 1 and c = 10, the tapering function F̂ (Z)
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is initially negative and crosses zero at some value of Z, implying that the linear

inhomogeneity of the waveguide is changing from focusing to defocusing type. But

for c < 0.414, F̂ (Z) is always positive which means the linear inhomogeneity of the

waveguide is of the defocusing type. This effect is shown in Fig. 2.7 for c = 0.3

and c = 0.1. The similariton width increases with increase in c. The amplitude

of the required normalized gain is found to be inversely proportional to the Riccati

parameter and tends to unity asymptotically.
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Figure 2.8: Evolution of bright similariton for generalized tapering for c = 0.1, 1

and 10, respectively. The parameters used in the plots are C02 = 0.3, X0 = 0, ζ0 =

0, v = 0.3 and a = 1.

Now using Eq. (2.63), the intensity of optical bright and dark similaritons

for F̂ (Z) can be found from Eqs. (2.56) and (2.57). Here, the evolution of bright

similariton is shown in Fig. 2.8 for Ŵ (Z) given by Eq. (2.63) for c = 0.1, 1 and 10,

respectively. It is clear from the plots that the intensity is more for smaller values

of c and as value of c increases it decreases and goes back to the profile without the

Riccati generalization, as shown in Fig. 2.6(a). Similar effect has also been observed
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in the case of dark similaritons (see Fig. 2.9).
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Figure 2.9: Evolution of dark similariton for generalized tapering for c = 0.1, 1

and 10, respectively. The parameters used in the plots are C02 = 0.3, X0 = 0, ζ0 =

0, u0 = 1 and ϕ = 0.

Case (ii) : For n = 2, Eqs. (2.59)-(2.61) reads

F (Z) = 4− 6 sech2Z, W (Z) = sech2Z, and G(Z) = 2 tanhZ. (2.64)

In Fig. 2.10, the profiles for tapering, width and gain is shown for the expressions

given by Eq. (2.64). For this choice of tapering, the evolution of bright and dark

similaritons is shown in Fig. 2.11. Substituting W (Z) = sech2Z into Eq. (2.53), a

class of Ŵ (Z) can be obtained as

Ŵ (Z) =

√
c(c+ 1) sech2Z

c+ 1
3

(
2 +

(
2 + sech2Z

)
tanhZ

) . (2.65)
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Figure 2.10: Profiles of tapering, width and gain, respectively, for n = 2.
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Figure 2.11: Evolution of bright and dark similaritons for tapering profile given

by Eq. (2.64). The parameters used in the plots are C02 = 0.3, X0 = 0, ζ0 = 0, v =

0.3, a = 1, u0 = 1 and ϕ = 0.

In a similar way, F̂ (Z) and Ĝ(Z) can also be found from Eqs. (2.54) and

(2.55). In order to see the effect of c, we have plotted F̂ (Z), Ŵ (Z) and Ĝ(Z) for

different values of c (see Fig. 2.12). It can be seen from the figure that for large value

of Riccati parameter the generalized profiles, of all the three functions, approach to

the profiles given by Eq. (2.64). In this case, F̂ (Z) is always positive i.e. the linear

inhomogeneity of the waveguide is of the defocusing type for c ≤ 0.333.

Now using Eq. (2.65), the intensity of optical bright and dark similaritons for F̂ (Z)

can be found from Eqs. (2.56) and (2.57). Here we have shown the evolution of

bright and dark similaritons (see Fig. 2.13 and 2.14) for Ŵ (Z) given by Eq. (2.65)
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Figure 2.12: Profiles of tapering, width and gain, respectively, for n = 2. Curve

A corresponds to profile given by Eq. (2.64) and curves B, C, D, E correspond

to generalized class for different values of c; c = 0.1, c = 0.3, c = 1, c = 10

respectively.
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Figure 2.13: Evolution of bright similariton for generalized tapering for c = 0.1, 1

and 10, respectively. The parameters used in the plots are C02 = 0.3, X0 = 0, ζ0 =

0, v = 0.3 and a = 1.

for c = 0.1, 1 and 10, respectively. For small values of c, Fig. 2.13 and 2.14 depict

the self-compression of bright and dark similaritons. As the value of c is reduced
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more, the similaritons undergoes rapid self-compression.
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Figure 2.14: Evolution of dark similariton for generalized tapering for c = 0.1, 1

and 10, respectively. The parameters used in the plots are C02 = 0.3, X0 = 0, ζ0 =

0, u0 = 1 and ϕ = 0.

2.4.3 Self-similar Akhmediev breathers

For +ve sign of Kerr nonlinearity, Eq. (2.49) can also be solved for Akhmediev

breathers (ABs) using Eq. (2.22). Hence, the intensity expression of the self-similar

AB for GNLSE (with +ve Kerr nonlinearity in Eq. (2.46)), taking a = 1/2 in Eq.

(2.22), is given by

IAB =
1

W 2

[
cos2(

√
2χ) + 2 sinh2 ζ(

cos(
√
2χ)−

√
2 cosh ζ

)2
]
. (2.66)

The intensity plot for self-similar AB for sech2-type tapering profile with n = 1,
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given by Eq. (2.62), is shown in Fig. 2.15.
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Figure 2.15: Intensity profile of self-similar AB for tapering profile given by Eq.

(2.62). The parameters used in the plots are C02 = 0.3, X0 = 0, ζ0 = 0, u0 = 0.3

and ϕ = 0.
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Figure 2.16: Intensity profiles of self-similar AB for generalized tapering for n = 1,

c = 0.1, 1 and 10, respectively. The parameters used in the plots are C02 =

0.3, X0 = 0 and ζ0 = 0.

Now using Eq. (2.63), the intensity of optical self-similar AB, for generalized
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class of tapering i.e. F̂ (Z), can be found from Eq. (2.66). Here, we have shown (see

Fig. 2.16) the intensity plots for self-similar ABs for different values of c; c = 0.1, 1

and 10, respectively.

2.4.4 Self-similar rogue waves

For +ve sign of Kerr nonlinearity, Eq. (2.49) also have rogue wave solutions given by

general solution Eq. (2.23). The intensity expression of the self-similar first-order

rogue wave for GNLSE, using Eq. (2.25), can be written as

IR1 =
1

W 2

[
1 + 8

1 + 4ζ2 − 4χ2

(1 + 4ζ2 + 4χ2)2

]
. (2.67)
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Figure 2.17: Intensity profiles of self-similar first- and second-order rogue waves

for tapering profile given by Eq. (2.64). The parameters used in the plots are

C02 = 0.3, X0 = 0, ζ0 = 0, u0 = 0.3 and ϕ = 0.

Similarly, the intensity expression of the self-similar second-order rogue wave

for GNLSE can also be found from Eq. (2.27) as

IR2 =
1

W 2

[(
D −K

D

)2

+

(
H

D

)2
]
, (2.68)
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with K,H and D given by

K =

(
χ2 + ζ2 +

3

4

)(
χ2 + 5ζ2 +

3

4

)
− 3

4
,

H = ζ

(
ζ2 − 3χ2 + 2(χ2 + ζ2)2 − 15

8

)
,

D =
1

3

(
χ2 + ζ2

)3
+

1

4

(
χ2 − 3ζ2

)2
+

3

64

(
12χ2 + 44ζ2 + 1

)
, (2.69)

The intensity plots for self-similar first- and second-order rogue waves for sech2-

type tapering profile with n = 2, given by Eq. (2.64), are shown in Fig. 2.17.

Using Eq. (2.65), the intensity of optical self-similar first- and second-order rogue

waves, for generalized class of tapering i.e. F̂ (Z) for n = 2, can be found from Eqs.

(2.67) and (2.68). Here, we have shown (see Figs. 2.18 and 2.19) the intensity plots

for different values of c; c = 0.1, 1 and 10, respectively.
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Figure 2.18: Intensity profiles of self-similar first-order rogue waves for generalized

tapering for n = 2, and c = 0.1, 1 and 10, respectively. The parameters used in

the plots are C02 = 0.3, X0 = 0 and ζ0 = 0.
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Figure 2.19: Intensity profiles of self-similar second-order rogue waves for general-

ized tapering for n = 2, and c = 0.1, 1 and 10, respectively. The parameters used

in the plots are C02 = 0.3, X0 = 0 and ζ0 = 0.

2.5 Riccati parameterized self-similar waves in

sech2-type tapered waveguide with cubic-

quintic nonlinearity

Generally, as we discussed earlier, the wave propagation in graded-index nonlinear

waveguide can be modelled by generalized nonlinear Schrödinger equation with cubic

nonlinearity [32, 28]. However, when the intensity of the optical beam exceeds

a certain value, in order to produce ultrashort pulses, a higher-order nonlinearity

term arises due to nonlinear correction to the refractive index of medium. In this

case, the refractive index distribution inside the waveguide will be

n(z, x) = n0 + n1F (z)x
2 + n2α(z)|u|2 + n4β(z)|u|4, (2.70)
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where the first two terms correspond to the linear part of refractive index and the

last two terms correspond to cubic and quintic nonlinearities. The function F (z)

describe the geometry of tapered waveguide along the waveguide axis. The prop-

agation of beam through tapered graded-index nonlinear waveguide amplifier with

cubic-quintic nonlinearities is governed by inhomogeneous cubic-quintic nonlinear

Schrödinger equation (CQNLSE)

i
∂U

∂Z
+

1

2

∂2U

∂X2
+ F (Z)

X2

2
U + α(Z)|U |2U + β(Z)|U |4U − i

2
G(Z)U = 0. (2.71)

Apart from nonlinear optics, Eq. (2.71) also arises in the context of Bose-Einstein

condensates where quintic nonlinearity corresponds to an effective three-body in-

teraction [51]. Recently, Dai et al. [52] and He et al. [53] investigated the self-

similar bright and dark similaritons for inhomogeneous CQNLSE using similarity

transformations. Motivated by their work, we have explored interesting double-kink

solutions (also known as wide localized solitons [54]) for this equation. It has been

found that the width of double-kink dark similaritons can be controlled by varying a

wave parameter. Further we reported the existence of algebraic bright similaritons

which are necessarily of the Lorentzian-type.

Employing similarity transformation, i.e. substituting Eq. (2.47) into Eq.

(2.71), one obtains the standard CQNLSE as

i
∂Ψ

∂ζ
+

1

2

∂2Ψ

∂χ2
+ a1|Ψ|2Ψ+ a2|Ψ|4Ψ = 0, (2.72)

where the effective propagation distance, similarity variable, amplitude, guiding-

center position and phase are given respectively as

ζ(Z) = ζ0 +

∫ Z

0

dS

W 2(S)
, χ(X,Z) =

X −Xc(Z)

W (Z)
,

A(Z) =
1

W 2(Z)
, Xc(Z) = W (Z)

(
X0 + C02

∫ Z

0

dS

W 2(S)

)
,

Φ(X,Z) =
X2

2W

dW

dZ
+

C02X

W
− C2

02

2

∫ Z

0

dS

W 2(S)
, (2.73)
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with C2(0) = C02, Xc(0) = X0 and W (0) = 1. Further, the tapering function, gain

and cubic-quintic nonlinearity coefficients are related to similariton width as

d2W/dZ2 − F (Z)W = 0, G(Z) = −d[lnW (Z)]/dZ, (2.74)

α(Z) = a1 W
2(Z), β(Z) = a2 W

6(Z). (2.75)

Now, in order to find exact soliton-like solutions of Eq. (2.72), we have chosen the

following ansatz

Ψ(ζ, χ) = ρ(ξ) ei[θ(ξ)−kζ], (2.76)

where ξ = (χ − uζ) is the travelling coordinate. Substituting Eq. (2.76) into Eq.

(2.72) and separating out the real and imaginary parts of the equation, one obtain

the coupled equations in ρ and θ. One of these equations can be completely solved

to obtain θ′(ξ) = u. Using this, the other equation can be reduced to

ρ′′ + (2k + u2)ρ+ 2a1ρ
3 + 2a2ρ

5 = 0. (2.77)

This elliptic equation is known to admit a variety of solutions such as periodic, kink

and solitary wave-type-solutions. In general, all travelling wave solutions of Eq.

