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Abstract 
 
 
Gold is known to exhibit a vast range of interesting   geometries as its stable ground 

state. It evolves from planar structures to cage like, to tubular and finally core shell 

structures as the size of the nanocluster increases. The central theme of this thesis is to 

discuss the structural and electronic properties of gold nanoclusters, nanotubes and 

nanowires and study the interaction of gold with other elements. The physical and 

chemical properties of Au differ from the other noble metals such as Cu and Ag due 

to relativistic effects. In order to explain the importance of relativistic effects in the 

structural evolution of gold a combination of a semi empirical and first principle 

approaches is used. It is well known that with the introduction of different foreign 

elements as a substitutional or at the endohedral sites of the nanostructures; their 

structural, electronic and vibrational properties are altered. A systematic density 

functional study has been conducted on the interaction of gold with transition metals 

and group 14 elements and studies on the effect of impurity on the structural and 

electronic properties of gold clusters have been carried out. 

In Chapter 1, we present a general introduction to different gold nanostructures and 

discuss the effects of doping on their structural, physical and chemical properties. The 

work done in this field till date is  reviewed  in detail.The Semi empirical approach- 

The Gupta Potential  and the First principle methods based on density functional 

theory (DFT) , employed for the calculations carried out in this work,  are described 

in Chapter 2. Chapter 3 discusses the effect of different approaches on the low lying 

geometries of small gold clusters. The two approaches predict different lowest 

geometries  for gold clusters for n ≤ 13 .While the use of Gupta Potential has 

predicted the early onset of 3D geometries, the DFT predicts planar structures for n 

upto 13.   

Chapter 4 discusses the effect of doping Si and Ge on the ground state structures of 

pure gold clusters. It is found that on doping silicon and germanium atoms in Aun 

clusters, they adopt 3D structures from n=3 onward. The ground state geometries of 

the AunGe clusters show patterns similar to silicon doped gold clusters except for n =  

6 , 9 and 10. The binding energy per atom of Aun+1 cluster shows an increase with the 

introduction of Si and Ge atoms. The binding energy per atom of germanium doped 

clusters is smaller than the corresponding silicon doped gold clusters. The HOMO–
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LUMO gap of both Silicon and Germanium doped gold clusters lies in the range of 

semiconductors; so they can be used as novel materials in nanostructured devices. 

In Chapter 5, we have carried out a DFT study of the M12@Au20 (M= C, Si and Ge) 

clusters. The Au32 is a highly stable cage with the icosahedral (Ih) symmetry. It is 

found that the addition of dopant atoms increases the average binding energy. 

C12@Au20 is the most stable with the highest binding energy. Pure Au32 cage is found 

to be chemically inert with HOMO-LUMO gap of 1.59eV. The HOMO–LUMO gap 

of M12@Au20 cluster is much smaller and should be relatively chemically reactive. 

In Chapter 6, we have studied the effect of encapsulation of small chain of Cu and Ag 

atoms within a short segment of hexagonal gold nanotube i.e., Au24 tubular cage using 

DFT. The Cu doped Au24 tubular cages were found to have higher energy gap than the 

Ag doped cages except for Cu2Au24-II. It implies that Cu doped gold cages are more 

stable than Ag doped. The Mulliken population analysis, reveals that the d obitals of 

M (Cu, Ag) atoms in M@Au24-I and M@Au24-II clusters are dominant core orbital 

participating in bonding. 

Chapter 7 extends the above and describes the results of our systematic study of 

structural and electronic properties of of the tubular XMAuN (X= Si, Al and Au, M=3, 

6, 9 and N= 24, 42, 60) clusters. It was found that the encapsulations of Si and Al 

atoms do not destroy the tubular frameworks of the gold host though they change the 

energy hierarchy of the pure AuN isomers, showing a high possibility to form a novel 

binary cluster with gold providing tubular structures. It was concluded that the Si and 

Al atoms can form long chains within Au nanotube with a gap after every 4-6 layers 

of Au atoms to accommodate the size mismatch between Si-Si, Al-Al and Au layers. 

The Si doping within AuN tube is more compatible than the Al doping. 

In  Chapter 8 we present a DFT study of  the structures, energy variations, force and 

modulus of two linear finite chains of gold with five and seven atoms and comparison 

of  the results with similar calculations done through Gupta Potential. The calculated 

value of breaking force for two monoatomic chains using DFT  is more or less in 

agreement with  experimental results.  

The Chapter 9 presents the results of prelimilnary work on the phonon study  of pure 

gold hexagonal nanotubes . In the absence of parallel experimental or theoretical work 

on phonon dispersion relations, we cannot compare the results. 

Lastly Chapter 10 gives the brief summary of the work done in this thesis and its 

scope in future.  
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Chapter 1 

1. Introduction 

1.1 A brief note on nanoparticles 

"There's Plenty of Room at the Bottom - An Invitation to Enter a New Field of 

Physics." a visionary talk by Richard Feynman’s at Caltech in 1959 gave birth to the 

idea of nanotechnology. His talk inspired the scientists to develop new devices and 

machines that could be constructed from the components containing tens or hundreds 

of atoms. A nanoparticle is the most fundamental component in the fabrication of 

nanostructured devices. It is far smaller than the everyday objects which are governed 

by Newton’s laws of motion and bigger than an atom or a simple molecule that are 

governed by quantum mechanics. They are the particles with number of atoms or 

molecules bonded together with a radius between 1-100nm. At this size, structure 

built from them exhibit new electronic structure, conductivity, chemical reactivity, 

mechanical properties etc [1]. Clusters form the building blocks of different 

nanostructured materials. 

The clusters are nanoparticles composed of countable number of atoms, intermediate 

in size between the individual atom and the bulk. Their property differs from the bulk 

material in terms of electronic structures [2]. The electronic structure of a cluster 

consists of   discrete molecule like energy levels and exhibits strong size dependence 

while the bulk material has smoothly varying continuous band structure. Clusters are 

also different from conventional molecules. The Molecules have fixed compositions 

and definite structures, whereas clusters can exist in diverse stoichiometries and 

multiple geometries (or isomers). Clusters can be neutral or charged. They may be 

homogeneous or heterogeneous. Like molecules they are held together by different 

kinds of forces, e.g. metallic bonds (as in alkali and coinage metal clusters), ionic 

forces (as in NaCl clusters), covalent chemical bonds (as in carbon and silicon 

clusters), or Van der  Waals attraction (as in He and Ar clusters) [3,4,5]. Clusters 

provide an ideal medium for studying different properties such as, geometric and 

electronic structure, melting temperature, magnetic moment etc, not only by changing 

the size one atom at a time but also by changing geometry.  

It is observed that the change in these properties take place upto a critical size, e.g. the 

electrical conductivity of a metal strongly depends on the mean free path. If the size 
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of the particle is less than the characteristics length it is possible to observe new 

properties [1].  

By studying the properties of small clusters and working toward the larger ones, 

scientists can better understand the origins of known bulk material properties. The 

different properties of clusters are also strongly characterized by quantum size effects. 

Study of clusters as a function of size enables one to track the manner in which size 

dependent properties change from molecular-like to the bulk limit. As an example we 

can study the Au20 cluster, which has a beautiful pyramidal structure in which all the 

gold atoms are on the four surfaces of a tetrahedron, resembling that of Au (111) 

surface [6]. Thus clusters provide valuable models for surface chemistry and catalysis. 

Besides presenting novel properties interesting for fundamental research, clusters also 

hold promise for several applications.  

Nanotubes and nanowires constitute an important class in nanoelectronics with their 

potential applications as nanodevices or as connectors between them. Recent 

advances in experimental techniques, such as Scanning Tunneling Microscopy (STM) 

[7, 8] and electron-beam lithography [9], are giving rise to fabrication of wires at 

nanometre scale. Properties of nanotubes and nanowires are actively studied both 

experimentally and theoretically   [10-13]. 

1.2 Why Gold???  - Historical background and applications 

Gold nanoparticles (AuNPs) have emerged as an object of great interest in the fields  

 of physics, chemistry, biology, medicine, material science as well as some 

interdisciplinary field due their attractive electronic, optical, thermal and catalytic 

properties. Compared with other nanostructures, study of metallic nanoparticles is 

found to be more flexible owing to synthetic control of their shape, size, composition 

etc.  

Historical importance of gold lies in the role played by it due to its exquisite qualities 

among metals, making it exceptionally valuable from the earliest civilizations till 

date. The earlier use of gold nanoparticles appeared in Roman era as an elaborate 

decorating material. The beautiful “Lycurgus Cup” (owned by the British Museum), 

which is red in transmission and green in reflection, contains silver-gold bimetallic 

nanoparticles of around 50-100 nm in diameter [14].  Until the seventeenth century, 

the gold colloids were used to colour glass and their synthesis was described by the 

Italian glass makers. Later, in 1857, Michael Faraday carried out his first remarkable 
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experiments on metal colloids and described various colors of gold particles using 

different preparations [15]. He observed the optical properties of gold nanoparticles 

from different preparations and described them scientifically. Today, it is well-known 

that the various colors of liquid-dispersed gold nanoparticles having different sizes is 

due to size effect, i.e.,  the properties of nanoparticles may change when their size 

changes. 

 

Figure 1.1 Image of the Lycurgus cup, probably made in Rome in fourth century 
(from the British Museum free image service) (a): light falling from outside. (b): light 
falling from inside. 
 

Gold is the most anciently administered medicine. Pure metallic gold when ingested 

in small quantities is found to be non toxic and it does not react with the body. It is 

believed since medieval times that gold is beneficial for the health. The thousands of 

years old Indian ayurvedic medicine system involves the use of gold in its medicines. 

For example, Swarna Bhasma comprises of gold nanoparticles with an average size of 

about 60 nm. With tremendous progress in technology over a recent decade, a large 

number of nanoscale structures have emerged possessing novel properties suitable for 

applications in the field of biomedicine. Among the various metallic nanostructures 

studied, colloidal gold nanospheres are found to be more popular due to fast and 

simple methods of preparation. Due to ease of preparation of colloidal gold 

nanoparticles , metallic gold can have a renewed potential in the field of  modern  

medicine  such as for imaging, diagnostics, drug delivery or radiotherapy [16 -18]. 
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Gold has become an important nanoscale electronic component because of its 

resistance to oxidation and its mechanical strength. At nanosize the bulk gold, exhibit 

different electronic structure which is intermediate between the band structure of the 

bulk metal and the discrete energy levels of molecules with a characteristic highest 

occupied molecular orbital (HOMO)–lowest unoccupied molecular orbital (LUMO). 

Also in comparison to other inorganic nanomaterials, the gold nanoparticles can be 

synthesized in large variety of shapes and sizes.   

To avoid the oxidation or precipitation of gold nanoparticles in the solution phase or 

controlling size during growth of nanoparticles, stabilizing agents or ligands are used 

[19]. An example of ligand stabilized AuNPs, is  Au55(PPh3)12Cl6 (‘Au55’) (Fig. 1.2) , 

also known as ‘Schmid cluster’ with a core size of 1.4 nm studied using single-

electron tunnelling (SET) is shown to be a promising subunit in nanoelectronic 

devices [20-23]. A lot of different studies have been performed for the preparation of 

different types of AuNPs, varying in size, shape and ligand shell composition [24 - 

26]. In an experiment, a prototype of a nano-switch was built using a layer of Au 

nanoparticles, in which the conductivity of the system was altered electrochemically 

[27]. A composite of polystyrene and 2-naphtolenethiol-capped Au nanoparticles has 

been found to exhibit electrical transitions when induced by strong electrical fields, 

suggesting a potential application in memory devices [28] 

Gold offers many of the ‘topdown’ fabrication advantages of silicon. It is also least 

susceptible of all metals to oxidation. The use of gold has seen significant growth in 

the areas of electronics, particularly within telecommunications and information 

technology. For example the battery connections in mobile phones are made up of 

gold contacts. Gold bonding wires are used extensively in semiconductor packages. In 

designing nanodevices, the work on nanowires as potential connectors in nanodevices 

is in progress in various research labs around the world.  

Applications of Gold nanoparticles also include nanosized sensors, which could be 

used to detect species that have specific affinities for nanoparticles or as a filter to 

select particles of given size [29, 30].  
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Figure 1.2 TEM images (a) square planar and (b) hexagonal arrangements of Au55 
clusters, generated on PEI (poly ethyleneimine) and PPE (poly p-phenylene 
ethynylenes) films respectively 
 

Another interesting use of gold can be as catalyst in fuel cell applications, pollution 

control and chemical processing. There has been intense interest in using supported 

nanoclusters as model catalysts. Recent advancement in technology allows the 

synthesis of gold nanoclusters with excellent size control, allowing for precise 

measurements of size-dependent catalytic performance [31, 32]. In recent years, 

researchers have made remarkable advances in solution-phase synthesis of thiolate-

protected gold nanoclusters. Such clusters have a precise composition with  number of 
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metal atoms (n) and ligands (m), denoted as Aun(SR)m, with n ranging up to a few 

hundred atoms[33]. 