(2.77) can be expressed in a generic form by means of the Weierstrass ℘-function

[55]. In the most general case, this equation can be mapped to ϕ6 field equation to

obtain double kink-type [56] as well as bright and dark soliton solutions [57]. It is

interesting to note that if coefficient of linear term in ρ is zero i.e. 2k+u2 = 0, then

Eq. (2.77) admits Lorentzian-type solutions [58].

2.5.1 Double-kink similaritons

In the most general case, when all the coefficients have nonzero values, one can

obtain double-kink type soliton solutions for Eq. (2.77) of the form [56]

ρ(ξ) =
p sinh(qξ)√
ϵ+ sinh2(qξ)

, (2.78)
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where a1 = q2

p2

(
2ϵ−3
ϵ

)
, a2 = − 3q2

2p4

(
ϵ−1
ϵ

)
, and 2k + u2 = −q2

(
ϵ−3
ϵ

)
. These relations

can be solved to fix the wave parameters p, q and k. Here ϵ is a free parameter which

control the width of soliton solution. The amplitude profile for soliton solution given

by Eq. (2.78) is shown in Fig. 2.20 for different values of ϵ. From figure, it is clear

that the interesting ‘double-kink’ feature of the solution exists only for sufficiently

large values of ϵ. One can also point out that as value of ϵ changes, it only effects

the width of wave but amplitude of wave remains same.
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Figure 2.20: Amplitude profiles for double-kink soliton given by Eq. (2.78) for

different values of ϵ. The parameters used in the plots are a1 = 1, a2 = −1 and

u = 1.2. Solid line corresponds to ϵ = 1000, p = 0.866 and q = 0.612. Dotted

line corresponds to ϵ = 100, p = 0.868 and q = 0.618. Dashed line corresponds to

ϵ = 10, p = 0.891 and q = 0.680.

The general expression of the intensity of double-kink similariton for Eq. (2.71)

is given as

IDK = |U(X,Z)|2 = A2(Z)|Ψ(ζ, χ)|2

=
1

W 4(Z)

(
p2 sinh2(q(χ− uζ))

ϵ+ sinh2(q(χ− uζ))

)
. (2.79)

In order to gain further insight into the dynamical behavior of double-kink

similariton, one needs a functional form of tapering and width functions. Consid-

ering sech2-type tapering for n = 1 given by Eq. (2.62), one can find the intensity

of double-kink similariton from Eq. (2.79). In Fig. 2.21, the intensity profiles for

double-kink dark similaritons are shown for different values of ϵ.
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Figure 2.21: Evolution of double-kink dark similaritons of Eq. (2.71) for different

values of ϵ, ϵ = 1000, ϵ = 100 and ϵ = 10 respectively. The parameters used in the

plots are C02 = 0.3, X0 = 0 and ζ0 = 0. The values of other parameters are same

as mentioned in the caption of Fig. 2.20.

Now using Eq. (2.63), the intensity of double-kink similaritons, for generalized

class of tapering i.e. F̂ (Z), can be found from Eq. (2.79). Here, the evolution of

double-kink similaritons is shown (see Fig. 2.22) for different values of c; c = 0.4, c =

1, c = 10 respectively.

2.5.2 Lorentzian-type similaritons

For the parametric condition k = −u2

2
, Eq. (2.77) can be solved to obtain very

interesting algebraic soliton solutions. In particular, for a1 < 0 and a2 > 0, the

solution of Eq. (2.77) is of the following form

ρ(ξ) =
1√

M +Nξ2
, (2.80)
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Figure 2.22: Evolution of double-kink dark similaritons of Eq. (2.71) for generalized

tapering for n = 1, and c = 0.4, 1 and 10, respectively. The parameters used in the

plots are ϵ = 100, C02 = 0.3, X0 = 0 and ζ0 = 0. The values of other parameters

are same as mentioned in the caption of Fig. 2.20.

where M = −2a2
3a1

and N = −a1. The amplitude profile for soliton solution given

by Eq. (2.80) is shown in Fig. 2.23. The expression of the intensity of these
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Figure 2.23: Amplitude profile for Lorentzian-type soliton given by Eq. (2.80) for

a1 = −1, a2 = 1 and u = 1.2.
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Lorentzian-type similaritons for Eq. (2.71) will be of the following form

I2 =
1

W 4(Z)

(
−3a1

2a2 + 3a21(χ− uζ)2

)
. (2.81)

Now using sech2-type tapering for n = 1 given by Eq. (2.62), the intensity of

Lorentzian-type similaritons can be found from Eq. (2.81) which is shown in Fig.

2.24.
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Figure 2.24: Evolution of Lorentzian-type bright similariton of Eq. (2.71) for

a1 = −1, a2 = 1 and u = 1.2. The other parameters used in the plot are C02 =

0.3, X0 = 0 and ζ0 = 0.

Again using Eq. (2.63), the intensity of Lorentzian-type similaritons, for gen-

eralized class of tapering i.e. F̂ (Z), can be found from Eq. (2.81). The evolution

of Lorentzian-type similaritons is shown (see Fig. 2.25) for different values of c;

c = 0.4, c = 1, c = 10 respectively.

2.6 Self-similar waves in parabolic tapered

waveguide

Other type of possible tapering is the parabolic tapering, which finds applications

in a number of passive and active optical devices for the propagation of guided

wave through them. For instance, parabolic tapering has been proved advantageous
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Figure 2.25: Evolution of Lorentzian-type bright similaritons of Eq. (2.71) for

generalized tapering for n = 1, and c = 0.4, 1 and 10, respectively. The parameters

used in the plots are a1 = −1, a2 = 1, u = 1.2, C02 = 0.3, X0 = 0 and ζ0 = 0.

for mode coupling as it reduces the length of multi-mode interference device [59,

60, 61]. Apart from this, it also finds applications in fiber-based sensors [62, 63].

Here, we study the propagation of similaritons through perimetrically controlled

parabolically tapered wave guide and also looking to the effects of these parameters

on the intensity of similaritons. For parabolic tapered fiber the functional form of

F (Z) is given as

F (Z) = −2α(1− 2αz2), (2.82)

where, α is a positive real number. For choice of α the tapered profile changes its

width as shown in Fig. 2.26. The width and gain profiles from Eqs. (2.51) and

(2.52) can be written as

W (Z) = exp(−αZ2), (2.83)
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and

G(Z) = 2αZ. (2.84)
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Figure 2.26: Profiles of tapering, width and gain, respectively, for different values

of taper parameter α. Curves A, B, C corresponds to profile for α = 0.1, 0.5 and 1,

respectively.
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Figure 2.27: Evolution of bright similariton for parabolic tapering for different

values of taper parameter α: (a) α = 0.1, (b) α = 0.5, and (c) α = 1. The

parameters used in the plots are C02 = 0.3, X0 = 0, ζ0 = 0, v = 0.3 and a = 1.
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In Fig. 2.26, we depict the behavior of tapering profile, width, and gain func-

tions along the propagation distance for different values of α. Variation of gain

coefficient depends on various factors, such as temperature, wavelength fluctuation,

pump power etc.. Under ideal conditions if these conditions are controlled properly

then parabolic tapering results into linear increase in the gain, which in turn act as

an amplifier, can help the propagation of the light beam even in the anti-guiding

situation.
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Figure 2.28: Evolution of dark similariton for parabolic tapering for different values

of taper parameter α: (a) α = 0.1, (b) α = 0.5, and (c) α = 1. The parameters

used in the plots are C02 = 0.3, X0 = 0, ζ0 = 0, u0 = 1 and ϕ = 0.

Now using Eq. (2.83), the intensity of optical bright and dark similaritons for

parabolic tapering can be found from Eqs. (2.56) and (2.57). Here we have depicted

the evolution of bright and dark similariton (see Figs. 2.27 and 2.28) for α = 0.1, 0.5

and 1, respectively. It is clear from the plots that the intensity of similaritons

undergoes self-compression as the taper expansion coefficient α increases.
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Lastly, one can extend the isospectral deformation technique to tailor the

parabolic tapering profile also, but due to the complex mathematical structure,

it becomes too difficult to handle it analytically.

2.7 Conclusion

2.7.1 Summary and discussion

In this chapter, a systematic analytical approach is presented to control the dy-

namical behavior of self-similar waves for generalized nonlinear Schrödinger equa-

tion (GNLSE), given by (2.46), governing the wave propagation through tapered

graded-index waveguide amplifier. This has been accomplished by first reducing

the GNLSE into a standard NLSE using similarity transformation and then invok-

ing the isospectral Hamiltonian approach to obtain a family of self-similar solutions

containing bright and dark similaritons, self-similar Akhmediev breathers (ABs) and

self-similar rogue waves [44].

First, we have studied the wave propagation assuming sech2-type tapering

profile, F (Z) = n2 − n(n + 1) sech2Z for n = 1 and n = 2, in a cubic nonlinear

medium. From the Figs. 2.5 and 2.10, one can see that for n = 2 the variation in

the magnitude of tapering profile is more as compared to n = 1 profile, which also

effects the corresponding width and gain functions. For n = 2, the width profile

approaches its asymptotic value more rapidly and hence the intensity of bright and

dark similaritons is more Fig. 2.11 for same range of Z as used for n = 1 Fig. 2.6.

Further, for both cases, a class of allowed tapering, width and gain profiles has been

identified for different values of Riccati parameter c, using Eqs. (2.53) to (2.55), as

shown in Figs. 2.7 and 2.12 for n = 1 and n = 2, respectively. Here for each case, it

is clear that all tapering profiles, corresponding to different values of c, have same

asymptotic value but have different magnitude variation for small range of Z. It

means this generalization gives us freedom to generate a class of tapering profiles in

a same asymptotic range. This imposes a significant effect on the width profile that
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it approaches the asymptotic value more recently as value of c decreases. Due to

this, the intensity of bright and dark similaritons experience rapid self-compression

as value of c decreases, shown in Figs. 2.8 and 2.9 for n = 1, and Figs. 2.13 and 2.14

for n = 2. The same analysis has also been carried out for the self-similar ABs Eq.

(2.66), and first- and second-order rogue waves Eqs. (2.67) and (2.68), respectively.

The generalized intensity profiles have been shown for self-similar ABs Fig. 2.16

and for self-similar rogue waves Figs. 2.18 and 2.19. Hence, the intensity of these

rational solutions can be made sufficiently large for small values of c, paving the way

for practical applications of energetic rogue waves in nonlinear optics.

Further, the study has been done for wave propagation in a tapered graded-

index waveguide with cubic-quintic nonlinearity and report the existence of double-

kink dark similaritons Eq. (2.79) and Lorentzian-type bright similaritons Eq. (2.81).

The width of double-kink similaritons can be controlled by varying a wave param-

eter as shown in Fig. 2.21. The generalized intensity profiles for these similaritons

is shown in Figs. 2.22 and 2.25 and it is found that they undergoes more rapid

self-compression with small values of c as compared to the similaritons in a cubic

nonlinear medium. It is because here the amplitude of similariton varies as in-

versely proportional to the square of the width function unlike it varies inversely

proportional to the width function linearly in a cubic nonlinear medium.

We have also explored the existence of self-similar waves in a parametrically

controlled parabolic tapered waveguide, given by F (Z) = −2α(1 − 2αz2) where α

is a taper parameter. It is found that α has a remarkable effect on the intensity

of bright similaritons Fig. 2.27 and also on dark similaritons Fig. 2.28, as both

undergoes self-compression with increasing value of taper parameter α.

Most part of the work, presented here, is appeared in the Refs. [44, 50].