It can be presumed that the use of gold nanoparticles will increase dramatically in the 

near future in varied fields. The gold nanowires as conducting contacts in 

nanoelectronics will contribute to the progress of nanotechnology. The use of gold as 

catalysis seems to have already started. Gold nanoparticles in combination with 

biomolecules will have commercial applications in medical diagnostics in near future.  

1.3 Relativistic effects in gold 

According to the  Bohr ‘s  model of the atom states, the  electrons in the 1s orbital are  

closest to the nucleus, and moves  with a velocity v of 1.6×108 metres per second in 

the orbit  to avoid falling into  the nucleus. This velocity is more than half the speed 

of light: c≈3×108 m/s. According to Einstein such high velocity of electrons results in 

increased electron mass according to equation (1.1), 

                                                                                                   (1.1) 

The orbital radius varies inversely with mass of electron, given by equation (1.2) 

                                                                                                           (1.2) 

where ao is Bohr’s radius ,   is the reduced Planck's constant and Į is the fine-

structure constant . Thus the relativistic increase in mass of the electron will cause a 

contraction of its orbit. It also signifies that the electrons will be near the nucleus most 

of the time and thereby contract the radius for small principal quantum numbers. This 

results in the relativistic contraction and stabilization of all s and p orbitals [34].  

This effect is significant not only for the innermost electrons, but it also strongly 

affects electrons in s orbitals (and lesser extent p orbitals) in outer shells. The higher 

angular momentum d, f, and g orbitals are farther from the nucleus and experience 

stronger screening of the nuclear attraction by s and p shells and hence are less 

affected by relativistic contraction. Therefore the d and f shells will undergo 

relativistic expansion and destabilization. These relativistic effects scale roughly with 

Z 2 and become important for elements heavier than the lanthanides [35]. 

Gold (Z = 79) is the last stable element present in the periodic table among the other 

stable elements (mercury, thallium, lead, and bismuth). The electrons of the gold atom 

experience an intense electrostatic attraction due to the presence of 79 protons in its 
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nucleus. The yellow appearance of bulk gold is attributed to strong relativistic effects 

exhibited by it. Due to the relativistic contraction of s orbitals in gold, the energy 

levels shift closer to d orbitals (which are less affected by relativity). This shifts the 

light absorption (5dĺ6s transition) from the ultraviolet down into the lower 

frequency blue visual range. Therefore gold absorbs blue light more than the other 

visible wavelengths of light, this makes a piece of gold appear yellow (under white 

light) to human eyes. A non-relativistic gold would be white. 

While in Ag similar  transition occurs, but  because of the relativistic effects the 4d-5s 

distance in Ag is  much greater than the 5d-6s distance in Au; hence silver appears 

white. The relativistic effect has raised the 5d orbital and lowered the 6s orbital [36]. 

Another important impact of a relativistic effect is the initial resistance of gold 

towards oxidation. Due to the relativistic contraction of 6s orbital toward the nucleus 

and stronger electrostatic attraction of the 79 protons in the nucleus, the “atomic 

radius” of gold reduces considerably. Only the strongly reactive substances can tug 

gold's 6s
1 electron out from where it's place. The importance of relativistic effects in 

gold has been a topic of theoretical and experimental research for a long time [36-39].  

1.4  Structure of Gold 

Bulk gold is soft, yellow metal with the face centered cubic crystal structure, its 

melting point is 1068oC and has excellent electrical conductivity. But at nanoscale 

some these properties tend to change, these changes are exploited in field of 

nanotechnology [40]. Due to lack of translational symmetry the structure of 

nanoparticles is different from the bulk structure of the same materials. This results in 

a complicated competition in energetic stability of various structural motifs. Thus, it is 

important to characterize both experimentally and theoretically the structure of 

nanoparticles. Due to its electronic configuration, bulk gold is a good conductor of 

electricity, with its conductivity only beaten by copper and silver.  But at nanoscale 

the gold structures, depending on shape and substrate, can actually be semi-

conductors [41].  The study of structures of gold nanoclusters of various sizes and 

their impact on the various properties such as electronic, optical etc is areas of active 

research in cluster science because of possible applications in the nanoelectronic 

devices [42-46]. 

The gold nanoparticles can be amorphous or may have various morphologies, 

including decahedra, truncated-octahedra, or icosahedra for different sizes [47]. The 

icosahedral and decahedral structures are non crystalline and have five fold symmetry, 
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hence can not be packed together to make macroscopic crystal. These structures are 

only found to exist at nanoscale. Also the surface effect becomes significant at 

nanoscale; therefore the internal energy must be minimized with respect to electronic 

configuration, surface energy and elastic strain resulting in the change in the structure 

of gold. It has been observed that icosahedron yields an efficient compromise between 

surface energy and packing density [16].  

1.4.1 Magic geometric numbers and magic electron numbers 

The bulk state adopts a packing arrangement which minimizes its free energy. At 

nanoscale, the atoms in clusters have a tendency to minimize surface-to-volume ratio 

to form closely packed, high-symmetry cluster structures. These high-symmetry 

structures are constructed from specific shells of atoms called as geometric shells.  

If a number of atoms that can be packed complete the geometric shells of a high-

symmetry structure, it is said to be magic geometric number [48].  

For example, icosahedral structures (Ih symmetry) are constructed from one central 

atom surrounded by geometric shells consisting of 12, 42, 92, 162, etc. atoms. Thus 

the respective magic atom numbers are 1 + 12 = 13, 13 + 42 = 55, 55 + 92 =147, 147 

+ 162 = 309, etc.The structures with an octahedral symmetry (Oh) have face-centred 

cubic (FCC) packing. There geometric shells can be completed in two ways. The first 

way is the formation of the cuboctahedral geometry having the same magic atom 

numbers of the icosahedra: 13, 55, 147, 309, etc. In the other way, a basic octahedron 

is built from 6 atoms, and the larger clusters are constructed by surrounding that 

central octahedron with the subsequent shells of 38, 102, 198, etc. atoms, resulting in 

octahedral clusters with the respective magic atom numbers are 6, 44, 146, 344, etc.  

On removing the corner atoms from the octahedral, we get a truncated-octahedral. 

The truncated-octahedral species can be either cuboctahedral geometry which has 

triangular (111) facets or the plain called truncated-octahedral geometry which has 

hexagonal (111) facets. The magic atom numbers for the truncated octahedral 

geometry are: 38, 116, 260, etc. 
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Figure 1.3 Few high-symmetry clusters having the geometric shells completed with 
the magic numbers: 147-atom icosahedron, 147-atom cuboctahedron, 116-atom 
truncated octahedron, 146-atom octahedron,  
 

According to quantum mechanics, electrons within clusters occupy different energy 

levels. These energy levels form electronic shells in clusters. The jellium model [49] 

is used to describe the electronic distribution for a cluster. It assumes a spherical 

charge distribution and considers the positive charges of the nuclei as a uniform 

positively charged background.  

In the jellium model, each electron moves in a potential field which resembles that of 

an isotropic harmonic oscillator, allowing the analytic solution for the single-electron 

Schrödinger equation. The electronic shells are determined as the energetic sequence 

of eigen functions: (1s), (1p), (1d, 2s), (1f, 2p), (1g, 2d, 3s), etc. The Pauli Exclusion 

Principle governs the occupations of orbital electrons, yielding the magic electron 

numbers: 2, 8, 20, 40, 70, etc., for the completion of the respective shells [46]. Fig. 

1.4 shows the jellium electronic shells and the corresponding magic electron numbers 

corresponding to the Schrödinger equations for one electron with spherical symmetry, 

interacting electrons with spherical symmetry, and interacting electrons with 

octahedral symmetry. 

1.4.2 Magic clusters of Gold   

According to various studies gold at nanoscale can adopt a wide variety of structures. 

The structure of gold nanoparticles plays an important role in determining their 

physical and chemical properties. The gold clusters containing fewer than 15 atoms 

prefer to form flat planar structures [50]. The spherical structures become favorable  

when the total number of valence electrons in the cluster is equal to or near the value 

of 2, 8, 18, 20, 32, 50, 72,..., 2(L+1)2 electrons, where L is an integer.  
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Figure 1.4 Energy levels in the jellium model [46]. 

Yadav et al. have reported a magic magnetic cage cluster of gold, Gd@Au15, using 

first principle approach. They have called it a magic cluster as Gd atom being 

trivalent, when doped into Au15 cluster it imparts extra stability within the 18 valence 

electron rule [51]. Another gold cluster exhibiting closed shell magic structure is 

Au20. It has a highly symmetric and unique tetrahedral structure whose every atom 

lies on the surface [52]. Even if one atom is removed to form Au19, its tetrahedral 

symmetry is still retained. It is proposed to be found in chemically synthesized 

Au20(PPh3)8  clusters [53,54]. 

 

   

Figure 1.5 The tetrahedron (Td) ground-state of gold Au20 cluster. 
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1.5 Pure Gold clusters  

The properties of nanoparticles are known to change with its size and shape. The 

structures of gold nanoparticles are found to be very different from those of other 

noble metals. Gold is known to have unique properties due to inclusion of the strong 

relativistic effects and aurophilic attraction (stronger tendency of gold to form close 

metal-metal interactions) [55]. Intensive experimental [56-61] and theoretical [62-70] 

efforts have been made to study their chemical and physical properties.  

The synthesis of colloidal solutions of passivated Au nanoparticles using thiolate 

ligands has encouraged further studies [71, 72]. These clusters are relatively stable 

and can be easily manipulated for experimental observations. 

To understand the different structures and other unique properties of gold clusters, 

different techniques have been used to probe their structures. Theoretically, different 

approaches such as an ab-initio density functional theory (DFT), empirical and semi 

empirical-based molecular dynamics (MD) calculations are used to investigate the 

structural, energetic and electronic properties of gold clusters. 

The semiempirical potential calculations makes the use of Gupta potential (GP), 

Murrell- Mottram (MM) potential, embedded-atom-method (EAM) interatomic 

potential, and Sutton-Chen (SC) potential to describe the interactions in Au clusters. 

The MM potential predicts that geometries of Au2–40 clusters to be distributed on 

octahedron, decahedron, icosahedron and hexagonal prism [73]. The SC potential 

predicts compact structures for Au2–80 clusters [74].  

The two-body interactions like the Lennard Jones (LJ) or Morse potential also favor 

compact cluster structures [75]. The two body potential such as LJ may not sufficient 

to adequately model the metallic clusters with increasing cluster size. It requires 

including all n-body forces in an effective many-body potential such as in the Sutton-

Chen or Gupta potential. However the n- body potentials are found to be 

computationally expensive because of their many body character. 

 A comparative study of gold clusters up to 200 atoms was performed using GP and 

SC [78]. The potential parameters were obtained by fitting the properties of bulk Au 

to experimental-fitted (exp-fitted) parameters of Wu et al. [76, 77]. Furthermore, for 

SC potential, parameters fitted by DFT were also used to determine the lowest energy 

structures. It was observed that for Au clusters with n = 3–11, 13–19, 26, 30, 33, 35, 

37, and 38, both SC and GP predicts same motifs however; there exists energy 
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difference for the two potentials. Results also showed that in Au100–200 clusters, the 

dominant motif for both potentials is decahedral. In another study the magic clusters 

Au38, Au55 and Au75 were studied  using Gupta potential and were found to have 

amorphous-like, face-centered-cubic (fcc), and decahedral structures, respectively 

[79,80].   

The Jahn-Teller and spin-orbit effects are found to play  an important role in 

predicting the lowest energy structures of  gold clusters, e.g.,  the lowest energy 

structure of the gold trimer (Au3) [81] or the anion 20-gold cluster (Au20
-1) [82]. The 

use of any potential will give an ideal triangle as the lowest energy geometry for the 

interaction between three atoms and an ideal tetrahedron for the interaction between 

four atoms. But in the case of metal clusters it is different. The bonding in 

homonuclear coinage metals ground state is due to single s electron on each atom and 

their d orbitals are involved in electron correlation and spin–orbit effects. The heavier 

trimer such as Au3 cluster retains its D3h symmetry due to large spin–orbit 

stabilization and does not undergo a Jahn–Teller distortion which would have reduced 

the symmetry to C2v  [83]. It was suggested by Bersuker, that spin-orbit coupling 

could dominate the Jahn Teller distortions [84]. Thus it suggests that the gold clusters 

do not follow the pattern predicted by Lennard-Jones, Morse or Gupta potential, all 

favoring a maximum number of close atom–atom contacts.  

Another aspect which is not explained by semi empirical potentials is the onset of 2D 

geometries in small Aun clusters. It is observed that the transition from two-

dimensional to three-dimensional structures occurs at n >13 in Aun clusters [50, 64]. 

The preference for planarity in gold clusters cannot be explained by the many-body 

potentials, such as the Gupta or Sutton- Chen potential [85]. The preference for 

planarity of small gold cluster compounds has been attributed to the relativistic effects 

[86]. The GP or other similar potential cannot account correctly for many-body 

effects and the relativistic effects which are important to obtain the correct shape and 

structures of small to medium sized gold. To include the many-body effects in gold 

clusters, their preference for planarity and to study their electronic properties we use 

DFT.  

There is a vast literature  available on theoretical investigations of electronic and 

structural properties of small, homonuclear, neutral, and ionic gold clusters using  

density functional theory (DFT) or ab initio methods. Structures and energetics of 
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neutral and ionic gold clusters ±
nAu  up to the decamer are discussed in Refs. 87 - 91. 

A two dimensional to three dimensional transitions in small gold clusters is widely 

discussed and studied. Wang et al. [68]  using DFT calculations have found planar 

structures (2D) for gold clusters up to n= 6 and more compact spherical structures 

(3D) starting n= 16, and flat cage-like structures in-between, while Fernandez et al. 

[92]  found 2D structures up to Au11 using DFT/GGA with the transition from 2D to 

3D occurring at Au12. In contrast, the 2D/3D structural transition for Cu and Ag occur 

at n=6. Landman et al. have observed that Cu7
− and Ag7

− have compact 3D structures, 

while Au7
− is planar. It was found that this is due to relativistic effects as non 

relativistic Au7 would behave similar to copper and silver [86]. Koskinen et al. 

studied the dynamics of Aun
-
 (n= 11–14) and showed the co-existence of 2D and 3D 

structures at finite temperatures [93]. In general, different studies including the 

systematic searches for the global minimum structures of larger cluster sizes, predicts 

the two- to three dimensional 2Dĺ3D transition to occur at n ≥13 [50, 94, 95]. 

However, the results are ambiguous and sensitive to the method chosen. Hence the 2D 

ĺ3D transition in neutral Aun is predicted to occur somewhere between n=13 and 15. 

Similar trends are found for the cationic and anionic gold species [89, 96]. The strong 

relativistic and spin-orbit (SO) coupling effects in gold make it theoretically very 

challenging to determine the true global minimum structures of even relatively small 

gold clusters.  Therefore, state-of-the-art experimental data, in conjunction with 

extensive theoretical studies, are needed in order to obtain unequivocal structural 

information of gold clusters. 

Experimentally, the first molecular-beam experiment was conducted on gold clusters 

using a liquid metal ion source to generate small singly and doubly charged cluster 

cations. The ion-intensity distributions showed structure dependence on size [97, 98]. 

The experimental photoelectron spectra (PES) of Aun have been reported by Taylor et 

al. [99]. Nowadays  a  number of modern experimental techniques have been used to 

study size-selected gold clusters, such as ion mobility [64], photoelectron 

spectroscopy (PES) [56, 100], infrared multiphoton dissociation spectroscopy [53, 

102], and trapped ion electron diffraction (TIED)[103, 104]. Recently, using Ar- 

tagging, the coexistence of both the 2D and 3D isomers in the cluster beam of Au12
- 

has been shown and also obtained isomer-specific photoelectron spectra for this 

critical cluster [105].  
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The next important gold cluster is Au20 (Fig. 1.4). It was found by PES and DFT study 

that Au20 adopts tetrahedral structure with a large HOMO-LUMO gap. It was 

identified by Wang et al.and has been recently confirmed by Apra et al. [106-108]. It 

is a very ordered structure with no internal atoms and can be understood as a small 

section of fcc-bulk gold cut along four intersecting close packed (1 1 1) planes. It 

gives a deep minimum on the potential energy surface isolated from its isomers and 

has a well-defined melting point with a melting temperature comparable to bulk gold 

[109]. In contrast, the other isoelectronic metals such as Cu20 and Ag20 have 

amorphous-like 3D structures. The difference is attributed to strong relativistic 

effects, which enhances s-d hybridization in gold [92]. The tetrahedral motif can be 

found in other metal clusters also. Johansson and Pyykko [110] have shown its 

presence in cadmium for the first five clusters containing 4, 10, 20, 35, and 56 atoms 

using first principle method. The image showing 20 atoms of gold bound together to 

make a tetrahedron have been developed by Scientists at the University of 

Birmingham by using a special probe beam to image is shown in Fig. 1.6 [108].  

 

Figure 1.6 The tetrahedron of 20 gold atoms. Image credit: University of Birmingham 
 

There have been increasing research efforts directed toward the exploration of 

structural evolution of gold clusters in the size range of 20 < n < 55. Previous 

theoretical studies have suggested the existence of highly symmetric hollow-cage 

structures Au32, Au42, and Au50 as well as hollow-tubular structure Au26 [111-116].  

Bulusu et al. [117] have conducted a joint theoretical and experimental study of low-

lying structures of gold cluster anions Aun
- in the size range of n = 21-25. For n = 21-

24, they have found that the pyramid-based structures are competitive for n = 21-23 

and the hollow-tubular structures dominate at n = 24. They found that at n= 25 a 

structural transition from hollow tubular to core/shell compact structure takes place.  
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The tubular structure of Au24 has been verified by Xing et al. and Zeng’s group with 

different experimental techniques [117, 118]. The tubular Au24 structure can be used 

to accommodate a guest atom to form a new kind of endohedral tubular gold cluster. 

A joint experimental PES and theoretical study predicts a core/shell compact structure 

for the anion Au32
- [119]. The Au32 known as first gold fullerene, has an icosahedral 

symmetry with a large energy gap of 1.56 eV. It has high stability and was predicted 

theoretically by Gu et al. [112]. Another important gold clusters which has been 

studied both experimentally and theoretically is Au55, so-called 'magic number' 

cluster. It contains the right number of atoms for very stable geometries, making it 

ideally suited to catalysis [120]. A catalyst consisting of 55 atoms a gold cluster was 

developed by Lambert et al. is shown in Fig. 1.7 [120]. In PES study of Cu−n , Ag−n 

and Au−n clusters with n =53-58,  Hakkinen et al. have found that structure of Cu55
- 

  

and Ag55
- exhibit icosahedral symmetry while Au55

- structures found to have lower 

symmetry. This behavior is related to strong relativistic bonding effects in gold [121].  

 

Figure 1.7 Showing catalytically active Au55 nano clusters  

 

The Au72 using DFT and MP2 calculations, is shown to exist as a hollow nanosphere 

having an Icosahedral symmetry. A recent study has shown that could [122]. As the 

size increases, the gold cluster shows a more metallic behavior. As confirmed in a 

recent study with the increase in size, the cage like structures is not favored in energy 

owing to the low coordination [123].  

In an experimental study of structure of 38, 75, 101, 146, 200, 225, and 459 Au 

nanoclusters were found to consist of ordered core structures. For 38, 225, and 459 

atom gold clusters were found to have fcc truncated octahedral motif while the rest 

had the truncated decahedral motif [72, 124]. Currently there are no experimental 

techniques that can determine the structure of a cluster directly and unambiguously. 
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This can be achieved using various theoretical methods. The current theoretical 

approaches come with limitations which do not make it easy to predict the ground 

state geometry with absolute certainty because clusters can have numerous low lying 

isomers protected by energy barriers. As cluster size increases, the number of 

structural isomers on the potential energy surface increases exponentially and search 

for the ground state geometry becomes a very difficult task. 

1.6  Doped Gold Clusters 

Doping clusters with a foreign atom offers an additional dimensionality to fine tune 

their structures and properties. The introduction of a dopant atom in a coinage metal 

cluster can change its structural and electronic as well as magnetic properties and 

improve their stability significantly [125-128]. To enhance the stability of gold 

clusters and tailor their physical and chemical properties a large number of theoretical 

and experimental studies have been carried out on Au clusters doped with various 

dopants. These bimetallic clusters can have potential utility in new nanomaterials as 

building blocks. There have been many studies of M@Aun clusters, especially for 3d 

Transition metal impurity. 

It all started with the prediction of a highly stable icosahedral cluster, constructed by 

12 gold atoms with an encapsulated impurity atom at centre, M@Au12 (M = W, Ta−, 

Re+) which was predicted by Pyykko and Runeberg and was later confirmed 

experimentally [129, 130]. The stability of these gold-covered clusters has been 

attributed to relativistic effects and aurophilic attractions [55]. Since then there have 

been lot of theoretical studies on doping of gold clusters with different elements. The 

electronic structure and magnetic properties of transition metal- doped Au clusters 

M@Au6
- (M = Ti, V, Cr) was investigated by Li et al. using PES and DFT 

calculations [131].  

A systematic investigation was carried out by Meng et al. [132] on the geometries and 

electronic properties of 3d, 4d, and 5d impurity doped Au6 clusters by using 

relativistic all electron DFT calculation. It was found that the ground state for all the 

M@Au6 clusters is with transition metal atom placed at the centre of an Au6 ring.  

As discussed earlier that Gold clusters with n up to 15 atoms have planar structures 

and thereafter three-dimensional (3D) structures become favorable. It has been found 

by introducing a suitable impurity in gold clusters we can have an early onset of 3D 

structures. A magic magnetic cage cluster of gold, Gd@Au15 is found to be potential 

candidate for cancer therapy and possessing a large magnetic moment of 7 µB could 
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be beneficial for magnetic resonance imaging [51]. With Gd doping, we find that the 

GdAun clusters favor 3D structures beyond n=9 as their lowest in energy structure. 

The magic number cluster containing 20 gold atoms (Au20) with tetrahedral pyramidal 

structure is a highly stable and chemically inert cluster. A natural question to ask 

would be how the high stability and chemical inertness associated with Au20 are 

altered when it is doped with a metallic atom. Pal et al. [133] have studied the effect 

of substitution by Ag and Cu atoms on the structural and electronic properties of gold 

clusters using a combination of PES and DFT. They have found that overall effect of 

the isoelectronic substitution is minor on the structures except that the dopant atoms 

lower the symmetries of the doped clusters. The structural and electronic properties of 

Au19X clusters doped with Li, Na, K, Rb, Cs, Cu, and Ag have been studied by 

Ghanty et al. [134] using relativistic density functional theory. They found that 

endohedrally doped Au19X clusters (X = Li, Na, and Cu) have binding energies 

comparable to those of the corresponding exohedrally doped clusters while the 

endohedrally doped cage-like structures of larger atoms (X = K, Rb, Cs, and Ag) are 

found to be less stable than the corresponding exohedral structures.  

Another group of interesting elements which would be doped in gold are the group 14 

elements C, Si, Ge and Sn. Theoretical and experimental studies had already shown 

that the Si and Ge as well as Sn atom doped into the sixteen-atom golden cage cannot 

form a stable geometry. The dopant atom is found to be either exohedral (Ge and Sn) 

or it becomes a part of the gold cage (Si) [135,136]. A detailed theoretical study of the 

structural and electronic properties of CAuq
16 (q = −1, 0) was conducted by Fa et al. 

[137]. They have found that the endohedral structures of both neutral and anionic C-

doped gold clusters are not the most stable configurations but they rather are distorted 

closed flat cages. In another theoretical study by Walter it is suggested that the 

endohedral doping of the Au16 cage by Al or Si yields a geometrically robust, 

tuneable oxidation and reduction agent [138]. While doping the hollow golden cage 

Au16
- with Si, Ge etc prefers  an  exohedral geometry, the Cu atom (or a Ag atom) 

results in the endohedral cluster Cu@Au16
- (or Ag@Au16

- ) causing little structural 

deformation to the original golden cage [139]. Thus the doping of group 14 elements 

may have different effect on the structural   and other physical as well as chemical 

properties of gold clusters in comparison with transition metal.  

In this thesis effect of doping of different elements i.e, both transition elements and 
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group 14 elements on gold clusters will be investigated.  