2.7.2 Concluding remark

In conclusion, employing the isospectral Hamiltonian approach one can obtain a

class of tapering profile which leads to rapid self-compression of self-similar waves.
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Interestingly, the intensity of self-similar waves can be made very large, thus paving

the way for experimental realization of highly energetic waves. These results are

quite general and can be obtained for any tapering profile. The choice of sech2-

type tapered waveguide was made for illustrative purposes. Owing to the exact

nature of these results, we hope that procedure described here can help in modeling

the tapered profiles that find practical applications in optical telecommunication

systems. Apart from it, this approach can also be used to control the dynamics

of self-similar waves in Bose-Einstein condensate through the modulation of time

dependent trapping potential. We construct a family of self-similar waves, related

through a Riccati parameter, in quasi one-dimension Gross-Pitaevskii equation with

time-varying parameters [15].
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Chapter 3

Chirped solitons in an optical gain

medium with two-photon

absorption

3.1 Introduction

Optical solitons are a subject of intense research owing to their potential applications

in high speed communications [1] and all-optical processing [2, 3]. In many optical

applications, it is desirable to reduce the pulse power required to form a soliton,

particularly for switching applications. The switching devices are very useful in

connecting input and output ports. In order to reduce the required power and the

switching threshold, one can use materials with high nonlinear index coefficients than

that of silica. However, in many cases the increased nonlinear index coefficient is

accompanied by an enhanced nonlinear absorption coefficient of the material, which

corresponds to two-photon absorption (TPA). It is therefore important to study the

optical wave propagation in the presence of TPA. In this work, we have considered

the effect of TPA in nonlinear optical medium and obtained chirped bright and

dark solitons supported by localized gain. The chirped solitons attracted a lot of

attention because of their practical applications in optical communication systems

71
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in the terms of pulse compression. It is observed that inhomogeneous gain exactly

balance the losses due to TPA, which results into soliton solution for arbitrary value

of TPA coefficient [4]. The existence of double-kink and fractional-transform solitons

have been reported for this model. Interestingly, the width of double-kink solitons

and their corresponding chirp can be controlled by modulating the gain profile. The

chapter begins with the introduction of chirped optical solitons and the process of

two-photon absorption. Then a short overview of the work done on this problem

is presented. Finally, considering modified form of nonlinear Schrödinger equation,

a class of soliton solutions will be presented in different parameter regimes with

corresponding chirp and gain profiles.

3.2 Chirped solitons

Nonlinear pulse propagation in optical medium is governed by nonlinear Schrödinger

equation (NLSE) which is completely integrable and allows for either bright or dark

solitons depending on the signs of dispersion or nonlinearity. These conventional

solitons are chirp free pulses because the chirp produced by group velocity dispersion

is balanced by the chirp produced by the Kerr nonlinearity [5]. However, if, in

addition, one includes the gain/loss, higher order or variable coefficient terms in

NLSE then chirped solitons are possible in the optical medium [6, 7, 8]. The chirp

of an optical pulse is usually understood as the time dependence of its instantaneous

frequency and can be found as the rate of change of phase of pulse. It means that

if a pulse has a phase ϕ(z, t) then its chirp frequency is given by

δω(t) = −∂ϕ
∂t
. (3.1)

The chirp play an important role in the subsequent pulse evolution. The chirped

solitons are formed due to the growth of initially present chirp in the pulse, in

contrast to the zero chirp in the case of the conventional solitons. Desaix et al. [9]

studied the effect of the linear and nonlinear chirp on the subsequent development
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of pulses. They have found that the properties of chirped solitons depend not only

on the amplitude, but also on the form, of the initial chirp. The case of linear

chirp frequency was first investigated by Hmurcik et al. [10] for a sech-shaped pulse

with quadratic variation of phase in time. G.P. Agrawal [11] studied the pulse

propagation in doped fiber amplifier and obtained soliton solutions with nonlinear

chirping. Afterwards a lot of work has been done on the existence of chirped solitons

in nonlinear optical systems [6, 7, 8, 12]. The chirped solitons have been utilized to

achieve efficient chirp and pedestal free pulse compression or amplification [12, 13].

Hence, chirped pulses are useful in the design of optical devices such as optical fiber

amplifiers, optical pulse compressors and solitary wave based communication links

[6, 14]. Apart from this, chirped solitons also find applications in the generation of

ultrahigh peak power pulses [15], ultrafast nonlinear spectroscopy [16] and coherent

control of high-order harmonics [17].

3.3 An overview of the process of two-photon

absorption

Two-photon absorption (TPA) is the process by which a molecule or material si-

multaneously absorbs either a pair of photons from a single beam of light or two

single photons form two beams. First of all this process was described by Maria

Göppert-Mayer in 1931 [18]. As a result of this process, two photons are absorbed

from the light field and molecule is excited to a high energy state. The transition

probability for the TPA process depends on the square of the intensity of the light

used for excitation. In Fig. 3.1, a schematic energy level diagram is shown for the

excitation of a molecule from the ground state g to an excited state f , by the ab-

sorption of two photons. The photons are either from same beam of light having

same energy E1 (degenerate case, Ef = 2E1), or from different beams having the

different energies E1 and E2 (non-degenerate case, Ef = E1 + E2).

As TPA is proportional to the square of the intensity of light, it reduces the
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Figure 3.1: Energy level diagram for the process of two-photon absorption.

power required to form a soliton. Due to this, TPA find applications in all-optical

switching [19, 20, 21] and optical data processing [22, 23, 24, 25]. TPA effects

are more prominent in the materials which have more refractive index than that

of silica. Hence, TPA are likely to become important in semiconductor-doped and

lead silicate fibers [26]. The probability that a material will experience TPA when

exposed to a light depends on the intrinsic properties of the material. Hence, TPA

is useful in spectroscopy to probe the molecular properties [27, 28]. Apart from

it, this process also helps in studying the light-matter interactions and to generate

novel classical effects. As a result, TPA is also useful in various nonlinear and

quantum optical phenomena such as in ultrafast photodetection [29], fiber lasers

[30], nonlinear mirrors [31], optical parametric oscillators [32], generation of single

photons [33], and quantum nonlinear effects [34].

3.4 Background of the problem

The effect of TPA on optical (temporal and spatial) solitons was first studied nu-

merically by Silberberg in 1990 [35]. He considered the NLSE in the presence of

TPA, given as

iuz +
1

2
uss + (1 + iK)|u|2u = 0, (3.2)
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where u is the normalized amplitude, z and s are the normalized propagation dis-

tance and transverse coordinate (time or space), respectively, and K is the normal-

ized TPA coefficient, defined as K = β
2kn2

. Here, k is the free space wave vector,

β and n2 are the intensity dependent absorption and refractive index coefficients,

respectively. As, it is clear that wave propagation is highly perturbed in the range

of K ≈ 1, hence Silberberg studied the effect of weak TPA coefficient on soliton

propagation. It was found that the amplitude of fundamental soliton decreases adi-

abatically with the broadening of soliton under the action of weak TPA. However,

depending upon the soliton power and strength of TPA, the higher-order solitons

split up into two or more fundamental solitons with equal amplitudes but with dif-

ferent propagation angles. Later, these results are verified experimentally, see Ref.

[36]. The splitting of higher-order solitons into fundamental solitons was described

as due to the sequence of the amplitude jumps which eventually leads to a structural

bifurcation [37]. Motivated by the fact that loss and gain can be cancel each other

to form a stable solution, the authors have found approximate slow solitary wave

solutions, until the soliton behavior become significantly deformed, in the presence

of linear gain [38]. In 1993, Agrawal [39] considered the effects of TPA on the pulse

propagation in a fiber amplifier and concluded that an amplified chirped pulse splits

into several chirped solitons whose number and peak power depends on the am-

plifier parameters. Later, this effect was studied in the presence of linear gain by

adopting Rayleigh’s dissipation function approach in the framework of variational

formalism and found that pulse shape is distorted with the distance for increas-

ing TPA coefficient [40]. During the last few years, the study on the emergence of

optical pattern supported by localized gain has grown steadily. There have been

reported the stable solitons for cubic complex Ginzburg-Landau equation [41] and

periodic lattices [42]. Recently, Kartashov et al. [43, 44] have shown the existence of

asymptotic soliton solutions supported by localized gain in the presence of TPA in

a cubic nonlinear medium. Motivated by this work, we have obtained analytically

exact chirped soliton solutions supported by localized gain in the presence of TPA

[4]. We reported the existence of some new soliton solutions, like double-kink and
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fractional-transform solitons, for this model.

3.5 Modified nonlinear Schrödinger equation and

soliton solutions

Incorporating the effects of two-photon absorption and inhomogeneous gain, the

nonlinear Schrödinger equation can be modified to [4]

iuz = −1

2
utt − σ|u|2u− iK|u|2u+ ig(t)u, (3.3)

where u is the normalized amplitude, z and t are the normalized propagation dis-

tance and time (or space, for spatial solitons) coordinate, respectively. For temporal

solitons σ = 1 always, and for spatial solitons σ = 1 (σ = −1) represents the fo-

cusing (defocusing) media, respectively. Here, K is normalized TPA coefficient and

g(t) is normalized gain.

The value of TPA coefficient depends on the properties of material. For silica based

fibers TPA coefficient has the value K << 1, but for semiconductor doped glasses

or other high index materials K ≈ 1. As an example, K has the value 0.01 for lead

silicate fibers [26] and 0.1 for As2S3 glasses (for Ref. see [39]). From earlier works,

it is clear that soliton propagation is highly perturbed in the range of K ≈ 1, but

for better operation of all-optical processes it is necessary to limit the value of K

up to the order of unity [19]. In this work, the localized gain profiles have been

shown, in order to exactly balance the losses due to TPA, for different ranges of

TPA coefficient, i.e. for K = 0.01 and K = 0.5.

To start with, we have chosen the following form for complex field

u(z, t) = ρ(t) ei(ϕ(t)+γz), (3.4)

where ρ and ϕ are the real functions of t and γ is the propagation constant. The

corresponding chirp is given by δω(t) = − ∂
∂t
[ϕ(t) + γz] = −ϕt(t). Substituting Eq.
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(3.4) in Eq. (3.3) and separating out the real and imaginary parts of the equation,

we arrive at the following coupled equations in ρ and ϕ,

ρtt − 2γρ− ϕ2
tρ+ 2σρ3 = 0 (3.5)

and

2ϕtρt + ϕttρ+ 2Kρ3 − 2g(t)ρ = 0. (3.6)

To solve these coupled equations, one can choose the ansatz

ϕt = c1 + c2ρ
2. (3.7)

Hence, chirping is given as δω(t) = −(c1+c2ρ
2), where c1 and c2 denote the constant

and nonlinear chirp parameters, respectively. It means chirping of wave is directly

proportional to the intensity of wave. Using ansatz Eq. (3.7), Eqs. (3.5) and (3.6)

reduces to

ρtt = (2γ + c21)ρ+ (2c1c2 − 2σ)ρ3 + c22ρ
5, (3.8)

g(t) = c1
ρt
ρ
+ 2c2 ρρt +Kρ2. (3.9)

The elliptic equation given by Eq. (3.8) can be mapped to ϕ6 field equation to

obtain a variety of solutions such as periodic, kink and solitary wave type solutions

[8]. In general, all travelling wave solutions of Eq. (3.8) can be expressed in a generic

form by means of the Weierstrass ℘ function [45]. In this work, we report only those

soliton-like solutions for which gain profile, given by Eq. (3.9), remains localized.

For c2 = 0, Eq. (3.8) reduces to well known cubic elliptic equation for which

non-chirped soliton solutions can be found easily. Here, we studied Eq. (3.8) for

different parameter conditions and obtained chirped soliton solutions. The reported

solutions consist various soliton solutions like double-kink, fractional -transform,

bell and kink-type solitons. For double-kink and bell-type solitons, we consider the

case c1 = 0 because for non-zero values of c1 the corresponding gain will no longer

be localized.
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3.5.1 Double-kink solitons

Eq. (3.8) admits double-kink solutions of the form [46]

ρ(t) =
m sinh(nt)√
ϵ+ sinh2(nt)

, (3.10)

where m =
√

2γ(2ϵ−3)
σ(ϵ−3)

, n =
√

2γϵ
ϵ−3

, c2 =

√
2(m2σ−γ)

m2 and c1 = 0. The choice c1 = 0

has been made in order to avoid the singularities in gain profile. Here, ϵ is a free

parameter which controls the width of soliton solutions. The interesting double-kink

feature of the solution is prominent for large values of ϵ. Now, for m, n and c2 to

be real numbers, ϵ should be always greater than 1 and never be equal to 3/2 and

3. Depending upon the model parameter, solutions are possible for some constraint

conditions on ϵ and γ :

• for σ = −1, ϵ should lie between 1 < ϵ < 3/2 with negative values of γ.