1.7  Gold Nanotube and Nanowires 

To  exploit the different size dependent properties  of gold, efforts have focused on 

creating nanostructures of various geometries such as nanorods [140,141], nanorings 

[142], nanowires [143 ] where the controlled variation of dimensions has been shown 

to permit the changes in different properties. Nanotubes have one of the highest aspect 

ratios of any objects in nature. Their length can exceed several millimeters for 

diameters down to less than a nanometer. Similar to CNT, the gold nanotube can be 

made by rolling up a sheet of gold triangular lattice. The notation n, m denotes the 

chiral vector C=na1+ma2 where a1 and a2 are the basis vectors of a two-dimensional 

gold triangular lattice (Fig. 1.8). The (5, 5) gold nanotube has enough hollow space to 

accommodate a monoatomic chain (MAC) inside and has been predicted to be the 

most stable tube theoretically [144]. 

An experimental study using UHV-TEM has confirmed the formation of Pt and Au 

single-wall nanotubes (SWNT). The Pt tubes were found to consist of 5 or 6 atomic 

rows helically coiled around the axis of the tube [146] while gold’s SWNT was 

observed to be composed of 5 helical strands [147]. Sen et al. have conducted a DFT 

based study on the nanowires of different types of elements, such as alkali, simple, 

transition and noble metals and inert gas atoms, having a stable structure made from 

staggered pentagons with a linear chain passing through their centers. 

 

Figure 1.8 The gold SWNTs obtained by cylindrical folding of the 2D triangular 
lattice. The tube circumference is |C|, and radius R = (n2 + m2 -nm)1/2 / |a1

2|, where n of 
tube are the  helical strands and m defines the chirality.  
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They have found all nanowires of different elements except Xe, are metallic in the 

pentagonal structure [148]. In another first principle study by Senger it was shown 

that free-standing gold chiral (n, m) tubes with 3  ≤ n ≤ 5 are stable and exhibit novel 

electronic and transport properties [149].  

 

Figure 1.9 Tubular structures of gold [149] 

 

One-dimensional nanowires or monoatomic chains (MAC’s) have also attracted much 

attention in recent years because of their broad applications in different areas, such as 

in nano-mechanical and nano electronic devices. Metallic nanowires with well-

defined structures several nanometres in size have been fabricated by using various 

methods [150-153]. The formation of monoatomic chains of metal was observed and 

studied by both experiments and MD simulations [154 - [156].  

The freestanding MACs are metastable and hard to be used directly in application 

[157]. So the application of MACs would require stabilizing them without 

significantly changing their unique properties. One of the solutions could be to 

encapsulate them into a stable tubular structure [158-161]. The strong tube-TM 

interaction is expected to modulate the electronic structures of the guest atoms to 

enhance their magnetic properties In an interesting DFT study by Zhu et al. of the 

magnetic properties of gold nanotubes encapsulating transition metal (TM=Co and 

Mn ) and monoatomic chains  TM@Au , it is found that the TM chains can be 

significantly stabilized with a  gold nanotube coating [162].This work has motivated 

us to study the encapsulation of MAC’s within a gold nanotube and study the changes 

it brings in the different properties. 

1.8 Work done and its scope  

The present study gives an insight to the interesting world of gold nanostructure and 

the effect of doping on it. The work involves the DFT study of structural and 

electronic properties of pure gold clusters and gold clusters doped with different 

impurities such as Cu, Ag, C, Si and Ge. We have also studied the tubular gold 
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structures, monoatomic chains of gold and finally presented a brief review on the 

phonon dispersion of gold nanotube. A combination of semi empirical and first 

principle approach is used to study the optimization of structures of gold clusters upto 

14 atoms and study the relativistic effects on their geometry. 

A detailed DFT study has been conducted on the changes in the structural and 

electronic properties of gold nanostructure on doping them with transition elements 

such as Cu and Ag and with group 14 elements such as C, Si and Ge. The size of gold 

nanostructures studied lies over range of small clusters upto intermediate size i.e., 3 ≤  

n  ≤ 60. It is well known the properties of nanoclusters changes with size and with the 

introduction of impurity atoms. It will be interesting to explore the changes in 

structures and other related properties of gold nanoclusters for their application as 

novel material. 

1.9 Broad outline of the Thesis 

A systematic study of gold nanoclusters, nanotubes and nanowires and the effect of 

impurity on their structural and electronic properties have been conducted. The 

computational methodology is a combination of a semi empirical approach and 

density functional theory, which is used to study optimization of the geometrical 

structure of pure gold clusters. Effect of doping of different foreign elements on the 

structural, electronic and vibrational properties of gold clusters is studied using DFT.  

In this thesis, we discuss some of the properties of doped nanostructures in detail. 

In Chapter 1, gives the general introduction to different gold nanostructures and 

discuss the effects of doping on the structural, physical and chemical properties of 

these nanostructures. The work done in this field till date is also reviewed here in 

details. The computational methodology used in our thesis is discussed in Chapter 2. 

The Semi empirical approach- The Gupta potential  and the first principle methods 

based on density functional theory (DFT) have been employed for the calculations 

carried out in this work The Chapter 3  addresses the issue of  relativistic effects  on 

the low lying geometries of small gold clusters. The two approaches predict different 

lowest geometries  for gold clusters for n ≤ 13 .The  GP predicts the early onset of 3D 

geometries while  the DFT predicts planar structures for n upto 13.   

Chapter 4 gives a systematic DFT study of endohedral doping of Si and Ge atoms in 

gold clusters. It is found that the doping of silicon and germanium atoms in Aun 

clusters, results in early onset of 3D geometries. The binding energy per atom Aun+1 
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cluster shows an increase with the introduction of Si and Ge atoms. The binding 

energy per atom of germanium doped clusters was found to be smaller than the 

corresponding silicon doped gold clusters.  

In Chapter 5 we have carried out a DFT study of   M12@Au20 (M= C, Si and Ge) 

clusters. Pure Au32 cage is found to be chemically inert with HOMO-LUMO gap of 

1.59eV. It is seen on doping of Au32 cage the HOMO–LUMO gap reduces, making it 

chemically reactive. 

In Chapter 6, we have explored the effect of encapsulation of small chain of Cu and 

Ag atoms within Au24 tubular cage. In general, the Cu doped Au24 tubular cages are 

more stable than the Ag doped cages. 

The Chapter 7 describes the results of our systematic study of structural and electronic 

properties of of the tubular XMAuN (X= Si, Al and Au, M=3, 6, 9 and N= 24, 42, 60) 

clusters. It was found that the encapsulations of Si and Al atoms do not destroy the 

tubular frameworks of the gold host .  

The  Chapter 8  describes the  DFT study of  the stretching of small monoatomic 

chains of gold and calculates their breaking force and modulus.The  results were 

compared with similar calculations done  using GP. 

In  Chapter 9, we have presented an algebra based on calulation of force constants to 

study the phonon dispersion relation for gold nanotube. Chapter 10 gives the 

summary of the work done in this thesis and its future scope. 
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Chapter 2 

2. Computatoional Methodology 

2.1  Introduction 

A study of cluster structures can be termed as the study of stable structures as only 

later can be used for practical applications of nanoparticles. Moreover, the structure 

influences the different   physical and electronic properties of the nanoparticles. . 

The optimization of geometry is one of the central problems of cluster studies. A 

cluster at a given finite temperature, with a given size and composition, can have 

different structural states (isomers), that is, meta-stable states and the most stable state 

(thermodynamic equilibrium structure) which can be described as local minima (LM) 

and the global minimum (GM), respectively, on the potential energy surface. Solving 

an optimization problem means finding the GM – the structural state having the 

lowest potential energy, as well as low-lying LM. As the cluster size increases the 

optimization becomes more difficult due to an exponential increase in the number of 

minima with cluster size [1]. 

Two different approaches are used for the optimization problems: ab initio and non-ab 

initio. The first principle or ab initio methods apply many-body quantum theories 

such as Density Functional Theory (DFT) to calculate the properties of a system from 

first principles with no parameterization. Despite their high accuracy, ab initio 

calculations for large clusters (consisting of hundred of atoms or more) are 

computationally expensive [2]. The non-ab initio approach (i.e., the empirical or 

semi- empirical approach) involves the use of empirical atomistic potentials which 

have parameters fitted to experimental data. 

There are two different models of atomistic potentials which are often used in cluster 

studies: pair-wise potentials, such as the Morse potential and the Lennard-Jones, and 

many-body potentials, such as the Gupta and Sutton-Chen potentials. The main 

difference between the many-body potentials and pair wise potentials is that the 

interaction between two atoms is not only dependent on two atoms, but also upon 

their local environment. [1, 3, 4]. 

As discussed in the Chapter 1, we will be mainly studying gold clusters, nanotubes 

and nanowires. We have used a combined empirical and ab initio approach to study 

structural and energetic configurations of pure gold clusters. 
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Gupta potential (GP) have been widely employed to determine the different 

configurations of gold nanoclusters of various size ranges [5, 6]. The empirical 

approach is preferred in order to overcome the computational limitations imposed by 

more computationally expensive first principles approaches The GP is suitable and 

versatile for modeling noble and quasi-noble metals. However, in order to study 

electronic effects on the structure, it is important to verify the predictions of the GP 

using first principles calculations i.e., Density Functional Theory (DFT) [7]. 

DFT methods are the most widely used ab initio methods in computational material 

science and solid state physics due to their high accuracy and computational 

efficiency (among the first-principle methods).Since we have used both GP and DFT 

methods in our research, we will discuss both methods in details in the following 

sections. 

2.2 . Gupta Potential- The Semi Empirical  approach 

The potential energy of an N body system can be expanded in terms of interactions 

involving up to N particles. 
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)0(V  denotes the background energy of the system, taken to be zero if there is no 

external field acting on the system. 

)1(
iV  is the energy of isolated atom i and is taken to be zero if the atom is in ground 

state 

)2(
ijV  is the two body interaction between atom i and j there are higher order terms 

)(
...123

N

NV  involving all the particles of the system. 

In pair potential only the interactions between pairs of particles are calculated and the 

summation becomes [8] 
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where ( )ijij rV denotes that the functional form of the potential is dependent on the 

interparticle separation, rij. The effect of the changes in the electron density which 

causes the binding between the two atoms has been averaged into a functional form, 

Vij, which approximates the interactions within the system. 
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The above potential describes the interaction between particles and ignores the 

relation with other particles of the system. But in metallic system the bonding 

electrons are delocalized over large number of atoms and the bonding between two 

atoms depends on the local environment. Hence pair potentials do not give accurate 

description of metallic system leading to the development of many body potentials to 

give better description of interatomic interactions. 

In order to  include the many body character in the bonding scheme one can either 

include the higher terms in potential energy e.g. Murrell-Mottram Potential or through 

dependency on the local electronic density e.g Gupta potential. The many-body 

component into the bonding comes from the local electron density dependence on the 

configuration of the whole system [8]. The potentials those include the many body 

effect are the Embedded Atom Model (EAM), the Finnis-Sinclair potential, the 

Sutton-Chen potential and the Gupta potential .  

2.2.1 Gupta Potential 

We have used many body potential to study the structural stability of small gold 

clusters. This potential has already been used in studying of structural and related 

properties of variety of clusters e.g. Pb, Ni& Ag, Au, Zn, Cd [9-12].  

The many body Gupta potential is derived from Gupta’s expression for the cohesive 

energy of bulk material. It is based on the tight-binding second-moment 

approximation [13, 14]. It includes a repulsive pair term Vij 
r and many body attractive 

term Vij
m                            
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where   rij is the distance between two atoms, A, ro, ȗ,  p and q are the parameters 

fitted to experimental values of the cohesive energy, lattice parameters and 

independent elastic constants for the reference crystal at 0K. 
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The Gupta potential has been parameterized by Cleri and Rosato for a wide variety of 

metals [14].  

2.3. First Principle or Ab-initio methods 

The semi empirical method discussed above relies on the experimental data rather 

than theoretical information whereas the quantum mechanical methods (ab initio, or 

first-principle method) do not use any empirically or experimentally derived 

quantities. One of the limitations of the empirical-potential approach is that they 

cannot tell us the electronic properties of a given material. 

Various quantum chemistry techniques are used in materials science for performing 

the electronic structure calculations and can simulate systems composed of small 

molecules to one thousand atoms up. We can have different quantum mechanical 

methods such as Hartree Fock method, DFT. The methods involve solving of many 

electron Schrödinger equation. 

The time-independent, non-relativistic Schrödinger equation for a system of N   

interacting electrons, (in atomic units): 

             (2.6) 

 

where ȥ is a true many-body wave function of the system which depends on each of 

the spatial coordinates of each of the N electrons; E is the eigen ground state energy 

of the electrons; ri, RI  are the sets of electronic and ionic coordinates with indices i 

and I representing all electrons and ions respectively. 

The Hamiltonian for interacting electrons in a many-body system is given by, 

                                                                                                                                  (2.7) 

 

where   ZI and MI are ionic charges and ionic masses, m is the mass of electron. 

           1st term represents the kinetic energy of each electron,           

           2nd term represents the kinetic energy of ions or nuclei 

           3rd term is the interaction energy between different electrons or Hartree term 

VH, 

           4th   term is the potential acting on each electron due to the atomic nuclei, 

           and 5th term is the interaction energy between ions. 

It is very difficult to solve the many-body Schrödinger equation (2.6) and the 

respective Hamiltonian (2.7), because of the large difference between the masses of 

{ }{ }( ) { }{ }( )iIiI rRErRH
rrrr

,, Ψ=Ψ
∧

∑∑∑∑∑ −
+

−
−

−
+∇−∇−=

∧

JI JI

JI

iI iI

I

ji ji

I

I I

i

i RR

eZZ

rR

eZ

rr

e

Mm
H

,

2

,

2

,

2
2

2
2

2

2

1

2

1

22

hh



 33

⎟
⎠
⎞

⎜
⎝
⎛→

i
ext rV

electrons and the nuclei. Therefore the electrons respond much more rapidly to the 

changes in their surroundings compared to nuclei. In order to simplify the many body 

wave functions the “Born-Oppenheimer Approximation” is used, which treats the 

nuclei adiabatically leading to a separation of electronic and nuclear coordinates in it. 

This decoupling of electronic and nuclear coordinates is then applied to equation (2.7) 

.The stationary electronic state is then described by a wave function ȥ (r1, r2,……,rn ) 

fulfilling the many-electron Schrödinger equation,  
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where   
∧

H is the electronic molecular Hamiltonian, N is the number of electrons and 

U is the electron-electron interaction, E is electronic energy of the system. The term 

4th and 5th of equation (2.7) combines to form a fixed external potential acting             

on electrons due to nuclei. 

Even with this simplification, the many body problem remains difficult to solve. The 

accuracy of these quantum mechanical techniques depends on the effectiveness of the 

methods to deal with many electron system. The many electron system can be 

described using Hartree-Fock (HF) and density functional methods. 

2.3.1 Hartree Fock Method 

The Hartree-Fock method is a variational, wavefunction-based approach where the 

full many-body wave function is replaced by a single Slater determinant. Then the 

wave function can be written as a single Slater determinant: 

(2.9) 

 

Although it is a many-body technique, the approach followed is that of a single-

particle picture. The electrons are assumed to occupy single-particle orbitals making 

up the wavefunction. Each electron feels the presence of the other electrons indirectly 

through an effective potential. Thus each orbital is affected by the presence of 

electrons in other orbitals.The limitation of HF approximation is in order to get 

vanishingly small error; one needs a large number of different Slater determinants. To 

improve up the results one may employ post-Hartree-Fock methods i.e., DFT 
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2.3.2 Density Functional Theory (DFT) 

Density functional theory is among the most popular and successful quantum 

mechanical approaches applied to the matter. It determines the properties of a system 

solely as a function of the electron density. It is widely used for the simulation of the 

electronic structure of clusters, molecules and nanowires [15-17]. It can predict the 

properties of the ground state of any system of electrons. 

Density functional theory (DFT) allows the replacement of complicated N electron 

wave function ȥ (r1, r2, ……, rn) and associated Schrödinger equation by simpler 

electron density ( )rn
r  . 

( ) ( ) ( )NNN rrrrrrrdrdrdNrn ....,....,..... 2121
3

2
3

1
3 ΨΨ= ∗∫∫∫

r
     (2.10) 

The DFT formulism is based on two fundamental mathematical theorems proposed by 

Kohn and Hohenberg in 1964 [18]. 

Theorem I: For any system of interacting particles in an external potential Vext
 (r), the 

potential V
ext(r) is uniquely determined, except for a constant, by the ground state 

particle density no(r). 

Theorem II: A universal functional for the energy E[n] in terms of the density n(r) 

can be defined, which is valid for any external potential V
ext(r). For any particular 

V
ext(r), the exact ground state of the system is the global minimum value of this 

functional, and the density n(r) which minimizes the functional is the exact ground 

state density no(r).Thus, one writes the total energy E of the system as a functional of 

the charge density. 

[ ] [ ] ( ) ( ) [ ] [ ]nEnVdrrnnVnTnE xcH

ext +++= ∫               (2.11) 

 
where T is kinetic energy, V

ext is external potential acting on system including the 

electron-nuclei interaction,  VH is Hartree energy describing electron- electron 

coulomb repulsion 
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and Exc is exchange-correlation energy because it contains contributions from the 

Hartree-Fock (HF)-like exchange of electrons of same spin, and the correlation of the 

individual electrons, due to Pauli repulsion. It was difficult to evaluate the kinetic 

energy of electrons directly from charge density. The potential Vext and the total 

energy E are universal but unknown functionals of the density. 
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 Kohn and Sham (KS) [19] showed that there exists a mapping between the full 

interacting problem and a one-particle problem, in which the one-particle 

wavefunctions give the exact density. They suggested using single electron orbitals 

wavefunctions ȥi to define density as 

                      ( ) ( )
2

,∑ ∑ Ψ=
N

i s

i srrn               (2.13) 

where N is the number of electrons and  kinetic energy of a system of non interacting 

electrons with electron charge density as  
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Kohn and Sham solved the variational problem of minimizing the energy functional  

by applying the Lagrangian method of undetermined multipliers to equation (2.8). 

The Schrödinger equation for N non interacting electrons moving in an effective 

potential can now be written as  
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These equations form the Kohn-Sham orbital equations. This system is then solved 

iteratively, until self-consistency is reached. It starts with an initial guess for n(r), then 

calculates the corresponding Veff  and solves the Kohn-Sham equations for ( )sri ,Ψ  . 

From these one calculates a new density and starts again. This procedure is then 

repeated until convergence is reached.  The steps to achieve self consistency are 

presented in form of a flowchart (see Fig. 2.1). 

The main problem arises in solving equation (2.15), is how to approximate the 

exchange correlation functional Exc[n]. One of the first approaches is the local density 

approximation (LDA) [20]. It states that an inhomogeneous system is treated as 

locally-homogeneous, and the functional is approximated as an integral of the local 

functional ( )nxcε   multiplied with the electron density, over the system volume and is 

given by 

                [ ] ( ) ( ) rdrnnnE xcxc

3∫= ε                                 (2.17) 
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where ( )nxcε  is exchange correlation energy. The local density approximation gives 

exact solutions for a homogeneous electron gas, so it works well for systems in which 

the electron density does not vary too rapidly. 

    

 

Figure 2.1 Flow chart describing a self-consistent cycle for electron density. 

 

The next step beyond the local-density approximation is to include the gradients of 

the density at the point where we want to calculate ( )nxcε  . In a non homogeneous 

system, the exchange correlation potential at the point r depends not only on the value 

of the density at r but also on its variation close to r. This type of system requires 

another approximation known as Generalized Gradient Approximation (GGA) which 

includes the information from the gradient of the electron density [21, 22]. 

[ ] ( )( ) ( ) rdrnrnnnE xcxc

3,∫ ∇= ε                    (2.18) 

In our work, we have used a generalized gradient approximation to the exchange-

correlation energy. There exist quite a number of different parameterizations of LDA 
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and GGA. The local density approximation (LDA) with the Perdew - Zunger 

parametrization of the correlation energy of a homogeneous electron gas was 

calculated by Ceperley and Alder [23]. For GGA, two of the most widely used 

functionals are the Perdew Wang functional (PW91) [24] and the Perdew- Burke- 

Ernzerhof functional (PBE) [25].  

Adding additional constraints to functionals of n, ∇ n, or the kinetic energy density, 

one gets so-called meta- GGA [26, 27] approximations. For our research, we have 

used both GGA-PBE and GGA- PW 91 for the parameterizations of the exchange-

correlation energy. It has been reported in a theoretical study that for the structures 

and energies of gold clusters the GGA functionals provide overall better performance 

than the LDA and hybrid GGA functionals  [28]. 

2.4  Basis Function  

Solving the Kohn-Sham equation (2.15) requires information about the molecular 

orbitals which is represented by some sets of functions called the basis set. These 

functions are usually atomic orbitals. There are different methods which propose 

different basis functions and each method has its advantages and shortcomings at the 

same time. Few of them are discussed here. 

2.4.1 Linearized augmented plane wave (LAPW) basis 

The linearized augmented planewave (LAPW) method [29] is used for solving the 

equations of DFT. It is a variational expansion approach which approximates the 

solutions as a finite linear combination of basis functions. Its methodology includes 

the dividing the unit cell into two parts: spheres around each atom in which the wave 

functions varies rapidly and are atomic-like; and the remaining interstitial region, 

where the wave functions are not atomic-like and are much smoother. Each basis 

function is defined as a plane wave in the interstitial region connected smoothly to a 

linear combination of atomic-like functions in the spheres. The LAPW basis is 

accurate and efficient for the solution of the all-electron ab initio electronic-structure 

problem. However, it is computationally very expensive and is difficult to implement. 

2.4.2 Plane wave (PW) method 

The plane wave (PW) basis set is extensively used as it is easy to implement, uses 

simple basis functions and allows systematic convergence. PW basis sets are often 
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used in combination with an 'effective core potential (ECP) ' or pseudo potential, 

hence are only used   to describe the valence charge density. 

In PW basis set, the representation of Kohn Sham orbital would require a continuous, 

and infinite, basis set. Applying the periodic boundary conditions, the orbital may be 

written as  

             ( ) ( ) rGki

G

kiki eGcr ).(
,,

+∑=Ψ                              (2.19) 

where the sum is over reciprocal lattice vectors G and  k is a symmetry label which 

lies within the first Brillouin zone.  

The core electrons are concentrated very close to the atomic nuclei, therefore the 

density gradients near the nuclei are not easily described by a plane-wave basis set, it 

requires the use of very high energy cutoff  
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Thus, the convergence of the calculation with respect to basis set may be ensured by 

variation of a single parameter, cutE . Thus PW offers a major advantage over many 

other basis set choices, as the calculated properties often show extreme sensitivity to 

small changes in basis set.The main disadvantage of the use of a PW basis set is it 

requires a large number of basis functions to accurately represent the Kohn-Sham 

orbitals.  

2.4.3 Localized basis sets 

The plane wave basis functions because of their extended nature over the whole 

system cannot be used in linear-scaling calculations; hence a different choice has to 

be made, in which the basis functions are localized in real-space. The different 

representations of atomic orbitals are Gaussian type [30, 31], Slater type [32] and 

numerical atomic orbitals [19, 33]. Numerical atomic orbital (NAO) are discussed in 

detail in the following section: 

Numerical atomic orbitals 

Numerical atomic orbitals (NAO's) are best suited to linear scaling methods as they 

are very flexible, strictly localized, and only few of them are required for accurate 
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results. The basis orbitals are products of spherical harmonics times numerical radial 

functions centered on atoms: 
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where, I is the index of the atom, m is the angular momentum quantum number, n is 

the number of degenerate orbitals with same l and m, RIlm is the radial part describing 

the degrees of freedom and Ylm denotes the spherical harmonics. The main features of 

a basis set of atomic orbitals are: 

Size: From the nomenclature of Quantum Chemistry, a hierarchy of basis sets is given 

as first-ȟ, second- ȟ orbital, etc. A single- ȟ   (also called minimal) basis set has one 

radial function per angular momenta channel. Radial flexibility is obtained by adding 

a second function per channel called as double- ȟ (DZ). The split valence scheme [34, 

35, 36] is widely used to explain the basis sets and is applied to localized NAOs. 

Range: Cutoff radii of orbitals or the strictly localized orbitals (zero beyond a cutoff 

radius) are used in order to obtain sparse Hamiltonian and overlap matrices for linear 

scaling. The accuracy and computational efficiency of the calculations depend upon 

defining all the different cutoff radii for strictly localized orbitals by a single 

parameter called "Energy Shift”.  It is the energy raise suffered by the orbital when 

confined defines all the cutoff radii [37]. 

Shape: The shape of the orbitals at larger radii depends on the cutoff radius and on 

the localization of the orbitals. The first proposal was an infinite square-well potential 

which has been widely used for minimal bases within the ab initio tight-binding 

scheme of Sankey and collaborators [38]. A new soft confinement potential was later 

proposed [18]. It is flat in the core region, starts of at some internal radius ri with all 

derivatives continuous, and diverges at rc ensuring a strict localization . 

For a given system and basis size, the range and shape of the orbitals are defined as 

described above, depending on parameters: the energy is minimized with respect to all 

of them. 