• for σ = +1, ϵ can take any value either in the region 3/2 < ϵ < 3 with negative

γ or ϵ > 3 with positive value of γ.

For solution given in Eq. (3.10), the gain will be of the following form

g(t) =
m2
(
K sinh2(nt)

(
ϵ+ sinh2(nt)

)
+ c2nϵ sinh(2nt)

)
(ϵ+ sinh(nt)2)2

, (3.11)

and the chirping will be

δω(t) = −c2 m
2 sinh2(nt)

ϵ+ sinh2(nt)
. (3.12)

The variation of gain, amplitude and chirp for different values of ϵ is shown in

Fig. 3.2. The parameters used in the plots are σ = 1, γ = 10 and K = 0.5. One

can point out that as the value of ϵ changes, there is a small change in the gain

profile which in turn have significant effect on the amplitude and chirp of double-

kink solution. Hence, one can observe that the double-kink feature of the wave is

more prominent for a gain medium with large values of ϵ, and different gain medium
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effects only the width of the double-kink wave whereas the amplitude of the wave

always remains same. From the plot of chirp, it is clear that it has a maximum at

the center of the wave and saturates at the some finite value with time.
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Figure 3.2: (a) Gain, (b) amplitude, and (c) chirp profiles for double-kink solitons

for different values of ϵ, ϵ = 5000 (thick line), ϵ = 500 (dashed line) and ϵ = 50

(dotted line). The other parameters used in the plots are σ = 1, γ = 10 andK = 0.5.

From the expressions of amplitude, gain and chirp Eqs. (3.10)-(3.12), it is

clear that TPA coefficient K has no effect on amplitude and chirp of wave, whereas

it has significant effect on the gain expression. Hence, for different values of K,

only the gain profile is modified which results a localized solution. In Fig. 3.3, the

gain profile is shown for different values of K, K = 0.5 and K = 0.01. The other
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parameters used in the plots are ϵ = 500, σ = 1 and γ = 10. From the plots, it

is clear that the gain profile is transversally localized and has more amplitude for

large values of K.
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Figure 3.3: Gain profile for double-kink solitons for K = 0.5 (thick line) and K =

0.01 (dashed line). The parameters used in the plots are ϵ = 500, σ = 1 and γ = 10.

3.5.2 Fractional-transform solitons

For the parametric condition c1c2 = σ, Eq. (3.8) can be solved for very interesting

fractional-transform solitons. To accomplish this, one can substitute ρ2 = y in Eq.

(3.8) to obtain the following elliptic equation:

y′′ + b1y
3 + b2y + c0 = 0, (3.13)

where b1 = −(8/3)c22, b2 = −4(2γ + c21) and c0 is integration constant. It is shown

here that this elliptic equation connects to the well-known elliptic equation f ′′ ±

af ± bf 3 = 0, where a and b are real, using a fractional transformation [47]

y(t) =
A+Bf 2(t)

1 +Df 2(t)
. (3.14)

Our main aim is to study the localized solutions, we consider the case where

f = cn(t,m) with modulus parameter m = 1, which reduces cn(t) to sech(t). One
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can see that Eq. (3.8) connects y(t) to the elliptic equation, provided AD ̸= B, and

the following conditions should be satisfied for the localized solution

b2A+ b1A
3 + c0 = 0, (3.15)

2b2AD + b2B + 4(B − AD) + 3b1A
2B + 3c0D = 0, (3.16)

b2AD
2 + 2b2BD + 4(AD −B)D + 6(AD −B) + 3b1AB

2 + 3c0D
2 = 0, (3.17)

b2BD
2 + 2(B − AD)D + b1B

3 + c0D
3 = 0. (3.18)

The set of Eqs. (3.15) to (3.18) can be solved consistently for the unknown param-

eters A,B,D and for a particular value of c0. The generic profile of the solution

reads

y(t) =
A+B sech2t

1 +D sech2t
. (3.19)

And, ρ(t) can be written as

ρ(t) =

√
A+B sech2t

1 +D sech2t
. (3.20)

Since the analytical form of solution is known, a simple maxima-minima analysis

can be done to distinguish parameter regimes supporting dark and bright soliton

solutions [47]. In this case, when AD < B one gets a bright soliton, whereas if

AD > B then a dark soliton exists.

For soliton solution given in Eq. (3.20), the chirping is given by

δω(t) = −
(
c1 + c2

A+B sech2t

1 +D sech2t

)
, (3.21)

The amplitude and chirp profiles for fractional-transform soliton are shown in Figs.

3.4(a) and 3.4(b) respectively for σ = 1, c1 = 1, c2 = 1 and γ = −10. For these

values, the various unknown parameters found to be A = 5.427, B = 18.351, D =

3.381 and c0 = 13.817. Here, solution is of the form of bright soliton and has a

small amplitude over a finite background. For this case, chirping is minimum at the

center of the wave and is dominant away from the center.
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Figure 3.4: (a) Amplitude, and (b) chirp profiles for fractional-transform bright

soliton for σ = 1, c1 = 1, c2 = 1 and γ = −10.

The corresponding gain will be of the following form

g(t) =
(AD −B)sech2t tanh t

1 +D sech2t

(
c1

A+B sech2t
+

2c2

1 +D sech2t

)
+K

(
A+B sech2t

1 +D sech2t

)
.

(3.22)

The profiles of localized gain are shown in Fig. 3.5 for different values of TPA

coefficient with σ = 1, γ = −10, c1 = 1 and c2 = 1. Here also it can be seen that

the amplitude of localized gain depends on the value of TPA coefficient.
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Figure 3.5: Gain profiles for fractional-transform solitons for, (a) K = 0.01 and (b)

K = 0.5. The other parameters used in the plots are σ = 1, c1 = 1, c2 = 1 and γ =

−10.
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3.5.3 Bell and kink-type solitons

Bell-type solitons

For c1 = 0 and γ < 3
8

(
σ
c2

)2
, Eq. (3.9) have bright solitons of the bell shaped [48]

ρ(t) =
p√

1 + r cosh(qt)
, (3.23)

where q = 2
√
2γ, r =

√
1− 8γc22

3σ2 and p = 2
√

γ
σ
. Hence, these bell-type solitons

exist only for σ = 1, and q, r and p to be real numbers. The corresponding chirping

will take the form

δω(t) = − c2 p
2

1 + r cosh(qt)
. (3.24)

The amplitude and chirp profiles for bell-type soliton are shown in Figs. 3.6(a) and

3.6(b), respectively. The parameters used in the plots are σ = 1 and c2 = 2. For

these values, γ should be less than 3/32. It is clear from the figure that chirping for

the bright soliton has a minimum at the center of the wave.
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Figure 3.6: (a) Amplitude, and (b) chirp profiles for bell-type bright soliton for

σ = 1, γ = 3/64 and c2 = 2.

The gain profile for this case is given by

g(t) =
2Kp2(1 + r cosh(qt))− 2 c2 p

2qr sinh(qt)

2(1 + r cosh(qt))2
. (3.25)
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The plot for inhomogeneous gain is shown in Fig. 3.7 for different values of TPA

coefficient with σ = 1 and c2 = 2. Here also gain is transversally localized and

saturates at some finite value as the time approaches its asymptotic value.
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Figure 3.7: Gain profiles for bell-type solitons forK = 0.5 (thick line) andK = 0.01

(dashed line). The other parameters used in the plots are σ = 1, γ = 3/64 and c2 =

2.

Kink-type solitons

If c2 =
σ

c1−
√

4
3(2γ+c21)

, then Eq. (3.9) admits kink and anti-kink type solitons as [48]

ρ±(t) = p
√
1± tanh(qt), (3.26)

where q =
√
2γ + c21, p =

√
2γ+c21

(σ−c1c2)
. On the basis of these conditions, solutions

are possible for some constraint conditions on c1 and γ :

• for σ = +1, either c21 > −8γ with negative values of γ or c21 > −2γ with

positive values of γ.

• for σ = −1, c21 should lie between −2γ < c21 < −8γ with negative values of γ.

The corresponding chirping for ρ+(t) solution is given by

δω+(t) = −
(
c1 + c2p

2(1 + tanh(qt))
)
, (3.27)
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The amplitude and chirp profiles for kink-type soliton are shown in Figs. 3.8(a) and

3.8(b) respectively for σ = 1, c1 = 1 and γ = 10. For these parameters, c2 comes

out to be −0.23. Here chirp associated with the wave also have kink-like behavior.

Hence, the gain for ρ+(t) solution will be of the form

g+(t) = −1

2
qc1(−1 + tanh(qt)) + p2

(
K + qc2sech

2(qt) +K tanh(qt)
)
. (3.28)
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Figure 3.8: (a) Amplitude, and (b) chirp profiles for kink-type soliton. The param-

eters used in the plots are σ = 1, c1 = 1 and γ = 10.

-1.0 -0.5 0.0 0.5 1.0
-15
-10
-5

0
5

10
15

t

G
ai

n

Figure 3.9: Gain profiles for kink-type solitons for K = 0.5 (thick line) and K =

0.01 (dashed line). The parameters used in the plots are σ = 1, c1 = 1 and γ = 10.

The plot for localized gain is shown in Fig. 3.9 for different values of TPA

coefficient with σ = 1, c1 = 1 and γ = 10. From the plot, it is clear that amplitude
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of gain depends on the value of TPA coefficient.

3.6 Conclusion

In this work, it is demonstrated that nonlinear losses due to TPA are exactly bal-

anced by localized gain and induces the optical solitons in nonlinear medium, and

reported the existence of chirped double-kink, fractional-transform, bell and kink-

type soliton solutions. The parameter domain is delineated in which these optical

solitons exist. The width of double-kink solitons can be controlled by modulating

the gain profile. Interestingly, fractional-transform solutions supports both bright

or dark solitons depending on model parameters. Further, bell and kink-type soli-

tons are found to exist in this system for different choice of parameters. The chirp

related to solitons has also been identified and found that it is directly proportional

to the intensity of wave. The amplitude of localized gain is directly proportional

to the value of TPA coefficient and saturates at some finite value as the retarded

time approaches its asymptotic value. We hope that these chirped optical solitons

supported by localized gain may find useful for pulse compression or amplification

in various nonlinear optical processes accompanied by TPA.



Bibliography

[1] A Hasegawa. Soliton-based ultra-high speed optical communications. Pramana-

Journal of Physics, 57(5-6):1097–1127, 2001.

[2] EM Wright. All-optical switching using solitons. Optical and Quantum Elec-

tronics, 24(11):3, 1992.

[3] SV Serak, NV Tabiryan, M Peccianti, and G Assanto. Spatial soliton all-optical

logic gates. IEEE Photonics Technology Letters, 18(12):1287–1289, 2006.

[4] A Goyal, V Sharma, and CN Kumar. Optical solitons supported by localized

gain in the presence of two-photon absorption. In International Conference on

Fibre Optics and Photonics. OSA Technical Digest (online), Optical Society of

America, 2012.

[5] YS Kivshar and GP Agrawal. Optical solitons: from fibers to photonic crystals.

Academic Press, London, 2003.

[6] VI Kruglov, AC Peacock, and JD Harvey. Exact self-similar solutions of the

generalized nonlinear Schrödinger equation with distributed coefficients. Phys-

ical Review Letters, 90(11):113902, 2003.

[7] J Wang, L Li, and S Jia. Exact chirped gray soliton solutions of the nonlin-

ear Schrödinger equation with variable coefficients. Optics Communications,

274(1):223–230, 2007.

[8] Alka, A Goyal, R Gupta, CN Kumar, and TS Raju. Chirped femtosecond

solitons and double-kink solitons in the cubic-quintic nonlinear Schrödinger

87



88 BIBLIOGRAPHY

equation with self-steepening and self-frequency shift. Physical Review A,

84(6):63830, 2011.

[9] M Desaix, L Helczynski, D Anderson, and M Lisak. Propagation properties

of chirped soliton pulses in optical nonlinear kerr media. Physical Review E,

65(5):56602, 2002.

[10] LV Hmurcik and DJ Kaup. Solitons created by chirped initial profiles in coher-

ent pulse propagation. Journal of the Optical Society of America, 69(4):597–604,

1979.

[11] GP Agrawal. Optical pulse propagation in doped fiber amplifiers. Physical

Review A, 44(11):7493, 1991.

[12] K Senthilnathan, K Nakkeeran, Q Li, and PKA Wai. Pedestal free pulse com-

pression of chirped optical solitons. Optics Communications, 285(6):1449–1455,

2012.

[13] YH Chuang, DD Meyerhofer, S Augst, H Chen, J Peatross, and S Uchida.

Suppression of the pedestal in a chirped-pulse-amplification laser. Journal of

the Optical Society of America B, 8(6):1226–1235, 1991.

[14] JD Moores. Nonlinear compression of chirped solitary waves with and without

phase modulation. Optics Letters, 21(8):555–557, 1996.

[15] P Maine, D Strickland, P Bado, M Pessot, and G Mourou. Generation of

ultrahigh peak power pulses by chirped pulse amplification. IEEE Journal of

Quantum Electronics, 24(2):398–403, 1988.

[16] ETJ Nibbering, DA Wiersma, and K Duppen. Ultrafast nonlinear spectroscopy

with chirped optical pulses. Physical Review Letters, 68(4):514, 1992.

[17] DG Lee, JH Kim, KH Hong, and CH Nam. Coherent control of high-order

harmonics with chirped femtosecond laser pulses. Physical Review Letters,

87(24):243902, 2001.



BIBLIOGRAPHY 89
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Chapter 4

Study of inhomogeneous nonlinear

systems for solitary wave solutions

4.1 Introduction

In this chapter, we have considered two nonlinear systems in the presence of in-

homogeneous conditions and obtained solitary wave solutions for them. First, a

prototype inhomogeneous model is studied which describes the interaction between

reaction mechanism, convection effect and diffusion process. The reaction-diffusion

equations arises in many areas, such as flow in porous media, heat conduction in

plasma, combustion problems, liquid evaporation, population genetics etc. The

most of nonlinear physical phenomena are described by nonlinear reaction-diffusion

(NLRD) equations with variable coefficients because external factors make the den-

sity and/or temperature change in time. The exact solitary wave solutions have

been obtained for NLRD equations with time-dependent coefficients of convection

and reaction terms using auxiliary equation method. The effect of variable coeffi-

cients is studied on physical parameters (amplitude and velocity) of solitary wave

solutions.

Second, the complex Ginzburg-Landau equation (CGLE) has been investigated

in the presence of ac-source. It is a well-known nonlinear equation in the field of
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nonlinear science, which describes various nonlinear physical and chemical phenom-

ena. Although, CGLE is a well studied dynamical system, the exact solutions of

ac-driven CGLE are rarely appeared in the literature. We have explored fractional

transform solutions of ac-driven complex Ginzburg-Landau equation, in which there

is a phase difference between the external driver and the solutions. The reported

solutions are necessarily of the Lorentzian-type solitons and also kink-type solitons.

4.2 Nonlinear reaction diffusion equations with

variable coefficients

Reaction diffusion (RD) equations appear in many branches of science and engi-

neering. These equations have attracted considerable attention, as it can be used

to model the evolution systems in real world. So far, a lot of studies like travelling

eaves, chaotic dynamics, pattern formation etc., has been done on RD systems both

theoretically and experimentally. Exact travelling wave solutions, specially solitary

wave-type solutions, to nonlinear reaction diffusion (NLRD) equations plays an im-

portant role in the qualitative description of many phenomena such as flow in porous

media [1], heat conduction in plasma [2], chemical reactions [3], population genetics

[4], image processing [5] and liquid evaporation [6]. The solitary wave solutions to

NLRD equations are particularly interesting because experimental findings suggest

that reaction diffusion systems may carry spatially well localized solitary patterns

that behave like particles and retain their identity while interacting [7, 8].

4.2.1 NLRD equation: Derivation and variants

RD equation describe the evolution of a system under the influence of diffusion and

reaction. In the assembly of particles, for example cells, bacteria, chemicals, animals

and so on, each particle moves in random way. This microscopic irregular movement

results in some macroscopic regular motion of the group of particles which is called

diffusion process. The gross movement is not a simple diffusion, but one have to
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consider the interaction between the particles and environment, which results the

production of new particles. This constitutes the reaction process. Time evolution

of a system under these two effects can be written as

qt = Dqxx +R(x), (4.1)

where q(x, t) represents the concentration of the substance, D is diffusion coefficient,

R(x) represents the reaction term. The study of these equations becomes even more

interesting for nonlinear reaction term, because the balance between diffusion and

nonlinear reaction term may results to the existence of solitary wave solutions.

Derivation of RD equation

It is very hard to get a macroscopic behavior from the knowledge of individual mi-

croscopic behavior, so we drive a continuum model equation for the global behavior

in terms of the particle density, concentration or population. Assuming c(x, t) as

number of particles at time t per unit spatial dimension (area, volume, length ac-

cording to the dimension which we are using), the total concentration at the spatial

position x of the system is given by∫
x

c(x, t)dx.

Here the functional form c(x, t) is well behaved i.e. evolution of system is continuous

and differentiable. This assumption seems to be quite reasonable for the system with

large concentration. The diffusion equation can be obtained easily from this when

combined with the phenomenological Fick’s first law. This law states that the

magnitude of flux flow from the regions of the high concentration to the regions of

the low concentration is proportional to the concentration gradient, that is

J(x, t) = −D(x)
∂c

∂x
, (4.2)

where J(x, t) is the diffusion flux which gives the amount of the substance that will

flow through a small area during a small time interval. D is the diffusion coefficient

and c represents the concentration.
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Now, if the rate of change of the number of particles due to physical or chemical

reasons is given by f(x, t, c), then according to the Balance law

∂

∂t

∫
x

c(x, t)dx =

∫
s

J.ds+

∫
x

f(x, t, c(x, t))dx, (4.3)

where the term on left hand side represents the rate of change of total concentration,

the first term on right hand side gives the total flux and the second term represents

the net growth of concentration inside the region x.

Applying the Divergence theorem to the surface integral in Eq. (4.3), one obtains

∫
s

J.ds =

∫
x

∇.J(x, t)dx. (4.4)

Now using Eqs. (4.2) and (4.4) in Eq. (4.3), it reads

∫
x

∂

∂t
c(x, t)dx =

∫
x

D(x)
∂2

∂x2
c(x, t) +

∫
x

f(x, t, c(x, t))dx. (4.5)

Since the choice of region is arbitrary, it can be written as

∂

∂t
c(x, t) = D(x)

∂2

∂x2
c(x, t) + f(x, t, c(x, t)). (4.6)

This equation is known as the RD equation. Here first term on right side is the

diffusion term which describes the movement of the particles and f(x, t, c(x, t)) is

the reaction term which describes the various reactions occurring in the system. The

diffusion coefficient D(x) is not constant in general but considering approximately

homogeneous system, one can assume D(x) = D, and rewriting c(x, t) as u(x, t) Eq.

(4.6) reads
∂u

∂t
= D

∂2u

∂x2
+ f(u). (4.7)

Now, the reaction term would be either linear or nonlinear depending upon the

system. If it is a linear term then it can be solved easily using variable separable

method. But, if reaction term is nonlinear then these nonlinear reaction diffusion

(NLRD) equations can not be solved using direct methods. The two well known
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examples of the nonlinear reaction terms are the quadratic and cubic nonlinearity.

1. Reaction terms with quadratic nonlinearity as

f(u) = k1u(1− u). (4.8)

Hence Eq. (4.7) reads

ut = Duxx + k1u(1− u). (4.9)

This equation models the propagation of a mutant gene with u(x, t) denoting

the density of advantageous. It is also appeared in chemical kinetics, popula-

tion dynamics, flame propagation, autocatalytic chemical reactions and brow-

nian motion process. In the past century, this equation has become a basis

for a variety of equations of spatial spread. For example, the reaction term

in an ecological context may represent the birth-death process, with u as the

population density, with logistic population growth

f = ru(1− u

k
), (4.10)

where r is the linear reproduction rate and k is the carrying capacity of the

environment. The resulting NLRD equation will be

∂u

∂t
= D

∂2u

∂x2
+ ru(1− u

k
). (4.11)

This equation is known as the Fisher equation [9] after Fisher (1937) who

proposed the one dimensional model for the spread of a advantageous gene in

a population.

2. Reaction terms with cubic nonlinearity:

f(u) = k2u(1− u2). (4.12)

The corresponding NLRD equation is known as Fisher-Kolmogorov (FK) equa-

tion [10], which arises in the study of pattern formation in bistable systems

[11].
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NLRD equations with convection term

In a reaction diffusion system, generally, it is assumed that field is fixed i.e. spatial

transport is only through diffusion. But, in a real world phenomena, the field itself

usually moves. Hence, in many processes, in addition to diffusion, motion can also be

due to advection or convection with some kind of back reaction, such as the spread

of a favored gene, ecological competition, and so on [12]. Nonlinear convection terms

arise naturally, for example, in the motion of chemotactic cells [13]. From a physical

point of view convection, diffusion and reaction processes are quite fundamental to

describe a wide variety of problems in physical, chemical, biological sciences [14]. A

general form of such NLRD equation with convection term is

ut + v umux = Duxx + f(u), (4.13)

where v is convection coefficient and m is a real number. The few examples of the

nonlinear equations involving the convection term are given below.

• Burgers equation

It is one of the simplest nonlinear equation representing the theory of turbu-

lence described by the interaction of convection and diffusion [15]

ut + v uux = Duxx. (4.14)

It appears in various areas of applied mathematics such as modeling of fluid

dynamics, turbulence, boundary layer behavior, shock wave formation and

traffic flow.

• Burgers-Fisher equation

Combining Burgers and Fisher equation, the resulting equation is known as

Burger-Fisher equation [16], which describes the interaction of reaction mech-
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anisms, convection effects and diffusion processes. The equation is

ut + v uux = Duxx + k3u(1− u). (4.15)

The Burger-Fisher equation has a wide range of applications in plasma physics,

fluid physics, capillary-gravity waves, nonlinear optics and chemical physics.

• Newell-Whitehead-Segel equation

ut + v ux = Duxx + k4u(1− u2). (4.16)

This equation describes the slow spatial modulation of the stripe patterns in

usual pattern forming systems [17] and optical systems [18].

4.2.2 Motivation and model equation

The literature discussing the NLRD equations is massive, but these results assume

that the environment is temporally and spatially homogenous. However, this may

be a rough approximation to many systems, because most of physical and biological

systems are inhomogeneous due to fluctuations in environmental conditions and non-

uniform media. Hence, most of real nonlinear physical equations possess variable

coefficients, both in space and over time [19, 20, 21]. The effect of spatial inhomo-

geneities on NLRD systems [12, 22, 23] has been discussed by many authors, but

the effect of temporal inhomogeneities has not been much explored. We shall work

on this problem here. There are many NLRD systems where the relevant parame-

ters are time dependent [24, 25] because external factors make the density and/or

temperature change in time. For example, in biological applications, such as pop-

ulation range expansion, for which reproductive (reactive) and mobility (diffusive)

parameters change in time driven by climatic changes.