2.5  Pseudopotential 

Most of the physical properties of solids are dependent on the valence electrons and 

the core electrons (though to much smaller extent). Since the core electrons are 

relatively unaffected by the chemical environment of an atom, their contribution to 

the total binding energy does not change when isolated atoms are brought together to 
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form a molecule or crystal. Therefore the actual energy differences of interest are the 

changes in valence electron energies, and if the binding energy of the core electrons 

can be subtracted out, the valence electron energy change will be a much larger 

fraction of the total binding energy, and hence can be calculated accurately. 

The pseudo potential approximation removes the core electrons and replaces them and 

the strong ionic potential by a weaker pseudopotential. This pseudopotential will act 

as a set of pseudo wave functions rather than the true valence wave functions. 

Another reason for the use of pseudopotential approximation is a very large number 

of plane waves are required to expand the tightly bound core orbitals. Therefore a vast 

amount of computational time would be required to calculate the electronic wave 

functions and perform an all-electron calculation. The pseudopotential approximation 

allows the expansion of electronic wave functions using a much smaller number of 

plane wave basis states. An ionic and valence potential wavefunction and the 

corresponding pseudopotential and pseudo wave function are illustrated schematically 

in Fig. 2.2 

 

Figure 2.2 An illustration of  all-electron (solid lines) and pseudoelectron (dashed 
lines) potentials and their corresponding wave functions. The radius rc, is the cut off 
distance after which all-electron and pseudoelectron values match. 
 
Since the core states are localized in the vicinity of the nucleus, the valence states 

must oscillate rapidly in this core region in order to maintain this orthogonality with 

the core electrons. This rapid oscillation results in a large kinetic energy for the 

valence electrons in the core region, which roughly cancels the large potential energy 

due to the strong Coulomb potential. Thus the valence electrons are much more 
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weakly bound than the core electrons. The pseudopotential is constructed in such a 

way to replace the valence electron wave-functions, which oscillate rapidly in the core 

region, by pseudo-wave-functions, which vary smoothly in the core region [39, 40]. It 

can be from the graph that outside the core region the two potentials are identical, and 

the scattering from the two potentials is indistinguishable. 

The general form for pseudopotential is: 

                                      lmVlmV l

lm

∑=ln                                                 (2.22) 

where, lm  are the spherical harmonics and Vl is the pseudopotential for angular mo- 

mentum l. A pseudopotential that uses the same potential for all the angular 

momentum components of the wave function is called a local pseudopotential [44]. A 

nonlocal pseudopotential uses a different potential for each angular momentum 

component of the wave function.  Local pseudopotentials are computationally much 

more efficient than nonlocal ones.  

A good pseudopotential must ensure that the integrals of the squared amplitudes of 

the real and the pseudo wave functions inside the core regions are identical and are 

equal outside the core region. This is achieved by using a non-local pseudopotential. 

Pseudopotentials of this type are known as non-local norm-conserving 

pseudopotentials and are the most transferable as they are capable of describing the 

scattering properties of an ion in a variety of atomic environments.  

The pseudopotential is not unique, therefore several methods of generation exists. 

One of the methods was proposed by Troullier and Martin [41] which is further 

transformed from a semi-local form into the fully non-local form by Kleinman and 

Bylander (KB) [42]. Another approach was suggested by Vanderbilt [43], involves 

relaxing the norm conservation requirement in order to generate much softer 

pseudopotentials Ultrasoft pseudopotentials attain much smoother (softer) pseudo-

wave functions which use fewer plane-waves for calculations of the same accuracy. 

This is achieved by relaxing the norm-conservation constraint, which offers greater 

flexibility in the construction of the pseudo-wave functions. Other common 

pseudopotentials commonly used in DFT calculations are Effective core potentials 

(ECPs). The ECPs replaces the core electrons in a calculation with an effective 

potential, thus eliminating the need for the core basis functions. In addition to 

replacing the core, they are used to represent relativistic effects, which are largely 

confined to the core. 
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Following   points are to be kept in mind for constructing a pseudopotential  

i. Choice of exchange-correlation potential (LDA or GGA ), relativistic or non 

relativistic. 

ii. Flavor for the pseudopotential construction (Troullier-Martins etc.). 

iii. The valence shell electronic configuration of a free-atom. 

iv. The choice of cut off radii, rc. If the value of rc is too large, its radial     

behavior inside rc may be too different from that of the all-electron function. 

On the contrary, setting rc too short may result in large fluctuations. So it is 

appropriate to choose rc just beyond the last maximum of the all-electron 

function. 

v. Use of core correction is important if a non-negligible overlap occurs                    

between core and valence functions. 

Pseudopotential must be tested before using since it is generated with just one specific 

atomic configuration. A good pseudopotential should be transferable. In our 

calculations, all the pseudopotentials were generated by the Troullier and Martins 

method [41]. 

2.6  Computational Details 

A large number of DFT based codes are available today. These include WEIN2k, 

CRYSTAL, GAUSSIAN-09, VASP, ABINIT, PWSCF, SIESTA and many others. 

The choice of a computational code will depend on the system under consideration   

as some codes are better suited for particular type of problems and materials than 

others. These computational codes can be broadly classified as - all-electron and 

pseudopotential methods. WIEN2k, CRYSTAL, are all-electron methods, which take 

into account, the wave functions of all electrons in each atom, from 1s upwards. On 

the contrary, SIESTA, ABINIT, PWSCF, and VASP are pseudopotential methods. In 

such methods, only valence electrons (some may include so-called semi- core states) 

are explicitly included in the equations, whereas deep core states are excluded from 

the treatment. This is usually accurate enough for describing chemical bonding, 

equilibrium geometry, phonons etc. However, the properties like e.g. hyper fine field 

at atom cores, isomer shift, electric field gradient which depends up on core electrons, 

are not well explained. 
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Another important distinction is the choice of basis functions for expanding the 

solutions of the Kohn-Sham equation. There are three different methods in this 

regard: (i) those which use atom centered bases, and (ii) atom-independent ones such 

as plane waves, and, (iii) hybrid methods, which combine numerical accuracy in intra 

atomic regions with reasonable flexibility in the interatomic region. The codes like 

CRYSTAL, SIESTA use atom-centered bases, commonly called tight-binding group 

of methods; ABINIT, VASP use plane waves, and the basis in WIEN2k is a hybrid 

one. Among the various methods discussed, we have used SIESTA code [45] and 

VASP code for calculating all the structural, electronic and vibrational properties of 

pure and doped gold clusters and nanotube structures. 

2.6.1. SIESTA Code 

SIESTA (Spanish Initiative for Electronic Simulation with thousands of atoms) is a 

computational code based on DFT which calculates ground state properties of the 

systems. This code does not perform many-electron wave calculations and deals with 

electron density which is in many aspects good and reasonable bit is a single 

determinant density. The computational cost for various ab initio quantum mechanical 

codes scales as N3, with the number of atoms N, whereas SIESTA is one of the few 

codes that scales only linearly with number of atoms i.e. "order-N method" [O(N)] 

scaling.  

SIESTA uses the standard Kohn-Sham self-consistent density functional method in 

the local density (LDA-LSD) or generalized gradient (GGA) approximations. It 

employs norm-conserving pseudopotentials in their fully non local (Kleinman-

Bylander) form.  It uses atomic orbitals with finite support as a basis set, allowing 

unlimited multiple-zeta and angular momenta, polarization and off-site orbitals. It has 

some problems in describing Vander-Waals which has been overcome in the recent 

versions interactions and hydrogen bonds. The ATOM program is provided with the 

SIESTA code for pseudopotential generation. The various parameters such as cut off 

radii used for generation pseudopotentials are provided in each respective Chapter. 

The vibrational frequency analysis of the lowest enrgy geometries was done using the 

VIBRA utility provided with SIESTA. It computes the force constants and 

corresponding vibrational frequencies of a given geometry. A geometry is truly 

optimized if the computed vibrational frequencies, 
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• have three acoustic modes with Ȧ < 0.1cm-1 and all other modes have positive 

frequencies.  

•  if some are negative ones, this indicates  bad initial lattice relaxation  

2.6.2 VASP Code 

VASP is a plane-wave all-electron code using the projector-augmented wave method 

to describe the electron-core interaction. It was developed by Georg Kresse and his 

coworkers [46-49]. The code uses fast iterative techniques for the diagonalization of 

the DFT Hamiltonian and allows performing total-energy calculations and structural 

optimizations for systems with thousands of atoms and ab initio molecular dynamics 

simulations for ensembles with a few hundred atoms extending upto many thousands. 

A comparative investigation of the performance of plane-wave (VASP) and local-

basis set methods (using the GAUSSIAN and SIESTA package) in structural studies 

of small gold clusters was performed by Gruber et al.[50].They have concluded that 

relatively lower binding energy of planar clusters provided by SIESTA and 

GAUSSIAN03 which could be a consequence of a lower “effective quality” of the 

basis set for systems .We have used VASP for the optimization of gold nanotubes. 

2.7. Geometric Optimization 

A geometry optimization procedure consists of sampling points on the potential 

energy surface, searching for minima. The technique used to search for the minimum 

is called the optimization algorithm.  In principle, the cluster total energy Etot 

corresponding to a certain structure gives the forces (using Hellmann –Fenyman 

Theorem) [51] 

                                         
R

E
F

∂
∂

−=
r

                                               (2.23) 

and the energy is minimized by allowing the structure to relax to new equilibrium 

position.  

If the total energy does not reach an extremum, the forces will be non-zero and make 

atoms move to a new structure. At an extremum, the forces vanish and a stationary 

point is found. The structure will be accepted as a new optimized one if the extremum 

is a minimum (local minimum). Different methods are provided within the 

computational codes for geometrical optimization such as Monte Carlo, Conjugate 

gradient method, Steepest descent method etc. We will explain the conjugate-gradient 

technique. 
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2.7.1. Conjugate-gradients (CG) technique  

The conjugate-gradients provide a simple and effective procedure for implementation 

of minimization approach. The initial direction is taken to be the negative of the 

gradient at the starting point. A subsequent conjugate direction is then constructed 

from a linear combination of the new gradient and the previous direction that 

minimized the function. This technique, the search direction is generated using 

information about the function obtained from all the sampling points along the 

conjugate gradients path. It is important, however, to implement the conjugate 

gradients technique in such a way as to maximize the computational speed and to 

minimize the memory requirement so that calculations are not limited by the available 

memory. 

2.8. Discussion and Conclusions 

In this chapter, we have described the methodology applied in semi-empirical and 

first principle methods to calculate the properties of nanomaterials. We have 

discussed many body Gupta potential and density functional theory in detail as it 

forms the basis of our work done in this thesis. By minimizing the total energy of the 

system under consideration, the optimized geometries and related properties of 

various structures have been calculated. It has been observed that the choice of 

approach used effect the structural and electronic properties of nanoparticles. 
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Chapter 3 

3. Small Gold Clusters (Aun, n= 1- 14) 

3.1 Introduction 

The gold clusters and their structural, electronic, and other physical and chemical 

properties as well as their size dependence, have been extensively studied both 

theoretically and experimentally [1–8]. The research on gold clusters in the various 

size ranges is motivated by their applications in catalysis, nanomaterials, and 

nanotechnology [9-11]. Various measurements using variety of experimental 

techniques have been performed on Aun nanoclusters for structural characterization, 

corresponding to aggregates with n = 20 -200 atoms [12, 13]. Theoretically, the  study 

on Aun clusters  can be performed using methods ranging  from molecular dynamics 

(MD) simulations based on semiempirical n-body potentials [6,14] to first-principles 

calculations using density functional theory (DFT) [15]. 

 Despite the existence of sophisticated experimental and theoretical tools to study gold 

nanoclusters, there are still lots of unanswered questions regarding the structural 

properties such as most stable cluster configuration, lowest-lying isomers, thermal 

stability, size evolution, etc. [8, 9, 11]. From a theoretical point of view, gold clusters 

offer an additional challenge due to the importance of relativistic effects and strong 

spin-orbit couplings. For an understanding of all the properties of small gold clusters 

it is important to have detailed information on the structural and electronic properties 

of these systems. Despite the progress achieved, there are still many open questions 

for gold clusters. 

Two different approaches can be employed theoretically to study the structure of gold 

clusters-the first principle method and semi empirical methods. The parameter-free or 

first principle study of  electronic -structure, uses special, relativistic potentials which 

predict the  smallest gold clusters  to be planar [16-22]. The exclusion of relativistic 

potential leads to three-dimensional structures [23].  