The dimensionless form of the variable coefficient NLRD equation, studied
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here, is

ut + v(t) umux = Duxx + α(t) u− β(t) un, (4.17)

where u = u(x, t), is the concentration or density variable depending on the phe-

nomena under study; D is diffusion coefficient; v is convection term coefficient; α, β

are reaction term coefficients and m, n are real numbers.

In this work, we have considered Eq. (4.17) for different values of m and n,

and obtained propagating kink-type solitary wave solutions by using the auxiliary

equation method [26]. For m = 0 and n = 3, Eq. (4.17) represents the Newell-

Whitehead-Segel equation with variable coefficients. This model has been solved

for bell-type solitary wave solutions with constant reaction coefficients [27, 28]. For

the same model, we have obtained kink-type solitary wave solutions and extend

the formalism to obtain solitary wave solutions with inhomogeneous reaction terms.

Further, we extend the analysis for inhomogeneous nonlinear convection term, i.e.

for m = 1. For m = 1 and n = 3, Eq. (4.17) with constant coefficients describes the

various biological and physical phenomena [see Ref. [13], and references therein].

In last, we have considered the case m = 1 and n = 2, for which Eq. (4.17) repre-

sents the Burger-Fisher equation with variable coefficients, and explored kink-type

solutions. We have found that variable coefficients have significant effect on the

amplitude and velocity of propagating kink solutions [29]. First, we shall explain

auxiliary equation method and then use it to solve variable coefficient NLRD equa-

tion for different cases.

4.2.3 Auxiliary equation method

Sirendaoreji and Jiong [26] proposed auxiliary equation method to solve nonlinear

partial differential equations (PDE’s) with constant coefficients. Suppose, for a given

nonlinear evolution equation with independent variables x and t, and dependent

variable u:

F (u, ux, ut, uxx, utt, uxt, ....) = 0. (4.18)
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By using Galilean transformation, we can write Eq. (4.18) in travelling wave frame

as

G(u, uξ, uξξ, uξξξ, ......) = 0, (4.19)

where ξ = kx − ωt, k and ω are constants. Let us assume that the solution of Eq.

(4.19) is of the following form

u(ξ) =
n∑

i=0

aiz
i(ξ), (4.20)

where ai (i = 0, 1, 2, ...) are real constants to be determined, n is a positive inte-

ger and z(ξ) represents the solutions of the following auxiliary ordinary differential

equation, viz.

zξ = az(ξ) + z2(ξ), (4.21)

where a, b, c are constants. To determine u explicitly, take the following four steps.

Step 1 Substitute Eq. (4.20) along with Eq. (4.21) into Eq. (4.19) and

balancing the highest order derivative terms with the highest power nonlinear terms

in Eq. (4.19), to find the value of n.

Step 2 Again substitute Eq. (4.20), with the value of n found in Step 1, along

with Eq. (4.21)into Eq. (4.19), collecting coefficients of zizξ
j(j = 0, 1; i = 0, 1, 2, ....)

and then setting each coefficient to zero, to get a set of over-determined partial

differential equations for ai(i = 0, 1, 2...), k and ω.

Step 3 By solving the equations obtained in Step 2, get the explicit expressions

for ai(i = 0, 1, 2...), k and ω.

Step 4 By using the results obtained in previous steps, obtain the exact trav-

elling wave solution of Eq. (4.18) from Eq. (4.20) depending on the solution z(ξ) of

Eq. (4.21).

This method can also be used to solve nonlinear PDE’s with variable coeffi-

cients by converting these equations into ODE’s in accelerated travelling wave frame

with the help of extended Galilean transformation [30]. Yomba [31] follow this pro-

cedure to solve KdV equation with variable coefficients using auxiliary equation

method and Bekir et al. [32] used it to solve Zakharov-Kuznetsov equation with
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variable coefficients using exp. function method.

4.2.4 Solitary wave solutions

(1) Exact solutions of Eq. (4.17) for m = 0 and n = 3

Case (a): Only v is time dependent

For this case, Eq. (4.17) reads

ut + v(t) ux = Duxx + αu− βu3. (4.22)

To begin with, one can assume the solution of Eq. (4.22) in extended Galilean frame

of reference [30], ξ = kx+ η(t), k is constant, as

u(ξ) = a(t) + b(t) ϕ(ξ), (4.23)

where ϕ(ξ) satisfies an ordinary differential equation, viz.

ϕξ = pϕ+ ϕ2, (4.24)

where p is constant. Substituting Eqs. (4.23) and (4.24) in Eq. (4.22), and equating

the coefficients of ϕi’s (i = 0, 1, 2, 3) to zero, a set of equations can be found as

ϕ3 : − 2bDk2 + βb3 = 0,

ϕ2 : bηt + bkv − 3pbDk2 + 3ab2β = 0,

ϕ1 : bt − p2bDk2 + 3a2bβ − αb+ pbηt + pbkv = 0,

ϕ0 : at + βa3 − αa = 0. (4.25)

Solving these equations consistently, the various unknown parameters,

a, b, k and η(t), found to be

a =
p

2
b =

√
α

β
,

k2 =
2α

p2D
, η(t) = −k

∫
v(t) dt. (4.26)
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It indicates that a and b are constants. Integrating Eq. (4.24), the solution for ϕ(ξ)

is found as

ϕ(ξ) = −p
2

[
1 + tanh

(p
2
ξ
)]
. (4.27)

Using Eqs. (4.23), (4.26) and (4.27), the solution for Eq. (4.22) reads

u(ξ) = −
√
α

β
tanh

(p
2
ξ
)
, (4.28)

where ξ = k
(
x−

∫
v(t) dt

)
. This implies that non-trivial time dependence of ξ

can be expressed only in terms of function of v(t). Here, v(t) can be assumed as

an arbitrary function of time which effects the velocity of wave. Typical amplitude

profile of Eq. (4.28) is shown in Fig. 4.1, for α = 1, β = 1, D = 2, p = −1, k =

1 and v(t) = cos(2t). It is a kink-type solitary wave solution. It is interesting to note

that for small magnitude of x the function u(x, t) has periodic structure in time but

as magnitude of x increases, u(x, t) approaches a constant value, i.e. amplitude of

wave becomes constant.
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Figure 4.1: Amplitude profile of u(x, t), Eq. (4.28) for values mentioned in the

text.

If it is assumed that v(t) is also a constant, then the solution for Eq. (4.22)

reads

u(ξ) = −
√
α

β
tanh

(√
α

2D
(x− vt)

)
, (4.29)
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which is same as obtained by Kumar et al. [33].

Case (b): v, α and β, all are time dependent

In order to solve Eq. (4.22) for the case when v, α and β all are time dependent,

following the same procedure as in last section, one will get the same set of equations

as Eq. (4.25) with v(t), α(t) and β(t). Solving these equations consistently, the

following relations can be found,

b(t) = e(
∫
α(t) dt−2p2Dk2t),

a(t) = p b(t) , β(t) =
2Dk2

b2(t)
,

η(t) =

(
−3pDk2t− k

∫
v(t) dt

)
. (4.30)

The complete solution for u(ξ), Eq. (4.17) for m = 0 and n = 3, comes out to be

u(ξ) =
p

2
e(

∫
α(t) dt−2p2Dk2t)

[
1− tanh

(p
2
ξ
)]
. (4.31)

Here, β(t) is fixed, but v(t) and α(t) can be chosen arbitrary functions of time.

From solution, it is clear that convection coefficient effects the velocity of wave and

reaction coefficient effects the amplitude of wave exponentially. Amplitude profile of

Eq. (4.31) is shown in Fig. 4.2, for D = 1, p = 2, k = 1, α(t) = cos(t) and v(t) =

tanh(t). Here, the amplitude of profile is varying exponentially due to inhomogeneous

reaction coefficient.

(2) Exact solutions of Eq. (4.17) for m = 1 and n = 3

Case (a): Only v is time dependent

For this case, Eq. (4.17) reads

ut + v(t) uux = Duxx + αu− βu3. (4.32)
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Figure 4.2: Amplitude profile of u(x, t), Eq. (4.31) for values mentioned in the

text.

Again, substituting Eqs. (4.23) and (4.24) in Eq. (4.32), and equating the coeffi-

cients of ϕi’s (i = 0, 1, 2, 3) to zero, the following set of equations can be found

ϕ3 : 2bDk2 − βb3 − b2kv = 0,

ϕ2 : 3pbDk2 − 3βab2 − pb2kv − abkv − bηt = 0,

ϕ1 : p2bDk2 + αb− 3βa2b− bt − pbηt − pabkv = 0,

ϕ0 : at − αa+ βa3 = 0. (4.33)

These equations can be solved only for α & β < 0. Assume α = −α1 and β = −β1,

such that α1 & β1 > 0, and solve these equations consistently, to obtain the following

relations

a(t) = p b(t) = p

√
α1

p2β1 + e2α1t
,

v(t) =
2Dk

b(t)
+
β1b(t)

k
,

η(t) = −Dpk2t− 1

2p
ln
[
p2β1e

−2α1t + 1
]
. (4.34)
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The solution for Eq. (4.32) using Eq. (4.23) and (4.27) becomes

u(ξ) =
p

2

√
α1

p2β1 + e2α1t

[
1− tanh

(p
2
ξ
)]
. (4.35)

Typical profile of Eq. (4.35) is shown in Fig. 4.3, for α1 = 1, β1 = 1, D =

1, p = 1 and k = 1. It is also a kink-type solitary wave solution, whose amplitude

and velocity are changing with time due to time-dependent coefficient of convection

term.
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Figure 4.3: Amplitude profile of u(x, t), Eq. (4.35) for values mentioned in the

text.

Case (b): v, α and β, all are time dependent

In order to solve Eq. (4.32) for the case when v, α and β all are time dependent, we

considered the same set of equations as Eq. (4.33) with v(t), α(t) and β(t). Solving

these equations consistently one can obtain the following relations,

a(t) = p b(t) =
p√

p2 + e−2
∫
α(t) dt

,

v(t) =
2Dk

b(t)
− β(t)b(t)

k
, β(t) = α(t),

η(t) = −Dpk2t− 1

2p
ln
[
p2e2

∫
α(t) dt + 1

]
. (4.36)
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The complete solution for u(ξ), Eq. (4.17) for m = 1 and n = 3, reads

u(ξ) =
p

2
√
p2 + e−2

∫
α(t) dt

[
1− tanh

(p
2
ξ
)]
. (4.37)

Here, v(t) is fixed but α(t) can be chosen arbitrarily which effects the both param-

eters, amplitude and velocity, of wave. Amplitude profile of Eq. (4.37) is shown in

Figure 4.4, for D = 1, p = 2, k = 1 and α(t) = sech(t).
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Figure 4.4: Amplitude profile of u(x, t), Eq. (4.37) for values mentioned in the

text.

(3) Exact solutions of Eq. (4.17) for m = 1 and n = 2

Case (a): Only v is time dependent

For this case, Eq. (4.17) reads

ut + v(t) uux = Duxx + αu− βu2. (4.38)
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Substituting Eqs. (4.23) and (4.24) in Eq. (4.38), and equating the coefficients of

ϕi’s (i = 0, 1, 2, 3) to zero, a set of equations can be found as

ϕ3 : b2kv − 2bDk2 = 0.

ϕ2 : βb2 + abkv + pb2kv − 3pbDk2 + bηt = 0,

ϕ1 : − αb+ 2βab+ pabkv − p2bDk2 + bt + pbηt = 0,

ϕ0 : − αa+ βa2 + at = 0. (4.39)

Solving these equations consistently, the various unknown parameters can be ob-

tained as

β = α, a(t) = p b(t),

b(t) =
1

2p

[
1− tanh

(
−αt
2

)]
=

1

p(1 + e−αt)
,

v(t) =
2Dk

b(t)
= 2pDk(1 + e−αt),

η(t) =

∫
−(pDk2 + α b(t)) dt

= −
(
pDk2 +

α

2p

)
t− 1

p
ln cosh

(
−αt
2

)
. (4.40)

Using Eqs. (4.23), (4.27) and (4.40), the solution for Eq. (4.38) will take the form

as

u(ξ) =
1

4

(
1− tanh

(
−αt
2

))[
1− tanh

(p
2
ξ
)]
. (4.41)

Typical amplitude profile of Eq. (4.41) is shown in Figure 4.5, for α = 1, D = 1, p =

1 and k = 1. It is a kink-type solitary wave solution, whose amplitude and velocity

are changing with time due to time-dependent coefficient of convection term.

Case (b): v, α and β, all are time dependent

In order to solve Eq. (4.38) for the case when v, α and β all are time dependent,

following the same procedure, the same set of equations can be found as Eq. (4.39)

with time dependent coefficients. Solving these equations the unknown parameters
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Figure 4.5: Amplitude profile of u(x, t), Eq. (4.41) for values mentioned in the

text.

are

β(t) = α(t), a(t) = p b(t),

b(t) =
1

2p

[
1− tanh

(
−
∫
α(t) dt

2

)]
=

1

p(1 + e−
∫
α(t) dt)

,

v(t) =
2Dk

b(t)
= 2pDk(1 + e−

∫
α(t) dt),

η(t) =

∫
−(pDk2 + α(t) b(t)) dt

= −pDk2t− 1

2p

∫
α(t) dt− 1

p
ln cosh

(
−1

2

∫
α(t) dt

)
.

The complete solution for u(ξ), Eq. (4.17) for m = 1 and n = 2, comes out to be

u(ξ) =
1

4

(
1− tanh

(
−
∫
α(t) dt

2

))[
1− tanh

(p
2
ξ
)]
. (4.42)

Here, v(t) is fixed but α(t) can be chosen arbitrarily which effects the both param-

eters, amplitude and velocity, of wave. Typical amplitude profile of Eq. (4.42) is

shown in Figure 4.6, for p = 1, D = 1, k = 1, and α(t) = cos(t).

Special case

If we assume Eq. (4.38) for the case when v, α and β all are constant, then by
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Figure 4.6: Amplitude profile of u(x, t), Eq. (4.42) for values mentioned in the

text.

following the same procedure, one can obtain the various parameters as

a = 1, b =
1

p
, v = 2pDk,

η(t) = −
(
pDk2 +

α

p

)
t. (4.43)

Hence, the solution for constant coefficient equation becomes

u(ξ) =
1

2

[
1− tanh

(p
2
ξ
)]
, (4.44)

which is of same form as obtained by Chen et al. [16].

4.2.5 Conclusion

We have studied a prototype model for the reaction, diffusion and convection pro-

cesses with inhomogeneous coefficients. Employing auxiliary equation method, the

kink-type solitary wave solutions have been found for variable coefficient Burgers-

Fisher and Newell-Whitehead-Segel (NWS) equation. It is observed that time de-

pendent reaction and convection coefficients will effect the wave parameters, like

amplitude and velocity. It is found that for linear convection term and cubic non-
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linear reaction term, that is NWS equation for m = 0 and n = 3, the convection

coefficient v(t) and one of the reaction coefficient α(t) can be chosen arbitrary func-

tions of time whereas other reaction coefficient β(t) is fixed. Here, the convection

coefficient effects the velocity of wave whereas reaction coefficient effects the ampli-

tude of wave exponentially. For m = 1 and n = 3 case, only reaction term coefficient

can be chosen arbitrarily which effects the both parameters of wave. For Burgers-

Fisher equation, that is m = 1 and n = 2 case, again reaction term coefficient can

be chosen arbitrarily. For constant coefficients, the results are same as the previous

results. Hence, the variable coefficients help us to control the properties of solitary

wave solutions in RD system. The variation of amplitude of waves has been shown

for different functional form of the variable coefficients. The results obtained here

may be useful for the one who is working on specific phenomena based on RD type

equations. The approach applied in this work is general and can be employed in

further works to obtain exact solutions for other types of nonlinear equations with

variable coefficients.

4.3 Complex Ginzburg-Landau equation with ac-

source

4.3.1 Introduction to CGLE

The complex Ginzburg-Landau equation (CGLE) is a well-known nonlinear equation

in the field of nonlinear science. It can be used to describe various nonlinear physical

and chemical phenomena, such as surface waves in viscous liquids [34], chemical

waves [35], binary-fluid convection [36], dynamic phase transitions [37], optical fiber

lasers [38, 39] and pattern forming systems [40]. The CGLE, in many versions, has

been studied by various authors. The stationary Ginzburg-Landau equation was

first given by Landau and Ginzburg in a work on superconductivity. The Ginzburg-

Landau equation with real coefficients was derived by Newell and Whitehead in 1969

[17] for the study of Rayleigh-Bénard convection. The full CGLE was derived by
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Stewartson and Stuart [41] in the context of plane Poiseuille flow and by DiPrima

et al. [42] in the context of the destabilization of plane shear flow. Earlier this

equation was known as ‘amplitude equation’ or ‘modulation equation’, but later it

is recognized by the Ginzburg-Landau equation although they did not derive it in

their paper.

As mentioned in previous chapters that the nonlinear Schrödinger equation

(NLSE) describes the various phenomena in nonlinear optics and fluid dynamics.

However, it is worth noting that NLSE does not include the nonlinear gain and

spectral filtering (or diffusion). But, there are many physical phenomena where

energy attenuation/dissipation is involved. These types of processes are described

by the CGLE which is an extension of NLSE model, given as [43]

∂H

∂t
= H + (1 + ic1)

∂2H

∂x2
− (1 + ic3) |H|2 H, (4.45)

where H is a complex function. The CGLE originates in physics in particular as

a modulation (or amplitude) equation. This equation possesses a larger variety of

solutions, including localized structures such as fronts, pulses, sources and sinks,

periodic solutions and transition to chaos (for Refs. see [44]). An extensive mathe-

matical studies on CGLE was presented in Refs. [40, 43].

4.3.2 Motivation and model equation

The cubic CGLE, given by Eq. (4.45), has been studied extensively for pulse solu-

tions [45, 46]. But, a close inspection reveals that they are singular at some values of

the parameters or unstable in general [see Ref. [44]]. But, these soliton-like solutions

can be stabilized by adding quintic term to CGLE [44, 47]. Apart from it, these so-

lutions can also be stabilized using driven CGLE either parametrically [48, 49] or by

ac source [50]. The external feedback also helps in controlling the diffusion induced

amplitude and phase turbulence (or spatiotemporal) in CGLE systems [51, 52, 53].

Recently, spiral waves in the CGLE with a time-dependent periodic external force

has been studied [54]. Despite its simplicity, the forced CGLE, depending on several
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factors, such as the spatial dimension, the mode of the frequency locking and the

behavior of the corresponding unforced system, describes a large variety of phenom-

ena [55, 56, 57, 58, 59, 60, 61]. Also, existence of steadily moving solitary pulses in

CGLE which includes cubic-quintic nonlinearity and a conservative linear driving

term has been studied [62]. Although, CGLE is a well studied dynamical system,

the exact solutions of ac-driven CGLE are rarely appeared in the literature [52]. We

are interested here in the modified CGLE [40, 51] with an ac driver, in the form of

a travelling wave.

In this work, we have considered the CGLE driven by external force as [63]

∂H

∂t
= (1 + ic1)

∂2H

∂x2
− (c2 + ic3) |H|2 H + ϵH + f(x, t), (4.46)

where H is a complex function, c1 is the dispersion coefficient, the coefficients c2

and c3 represent nonlinear effects in the system, ϵ is the linear gain coefficient and

f(x, t) represents external driver. We have solved the driven CGLE for the case when

external force f(x, t) is out of phase with the complex function H. It is interesting

to note that the phase difference between them found to be depends on dispersion

coefficient, as tan−1(c1).

4.3.3 Soliton-like solutions

The exact soliton solutions can be found for Eq. (4.46) by choosing the following

ansatz, in which there is a phase difference between the solution and the external

driver, as

H(x, t) = ρ(ξ)ei(χ(ξ)−ωt) (4.47)

and

f(x, t) = Feiϕei(χ(ξ)−ωt), (4.48)

where ξ = (x − vt), ϕ and F are real parameters. Here, ϕ represents the phase

difference and F gives the amplitude of driven source.

Substituting Eqs. (4.47) and (4.48) in Eq. (4.46) and separating out the real
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and imaginary parts of the equation, one arrives at the following coupled equations

in ρ and χ,

−vρ′ = ρ′′ − ρχ′2 − c1ρχ
′′ − 2c1ρ

′χ′ − c2ρ
3 + ϵρ+ Fr (4.49)

and

−vρχ′ − ωρ = ρχ′′ + 2ρ′χ′ − c1ρχ
′2 + c1ρ

′′ − c3ρ
3 + Fi, (4.50)

where Fr = F cosϕ, Fi = F sinϕ and prime refers to the differentiation w.r.t to ξ

variable. These coupled equations can be solved consistently by assuming the ansatz

χ′(ξ) = K (a constant). Using this ansatz, Eqs. (4.49) and (4.50) reduced to

ρ′′ + (v − 2c1K)ρ′ + (ϵ−K2)ρ− c2ρ
3 + Fr = 0 (4.51)

and

ρ′′ +
2K

c1
ρ′ +

vK + ω − c1K
2

c1
ρ− c3

c1
ρ3 +

Fi

c1
= 0. (4.52)

Eqs. (4.51) and (4.52) can be mapped into a single equation

ρ′′ +Mρ′ +Nρ− Pρ3 +Q = 0, (4.53)

with the identification of

M ≡
(
2K

c1
= v − 2c1K

)
(4.54)

N ≡
(
vK + ω − c1K

2

c1
= ϵ−K2

)
(4.55)

P ≡
(
c3
c1

= c2

)
(4.56)

Q ≡
(
Fi

c1
= Fr

)
. (4.57)
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Solving Eqs. (4.54) to (4.57), one can obtain the following constraint conditions as

v =
2K

c1
(1 + c1

2), ω = c1ϵ− vK, c3 = c1c2 and Fi = c1Fr. (4.58)

For a particular choice of external phase and amplitude, given as ϕ = tan−1(c1) and

F = Fr

√
1 + c12, one can solve Eq. (4.53) for two different cases as discussed below.

Case I : K = 0, Fractional transform solitons

Under this parametric condition the velocity v becomes zero and Eq. (4.53) reduces

to

ρxx +Nρ− Pρ3 +Q = 0. (4.59)

This equation can be solved for standing wave solutions by using a fractional trans-

formation [64]

ρ(x) =
A+By2(x)

1 +Dy2(x)
, (4.60)

which maps the solutions of Eq.(4.59) to the elliptic equation y′′ ± ay ± by3 = 0,

provided AD ̸= B. For explicitness, we consider the case where y = cn(x,m) with

m as modulus parameter. Then upon substitution of Eq. (4.60) into Eq. (4.57)

and equating the coefficients of equal powers of cn(x,m) will yield the following

consistency conditions:

NA− 2(AD −B)(1−m)− PA3 +Q = 0, (4.61)

2NAD +NB + 6(AD −B)D(1−m)− 4(AD −B)(2m− 1)− 3PA2B + 3QD = 0,

(4.62)

NAD2 + 2NBD + 4(AD −B)D(2m− 1) + 6(AD −B)m− 3PAB2 + 3QD2 = 0,

(4.63)

NBD2 − 2(AD −B)Dm− PB3 +QD3 = 0. (4.64)

For different values of m, one can obtain different types of standing wave solutions.

(i) Trigonometric solution : For m = 0 and A = 0, Eq. (4.59) admits the
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non-singular periodic solution of the following type

ρ(x) =
2Q

N

(
cos2 x

1− 2
3
cos2 x

)
, (4.65)

where N = −4 and Q2 = (−128/27P ). Rewriting N,P and Q in terms of original

parameters of Eq. (4.46), one can find that the solution is consistent only for c2 < 0,

which corresponds to two cases: either (a) c1 > 0 and c3 < 0, or (b) c1 < 0 and

c3 > 0. The complete solution for CGLE driven by external source with the phase

difference of ϕ = tan−1(c1), reads

H(x, t) =
2Fr

ϵ

(
cos2 x

1− 2
3
cos2 x

)
e−iωt, (4.66)

for ϵ = −4 and Fr
2 = −128/(27c2). The amplitude and intensity profiles is shown

in Fig. 4.7 for c1 = 2, c2 = −1, c3 = −2 and ϵ = −4. For these values of model

parameters, the external driven source has amplitude and phase as F = (640/27)1/2

and ϕ = tan−1 2, respectively.
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Figure 4.7: Amplitude and intensity profiles of periodic solution for c1 = 2, c2 =

−1, c3 = −2 and ϵ = −4.