Though there are a large number of different studies on neutral/charged gold clusters, 

an important question which is still unclear is at what size these clusters change from 

2D planar structures to 3D structures. Häkkinen et al.  [16] suggest that planar 

structures are energetically competitive with 3D structures up to Au14. Walker [21] 

has predicted by correlating the 2D-to-3D transition with a linear extrapolation of the 

energy differences that the transition occurs at Au11 while Xiao and Wang [24] have 
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found that the 2D-to-3D structural transition occurs at Au15. Koskinen et al. [25] have 

observed   experimentally , 3D clusters  in the size range n= 12-14 and suggested that 

GGA calculations predict the correct ground states  within this size range of  gold 

clusters .  The 2D to 3D transition of gold clusters is important to understand the 

energetic competition between open and compact isomers, a problem of considerable 

interest to contemporary electronic structure theory [26]. 

Jain [27]  has predicted  a metastable planar zigzag arrangement of Au atoms  for 

every cluster size n ≥ 5 after studying gold clusters Aun of size n=2–12 atoms with 

density-functional theory  . The influence of ligands on electronic structure of small 

gold clusters (Au2, Au4) has been investigated by Goel et al.using density functional 

theory (DFT) [28] 

The Semi empirical approaches such as the use of Gupta potential (GP) provide a 

useful alternative to the parameter-free methods. They are computationally less 

demanding and allow detailed search in structure space. The many body GP has been 

applied by many theoreticians in unbiased search of structures of gold clusters well 

above 100 atoms. Michaelian et al. have predicted the existence of disordered global 

minima for gold clusters of 19, 38, and 55 atoms in size. They have compared   the 

structure factors of the disordered and ordered isomers of gold with experimental x-

ray powder diffraction data suggesting that the disordered structures are real [29].The 

stable structures of Au clusters up to 200 atoms were studied by Wu et al.using GP 

with experimental-fitted parameters and Sutton-Chen (SC) potential, with both 

experimental-fitted and density functional theory (DFT)-fitted parameters [30]. 

In the present study, we have investigated small gold clusters up to 14 atoms using 

both GP and DFT. The GP describes the interatomic interactions in gold clusters, and 

the potential parameters were obtained by fitting the properties of bulk Au, such as 

the cohesive energy, lattice parameters, and independent elastic constants for the 

reference bulk crystal structure at absolute zero, i.e., experimental-fitted (exp-fitted) 

parameters [31]. The structural and energetic differences for both approaches were 

investigated. 

3.2   Methodology 

3.2.1 Gupta Potential (GP) 

Gupta potential (GP) is adopted for the interactions between Au atoms in Au clusters, 

respectively. This potential is decomposable into a repulsive pair part Vij 
r and an 
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attractive glue/many body term Vij
m terms. The interaction potential of all (N) atoms 

V can be depicted in the following form,  
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where rij is the distance between two atoms  with index i and j. The parameters A, ro, 

ȗ, p and q are fitted to experimental values of the cohesive energy, lattice parameters 

and independent elastic constants for the reference crystal at 0K. The values of the 

parameters are provided in Table 3.1. The GP has been parameterized by Cleri and 

Rosato [31] for a wide variety of metals. 

Table 3.1 Parameters used in Gupta potential 
 

A(eV) ȗ (eV) P q ro(A
o
) 

0.2061 1.790 10.229 4.036 2.884 
 

3.2.2 Density Functional Theory (DFT) 

We have used the well known Spanish Initiative for Electronic Simulation with 

Thousands of Atoms computational (SIESTA) code, based on Density Functional 

theory [32-35]. The electron density functional is treated by the generalized gradient 

approximation (GGA) with exchange correlation functional parameterized by Perdew, 

Zunger and Ernzerhof (PBE) scheme [36]. The core electrons are replaced by a non-

local norm conserving relativistic pseudopotential factorized by Kleimann-Bylander 

form [37]. Relativistic pseudo potential for gold is generated with atomic valence 

electron configurations 5d10 6s1. The core radii (in units of Å) for gold are as follows: 

s (2.55), p (2.98), d (2.22), f (2.00). The valence states were described using DZP 

(double-zeta + polarization) basis sets. The reciprocal space integrations are carried 

out at the gamma point. The clusters are optimized inside a simulation cell of 20 ǖ 

and energy cutoff of 200 Ry. Geometry optimizations were performed with the 

conjugate gradient algorithm and the geometries were considered to be optimized 

when the forces were reduced upto 0.01 eV/Å.  
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We have verified the computational procedure by calculating the ionization potential 

(IP) for a gold atom and performing test calculations on Au2 . The IP of the gold atom 

is found to be 8.90 eV which is in fair agreement with the experimental value of 

9.22eV [38].  

In Table 3.2, we summarize the computed results using GP and DFT , along with the 

experimental values which clearly show that the computed values of bond lengths and 

binding energies (BE) are in fair agreement with experimental values. It can be seen 

from the Table 3.2 that the values computed for Binding Energy and Bond Length 

from DFT are closer to the experimental value. 

Table 3.2 Computed and experimental Binding Energy per atom (BE) and Bond 
Length of the dimer Au2 

 Exp DFT GP 

Bondlength 

(A
o
) 

2.47 
[39]

2.55 2.30 

B E per atom 

(eV/atom) 
1.15 
[39] 

1.43 2.41 

 
The ground state geometries of Aun along with their isomers were manually generated 

and structures reported in the literature were also considered. Each structure is relaxed 

to a desired convergence limit. The harmonic vibrational frequency analysis was 

carried out on the ground state structure to verify the structure. 

3.3 Results and Discussion 

3.3.1 Structures of Au3-14 clusters 

The local minimum structures of Aun (n = 3–14) clusters using Gupta potential with 

exp-fitted parameters and DFT are optimized, which are presented in Fig. 3.1(a) and 

3.1(b), respectively. 

 
  

Au3 Au4 Au5 Au6 

Au7 Au8 Au9 Au10 
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Au11 Au12 Au13  
 

Figure 3.1(a) The optimized geometries of Aun cluster (n=3 -13) obtained from GP  
 

It is found that the optimized geometries of Aun clusters using Gupta Potential are 

three dimensional structures for n ≥ 4. It is seen that though different geometries were 

given as an input for each Aun cluster, all the geometries were optimized to one single 

lowest energy geometry. The minimum energy structure of Au3 cluster is triangle and 

the Au-Au bond distance is 2.47 ǖ. The optimized geometry of Au4 cluster has a 

tetrahedral structure. The configuration of Au5 is triangular bipyramid (hexahedron) 

and Au6 is an octahedron. These results are in agreement in another recent study of 

gold clusters using GP [30]. Contrary to Wu et al. [30] the lowest energy geometry of 

Au7 and Au8 is found to be capped octahedron and a bicapped octahedron respectively 

.The Au9 has tetrahedron motif while Au10 and Au11 have distorted pentagonal 

bipyramidal motif in their lowest energy configuration.  

To obtain the lowest energy isomer of Au12 and Au13, we begin with initial geometries 

such as icosahedron or cuboctahedron. It is found that while the lowest energy 

structure of Au12 is tubular structure with square cross-section, Au13 is neither 

icosahedron   nor cuboctahedron but has an amorphous configuration.  

In order to verify the predictions given by the n-body Gupta potential and gain insight 

into the bonding mechanisms and electronic properties of Aun clusters DFT –GGA 

was chosen. The calculations were performed to solve the standard Kohn-Sham self-

consistent equations in the GGA approximation, using a linear combination of 

numerical atomic orbitals as the basis set. The ground state (GS) configurations of 

pure Aun (n=3 -13) clusters using DFT-GGA are found to adopt planar geometries. 

The occurrence of planar metal clusters of this size is attributed to strong relativistic 

bonding effects in gold that reduces the s-d energy gap, thus inducing hybridization of 

the atomic 5d-6s levels and causing overlap of the 5d shells of neighboring atoms in 

the cluster [40, 41].  

In addition to relativistic effects, the planarity of gold clusters can be explained by 

using GGA level of theory. The lowest energy structure and its close lying isomer are 
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presented in Fig.3.1 (b). The results presented are in agreement with previously 

reported studies [41-44]. 

For Au3 trimer, a triangle with C2v symmetry is found to be more stable than the linear 

chain. The Au4 has a planar rhombus structure with D2h symmetry about 0.22eV lower 

in energy than the planar ‘‘Y-shaped’’ structure. For Au5, the trapezoidal ‘‘W-shape’’ 

structure with C2v symmetry is more stable than the 3D trigonal bipyramid by 0.784 

eV. The global minima structure of Au6 is a planar triangular structure with D3h 

symmetry. It can also be understood in terms of ‘‘W-shaped’’ Au5 capping by an extra 

atom. The 3D configurations such as pentagonal pyramid and octahedron are found as 

local minima for Au6. The experimental photoelectron spectra (PES) study of Au6 by 

Taylor et al. predicts low electron affinity (EA) and large HOMO-LUMO gap, which 

are consistent with the properties of hexagonal structure [45].   

Thus planar equilibrium structures have been obtained for Au4–6 from ab initio 

calculations but were not obtained from GP.  It is worthy of note that the other small 

metal clusters, such as Agn and Cun also adopt similar planar configurations [46]. 

A planar capped triangle with Cs symmetry is the minimum energy structure of Au7 

and is obtained by adding a gold atom to the planar triangular structure of Au6. A 

similar result is reported in other studies [16, 44, and 47]. However, contrary to GGA 

result, a 3D pentagonal bipyramid structure is preferred in DFT-LDA calculations by 

Wang et al. [41].  

The lowest energy structure for Au8 cluster is a planar tetra-edge-capped rhombus 

with D2h symmetry. Both the isomers of Au8 are found to be 2D planar structures. Our 

calculated minimum energy structure is in agreement with those reported in the 

literature [16, 21]. 

The lowest energy structure of Au9 is a ‘bi-edge-capped hexagon structure with C2v 

symmetry as in agreement with others [47, 48] and the lowest energy structure of 

Au10 is a tricapped hexagon having D2h symmetry which is in agreement with the 

result obtained by Walker [21]. 

Our calculations predict Aun with n =11-12 to have two dimensional geometries as 

well.  We have a planar tetra capped hexagon with Cs symmetry as the minimum 

energy structure for Au11 similar to Fernández [48]. The next higher energy structure 

is 3D and is separated by an energy difference of only 0.005 eV from the lowest 

energy configuration. It is also very similar (though not identical) to the one obtained 

from GP (see Fig. 3.1a). Both the low energy structures for Au12 are planar and can be 
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understood as penta capped hexagon. The lowest energy structure of Au12 is separated 

from its next higher energy isomer by 0.272 eV. 

The Au13 cluster is found to have a planar condensed hexagon structure with D2h as 

lowest structure. Hou and coworkers [49] have also obtained similar structure as the 

most stable structure. Interestingly the next isomer has precisely the same structure as 

obtained from GP (see Fig. 3.1a). 

The lowest energy structure for Au14 is found 3D flat cage like structure. Thus our 

calculations predict that the transition to 2D -3D for neutral gold clusters takes place 

at n=14. In contrast, Häkkinen et al.[16] suggest that planar structures are 

energetically competitive with 3D structures up to Au14 while Xiao and Wang [24] 

suggested that the 2D to 3D structural transition occurs at Au15. In general, from our 

calculations we can say that the turn over from 2D to 3D occurs at n=4 in case of 

Gupta Potential whereas in   DFT it occurs at n=14.  

GP does not give the correct lowest energy structures for the small gold clusters. It 

yields only 3D geometries. However for n > 10, the structures predicted by GP turn 

out to be similar to the lowest out of 3D isomers obtained from DFT. Thus, GP is seen 

to be good for gold clusters with larger n, and yields correct 3D structures. 
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Figure 3.1(b) The optimized geometries of Aun (n=3 -14) and their close lying isomer 
obtained from DFT  
  



 56

3.3.2  Energetics 

The binding energy per atom is a measure of stability. The average atomic binding 

energy for Aun clusters can be defined as 

                ( ) ( ) ( )[ ] nAuEAunEnE nTTb /−=     (3.4) 

where ET (Au )  denotes total  energy of Au atom and ET (Aun) denotes the energy of 

the Aun cluster in its lowest energy configuration. The comparison between the 

binding energy per atom of optimized neutral Aun clusters computed with GP and 

DFT are presented in Table 3.3 and plotted in Fig. 3.2. The energies of the next 

isomers computed from DFT are also given in Table 3.3. 

Table 3.3 Binding Energy per atom of neutral optimized gold clusters Aun calculated 
DFT and GP. All values are in electron volts per atom (eV /atom). 
 