(ii) Hyperbolic solution : The general localized solution can be found for the

case when the Jacobian elliptic modulus m = 1. The set of Eqs. (4.61) to (4.64)

can be solved consistently for the unknown parameters A,B,D and for a particular
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value of Q. The generic profile of the solution reads

ρ(x) =
A+B sech2x

1 +D sech2x
. (4.67)

For this case, the complete solution of ac-driven CGLE can be written as

H(x, t) =

(
A+B sech2x

1 +D sech2x

)
e−iωt. (4.68)

We have worked out a physically interesting case, shown in Fig. 4.8, for the following

parameters c1 = 1, c2 = 2, c3 = 2 and ϵ = 1. For these values of model parameters,

the various unknown parameters are found out to be A = 1.0476, B = 1.7707, D =

1.6901 and Fr = 1.2521. The amplitude and phase of external driven source is given

by, F = 1.7707 and ϕ = tan−1 1 = π/4.

r
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|H|
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Figure 4.8: Amplitude and intensity profiles of bright soliton for c1 = 1, c2 =

2, c3 = 2 and ϵ = 1.

(iii) Pure cnoidal solutions : For 0 < m < 1, Eq. (4.59) have different types

of cnoidal solutions. We list these solutions here for some special cases. For m =

5/8, A = 0 and D = 1, the solution reads

ρ(x) =
−14Q

3N

(
cn2(x,m)

1 + cn2(x,m)

)
, (4.69)

where N = 7/2 and Q2 = 9/(4P ). Using this, the exact solution for Eq. (4.46) can

be found as

H(x, t) =
−14Fr

3ϵ

(
cn2(x,m)

1 + cn2(x,m)

)
e−iωt, (4.70)
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for ϵ = 7/2 and Fr
2 = 9/(4c2).The amplitude and intensity profiles for this solution

is shown in Fig. 4.9 for c1 = 2, c2 = 1, c3 = 2 and ϵ = 7
2
.
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Figure 4.9: Amplitude and intensity profiles of cnoidal solution for c1 = 2, c2 =

1, c3 = 2 and ϵ = 7
2 .

For m = 1/2 and A = 0, we found that N = 2
√
3 and Q2 = 8/(3

√
3P ), for which

the solution of Eq. (4.59) reads

ρ(x) =
−2

√
3Q

N

(
cn2(x,m)

1 + 1√
3
cn2(x,m)

)
. (4.71)

Thus, the complete solution of Eq. (4.46) can be written as

H(x, t) =
−2

√
3Fr

ϵ

(
cn2(x,m)

1 + 1√
3
cn2(x,m)

)
e−iωt, (4.72)

for ϵ = 2
√
3 and Fr

2 = 8/(3
√
3c2).

Case II : K ̸= 0, Kink-type solitons

For this case (v ̸= 0), an interesting kink-type solution can be obtained of Eq. (4.53),

which is given by

ρ(ξ) = a−
√
d

b
tanh(

√
bdξ), (4.73)

where a = −M/(3
√
2
√
P ), b =

√
P/2, d = (6N −M2)/6 and Q = a3P −aN −dM .

Rewriting M,N,P and Q in terms of original parameters, the complete solution
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reads

H(x, t) = −

 √
2K

3c1
√
c2

+

(
2

c2

)1/4
√
ϵ−K2 − 2K2

3c12
tanh

(c2
2

)1/4√
ϵ−K2 − 2K2

3c12
ξ


× ei(K(x−vt)−ωt), (4.74)

for Fr =
4K3

3c13

(
1− 1

9
√
2c2

)
− 2K

c1
(ϵ−K2)

(
1− 1

3
√
2c2

)
. Fig. 4.10 depicts the amplitude

and intensity profile of this kink solution, for c1 = 2, c2 = 1, c3 = 2, ϵ = 1 and

K = 1/2. In this case, the amplitude and phase of external driven source is given

by, F = −0.597 and ϕ = tan−1 2.
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Figure 4.10: Amplitude and intensity profiles of kink-type soliton for c1 = 2, c2 =

1, c3 = 2, ϵ = 1 and K = 1/2.

Numerical stability of exact solutions

The stability of exact periodic and localized solutions, given by Eq. (4.66) and

Eq. (4.68), has been studied numerically in the Ref. [63]. It has been done first

by adding white noise and then by perturbing the solution for study of nonlinear

stability. The nonlinear evolution of the trigonometric solution and soliton solution

have been studied using semi-implicit Crank-Nicolson finite difference scheme, under

small perturbation by directly simulating Eq. (4.46) with initial condition H(x, t =

0) = H(x, t = 0)[1+w]e−iøt, where w is the perturbation . The numerical simulations

indicated that these solutions are quite stable with perturbations w = 0.2 and

w = 0.5.
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4.3.4 Conclusion

In this work, the exact Lorentzian-type and kink-type soliton solutions has been

reported of ac-driven complex Ginzburg-Landau equation. The periodic solutions

has also been worked out for this model. The phase difference between the external

driver and the solutions has been found to be depend on the dispersion coefficient

c1. Numerical simulations indicated that these solitons are quite stable against finite

perturbations. Recently, Li et al. [65] studied the same model given by Eq. (4.46)

using the method of dynamical systems, and analyze the dynamical behavior of the

stationary solutions and their bifurcations depending on the parameters of systems.

Owing to the exact nature of the solutions presented here, we hope that they serve

as the seed solutions for further exploring rich structures including bifurcation and

other spatiotemporal patterns prevalent in this inhomogeneous dynamical system.
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Chapter 5

Summary and conclusions

In this thesis, we have studied the inhomogeneous NLEEs of physical interest and

obtained solitary wave or soliton-like solutions for them. The physical systems

modeled by constant coefficient NLEEs tend to be very highly idealized. There

are various factors, like dissipation, environmental fluctuations, spatial modulations

etc., which causes deviation from the actual system. Therefore, the NLEEs with

variable coefficients are supposed to be more realistic than their constant-coefficient

counterparts in describing a large variety of nonlinear physical systems.

In Chapter 2, we have considered the wave propagation in tapered graded-index

waveguide and presented a large family of self-similar waves by tailoring the taper-

ing profile. It has been accomplished by first reducing the GNLSE, governing the

wave propagation through the graded-index nonlinear waveguide, into integrable

homogeneous NLSE, using similarity transformation, with the condition that the

width function satisfies the second order differential equation. Second, a close in-

spection reveals that the mathematical structure of this equation being similar to

linear Schrödinger equation of quantum mechanics which enables one to analyt-

ically identify a large manifold of allowed tapering profiles with compatible gain

function, using isospectral Hamiltonian approach. These tapering profiles are gov-

erned by a free Riccati parameter which provides a control parameter for tuning

the amplitude and width of self-similar waves. It is realized that modulation of the
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tapering through the Riccati parameter imposes significant effects on the intensity

of waves and thus paving the way for experimental realization of highly energetic

pulses for practical applications. This analysis has been done for the sech2-type

tapering profile in the presence of only cubic nonlinearity and also for cubic-quintic

nonlinearity. We have shown the existence of Riccati generalized bright and dark

similaritons, self-similar Akhmediev breathers and self-similar rogue waves in cubic

nonlinear medium, and double-kink dark similaritons and Lorentzian-type bright

similaritons in cubic-quintic nonlinear medium. The generalized intensity profiles

for the similaritons in latter case is found to undergo more rapid self-compression

with small values of Riccati parameter as compared to the similaritons in a cubic

nonlinear medium.

In Chapter 3, it is demonstrated that localized gain induces chirped double-kink,

fractional-transform, bell and kink-type solitons in a nonlinear optical medium in

the presence of two-photon absorption (TPA). The parameter domain is delineated

in which these optical solitons exist. Interestingly, the width of double-kink solitons

and their corresponding chirp can be controlled by modulating the gain function.

For all solutions, nonlinear chirp is found to be directly proportional to the intensity

of the wave. We have further investigated the variation of gain with TPA coeffi-

cient and found that the gain is transversally localized and its amplitude is directly

proportional to the value of TPA coefficient. We hope that these chirped optical

solitons supported by localized gain will be useful for pulse compression or amplifi-

cation in various nonlinear optical processes accompanied by TPA.

Chapter 4 is divided into two parts. In first part, we have studied the nonlinear reac-

tion diffusion (NLRD) type equations with variable coefficients and obtained propa-

gating kink-type solitary wave solutions by using the auxiliary equation method. It

is found that variable coefficients have significant effect on the amplitude and veloc-

ity of propagating kink solutions. In second part, we have investigated the dynamics

of the complex Ginzburg-Landau equation (CGLE) in the presence of ac-source. It

is a well-known nonlinear equation in the field of nonlinear science, which describes

various nonlinear physical and chemical phenomena. The exact Lorentzian-type
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and kink-type soliton solutions has been found for this model. We have solved the

driven CGLE for the case when external force is out of phase with the complex field.

Owing to the exact nature of the solutions presented here, it may be useful as the

seed solutions for further exploring rich structures including bifurcation and other

spatiotemporal patterns prevalent in this inhomogeneous dynamical system.

Apart from it, we studied the wave dynamics in other nonlinear physical systems,

such as Bose-Einstein condensates (BECs) and negative index materials (NIMs).

There is a considerable interest to study the dynamics of BECs in the presence of

time-varying parameters, such as nonlinearity, gain or loss, and oscillator frequency.

The nonlinearity being determined by the s-wave scattering length of interatomic

collisions which can be tuned experimentally by utilizing the external magnetic or

low-loss optical Feshbach-resonance techniques. Using the isospectral Hamiltonian

approach, discussed in Chapter 2, we construct a family of self-similar waves, re-

lated through a free parameter, in quasi one-dimension Gross-Pitaevskii equation

with time-varying parameters. This approach enables us to control the dynamics of

dark and bright similaritons, and first- and second- order self-similar rogue waves

in Bose-Einstein condensate through the modulation of time dependent trapping

potential [Panigrahi et al., Eur. Phys. J. Special Topics 222 (2013) 655]. NIMs

are designed to have exotic and unique properties that cannot be obtained with

naturally occurring materials and thus offer entirely new prospects for manipulating

light. Recently, much of work has been done on the propagation of electromagnetic

waves in NIMs because of the recent experimental realization of NIMs in infrared

and optical frequency. We present a detailed analysis for the existence of dark and

bright solitary waves for generalized nonlinear Schrödinger equation (GNLSE) model

for competing cubicquintic and higher-order nonlinearities with dispersive permit-

tivity and permeability in NIMs [Sharma et al., J. Mod. Opt. 60 (2013) 836]. The

evolution of dark solitary waves is shown for a specific range of normalized frequency

while the existence of bright solitary waves are possible under some conditions on

model parameters which can be achieved through the structural changes in negative

index materials. We further explored the fractional-transform solutions, containing
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periodic, hyperbolic and cnoidal solitary wave solutions for GNLSE, in the absence

of quintic and nonlinear dispersion terms. Parameter domains were delineated in

which these ultrashort optical pulses exist in negative-index materials.

The work described in this thesis has led to some important new results in the field

of nonlinear optics regarding generalized self-similar waves in tapered graded-index

waveguides and chirped optical solitons in the presence of two-photon absorption.

These solutions may be useful in communication networks and other optical pro-

cesses. The exact solutions for inhomogeneous NLRD and CGLE models will be

useful to understand the dynamics of various nonlinear physical phenomena.
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