Cluster 

Size ,n 
3 4 5 6 7 8 9 10 11 12 13 14 

DFT 

(lowest) 
1.57 1.99 2.16 2.45 2.41 2.54 2.54 2.65 2.65 2.70 2.70 2.78

DFT 

(next 

isomer) 

1.52 1.94 2.00 2.31 2.38
2.54

2.52 2.58 2.64 2.68 2.68 2.76

GP 2.72 2.92 3.01 3.09 3.12 3.14 3.00 3.17 3.19 3.21 3.24 -- 
 

The binding energy of the neutral optimized gold clusters Aun (n= 3- 14) seems to 

increases with increasing cluster size in both GP and DFT case. In general, the 

binding energy per atom computed for Aun cluster from GP is higher than the DFT 

values. It is found that the DFT values are closer to the experimental and other 

theoretical studies. The binding energy computed in our calculations using DFT-GGA 

is still higher than the other similar studies [48].  

This can be due to the unavailability of the Effective core pseudopotential (ECP) for 

gold   in SIESTA or the pseudopotential generated by us may not be good enough. 

Though the binding energies computed are higher but we are able to produce good 

agreements between the various lowest energy geometries of Gold clusters predicted 

by us and other similar studies. Although, structurally the 3D structures from DFT are 

close to those obtained from GP, the stabilization energy values from GP are 

considerably higher. 

It can be seen from the plot, the binding energy per atom increases with cluster size 

and has a maximum value at Au6 in agreement with the results of Hakkinen and 

Landman [19], Xiao and Wang [24]. 
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It indicates that triangular Au6 is more stable than its neighbours. The peaks in the 

DFT graph indicates that even numbered gold clusters are more stable than the odd 

numbered gold clusters. 
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Figure 3.2 The binding energy per atom curve of Aun clusters for n=3-14 using GP 
and DFT. 
 

The second-order difference (∆2E) of the total energy is a sensitive quantity that 

characterizes relative stability of atomic clusters as a function of cluster size for 

different sized Aun clusters. It is defined as  

        ( ) ( ) ( ) ( )nTnTnT AuEAuEAuEnE 2112 −+=∆ −+                              (3.5) 

∆2E as a function of cluster size is plotted in Fig. 3.3 and its shows a comparion of 

DFT calculations with GP. The results from DFT calculations shows odd-even 

staggering with peaks at n = 4, 6, 8, 10 and 12, indicating that these clusters are more 

stable than their neighboring clusters. The exceptionally high stability of Au6 which is 

evident in Fig. 3.2 can be observed from this graph also. Our results are in agreement 

with a relatively recent study on gold clusters [50]. In contrast to the results of DFT, 

the GP calculations gives peaks at n = 3,5,7,9 and 11. This may be attributed to the 

difference in the lowest energy geometeries of gold clusters obtained from DFT and 

GP. While DFT predicts planar structures, the GP gives 3D geometries as lowest 

energy structures for Aun clusters (n < 13). The many body potentials like GP do not 

take into account the directionality of the structure and ignore the electronic structure 

of a given element.  



 58

3 4 5 6 7 8 9 10 11 12 13
-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
ec

on
d 

E
ne

rg
y 

D
iff

er
en

ce
 (

eV
)

Cluster Size, n

 DFT
 Gp

 

Figure 3.3   The second difference of energy (∆2E) of Aun clusters (n=3- 13) with 
DFT and GP calculations 
 

3.4 Electronic Properties  

The size dependent electronic properties of Aun (n= 2 to 14) are investigated using 

DFT. We have calculated the HOMO-LUMO gap, adiabatic ionization potentials, 

chemical hardness, electron affinities and chemical potential. 

3.4.1 HOMO-LUMO gap 

The HOMO-LUMO gap reflects the ability of clusters to undergo activated chemical 

reactions with small molecules. A large HOMŌLUMO gap is considered important 

for the chemical stability. 
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Figure 3.4   The HOMO-LUMO gaps of the lowest energy Aun (n=2 -14) clusters. 
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Fig.3.4 illustrates the HOMO-LUMO gaps of the stable structures of Aun (n=2 -14) 

clusters. The calculated values are presented in Table 3.4. As seen from the plot, the 

HOMO–LUMO energy gap shows an odd–even oscillation for n > 4. The even-

numbered clusters have larger HOMO–LUMO gap and are relatively more chemically 

stable than the odd-numbered neighbors. The HOMO–LUMO gap for Au2, Au6 and 

Au10 is particularly large with an exception for Au3 which also has large HOMO-

LUMO gap. 

The even-odd oscillations of HOMO–LUMO gap can be understood as the effect of 

electron pairing in orbital. Even sized clusters have an even number of s valence 

electrons and a doubly occupied HOMO, while it is singly occupied for odd-sized 

clusters. The electron in a doubly occupied HOMO feels a stronger effective core 

potential due to the fact that the electron screening is weaker for electrons in the same 

orbital than for inner-shell electrons.  

Though the values of HOMO– LUMO gap computed by us differ but the pattern is 

similar to the earlier calculations for small Aun clusters [16, 50, 51]. 

Table 3.4 HOMO-LUMO gap (Eg), Adiabatic Electron Affinity (AEA), Adiabatic 
Ionisation Potential (AIP), Chemical Hardness (Ș) of neutral Gold clusters Aun 
calculated at DFT-GGA level through siesta code (SC). All values are in electron 
volts (eV). 
 
 

Cluster Size, n Eg (eV) AEA AIP Ș 

Au2 1.66 0.52 6.940 3.21 

Au3 1.5 0.88 4.543 1.83 

Au4 0.921 3.08 5.5 1.21 

Au5 1.233 3.94 5.08 1.14 

Au6 2.03 0.97 7.638 6.67 

Au7 1.20 2.31 6.549 2.12 

Au8 1.25 1.75 7.035 2.64 

Au9 1.09 4.11 5.518 0.704 

Au10 1.32 1.83 6.88 2.525 

Au11 0.622 2.57 6.108 3.538 

Au12 0.729 2.46 6.72 2.06 

Au13 0.712 2.94 6.326 1.693 

Au14 0.42 1.75 5.95 2.1 
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3.4.2    Ionization Potential and Electron affinity 

The Ionization potential (IP) and electron affinity (EA) are defined as follows 
 

   ( ) ( ) ( )AuEAuEAuIP TTn −= +
                 (3.6) 

 

 ( ) ( ) ( )−−= AuEAuEAuEA TT                            (3.7) 
           
The variation in adiabatic ionization potential and electron affinity of Aun clusters are 

plotted in Fig. 3.5 as a function of cluster size. An ionization potential is used as an 

important property to study the change in electronic structure of the cluster with size. 

An additional step has been taken to match experimental data more accurately by 

doing the geometry optimization of the cation and anion to calculate the adiabatic IP 

(AIP) and EA (AEA) respectively. The plot in Fig 3.5 shows even–odd alternative 

behavior for both IP and EA. It is found that the even-sized clusters with an even 

number of s valence electrons have larger values of ionization potential compared to 

their immediate neighbours while the vertical electron affinity values also show an 

odd–even alterative behavior but in this case, the odd-sized clusters have higher value 

of electron affinity compared to the even sized ones.  
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Figure 3.5 The electron affinities (EAs) , ionization potentials (IPs) and Chemical 
Hardness (Ș) of lowest energy Aun clusters for   n=2-14 
 

It is seen that our computed values of IP and EA are less than the experimental values 

but the pattern obtained in graph is similar to other previous studies [16, 19]. The 

reason can be non availability of good quality of pseudopotential and basis set for 

gold in our computational code SIESTA. 
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3.4.3 Chemical Hardness  

The Chemical hardness Ș is interpreted as the resistance towards change in number of 

electrons and it is directly related to the stability of clusters. The chemical hardness 

(Ș) is defined as Ș = (VIP-EA)/2, displayed in Fig. 3.5. It is an electronic property 

which also signifies the relative stability of molecules. The graph shows peaks for 

even number of gold atoms, n= 2, 6, 8 (except at n=11) indicating again the high 

stability of even numbered Aun clusters. 

3.5 Conclusion 

We have investigated low-energy geometries and binding energy of gold clusters Aun, 

n varying from 2 to 14 using both Gupta Potential and DFT-GGA theory. Different 

initial guess geometries were considered for all the clusters which lead to a number of 

structural isomers for each cluster size. Further the electronic properties such as 

HOMO–LUMO gap, ionization potential, electron affinity and chemical hardness 

were investigated systematically using DFT .The results can be summarized as 

follows. 

• The Gupta potential favors 3D geometries as the low energy structures of 

Aun clusters while DFT favors 2D planar geometries as ground structures for 

Aun. Our calculation from DFT predicts that the 2D to 3D transition takes 

place at n=14. 

• The binding energy per atom of Aun clusters increases with increase in size 

of cluster for both GP and DFT. It is observed the graph exhibit odd-even 

oscillations with peaks at even number clusters i.e., n = 2,4,6,8 etc. The 

binding energy curve indicates exceptionally high stability of Au6 cluster.   

• The variation of HOMO–LUMO gaps, chemical hardness, second energy 

difference of binding energy, AIP and AEA with cluster size shows odd 

even alterations. The even-numbered clusters are found to be relatively more 

stable compared to the odd-numbered ones indicating that electron spin-

pairing stabilizes these cluster. Our results are in agreement with other 

similar studies on gold clusters.  

• GP is particularly good for larger clusters (n>10) and for 3D geometries of 

gold. 
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Chapter 4 

4. Doping of gold clusters with Si and Ge atoms  

4.1   Introduction 

In the previous chapter, we have discussed different geometries of the small pure gold 

clusters using both Gupta potential and Density Functional Theory. It will be 

interesting to see how different properties, structural as well as electronic, of gold 

clusters will change with the introduction of a dopant atom. Doped clusters have 

received increasing attention because of their distinctive structure and tunable 

catalytic properties which change with dopant size. 

There have been a large number of experimental and theoretical studies on doping of 

gold clusters of different size ranges with various elements. A highly stable doped 

gold cluster, icosahedral W@ Au12, was predicted by Pyykko and Runeberg [1] using 

DFT calculations. In another DFT study, the geometric and electronic properties of 

3d, 4d, and 5d transition-metal atom doped Au6 clusters were systematically 

investigated by Meng et al. [2]. They found that doping by 3d, 4d and 5d transition-

metal atoms could stabilize the Au6 ring. Li et al. [3] have studied magnetic properties 

of transition metal doped gold clusters M@Au6 and found that the Au6 ring in the 

MAu6 system serves as a perfect host to store a single transition metal atom. A 

combined photoelectron spectroscopy (PES) and DFT investigation performed on 

MAu16
− (M=Ag, Zn, In) clusters by Wang et al. [4] show that the electronic properties 

of the golden buckyball can be systematically tuned through doping. A lot of 

theoretical and experimental work on gold clusters doped with impurity atoms focuses 

mainly on transition metal atoms as dopant [5-16]. There are relatively very few 

systematic investigations done on the study of gold clusters doped with group 14 

elements (C, Si, Ge). 

Silicon is the most important semi conducting element in microelectronics industry. Si 

clusters have been investigated both experimentally [17] and theoretically [18] for 

their potential applications as building blocks to build up well controlled 

nanostructures. The most intriguing finding is the structure of SiAu4 cluster, which 

possess Td geometry, analogous to silane or SiH4 [19]. Walter et al. [20] conducted 

theoretical study on Si doped inside neutral Au16 cage. They found that Si doped Au16 

exhibits different reactivities toward oxygen. Another theoretical study by Wang et al. 

[21] shows that the global minima of anion golden cage −
16Au  doped with Si, Ge and 

Sn possess exohedral structures.  
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Germanium and silicon are isovalent, but their chemical properties are quite different. 

It will be interesting to see how silicon doped gold clusters are different from 

germanium doped gold clusters. Spiekermann et al. [22] have reported the synthesis 

and structural characterization of the first ligand-free anionic germanium–gold cluster 

and have asserted that the stability of such clusters would lead to their use both as a 

catalytic seed for the growth of germanium nanowires [23] and the use of the cluster 

itself as a building block for one-dimensional systems. A joint experimental and 

theoretical study on the structures of gold clusters doped with a group-14 atom: MAu-

x (M = Si, Ge, Sn; x = 5-8) have shown that these doped clusters have a strong 

tendency of forming planar structures [24].  

In this chapter, we will study in detail the structural and electronic properties of AunSi 

(n=1-12) clusters and compare them with pure gold clusters and germanium doped 

gold clusters. We have calculated the equilibrium geometries, bond lengths, ionization 

potentials, electron affinities and HOMO-LUMO gap of these clusters using density 

functional theory. We will also present a comparative study of Germanium doped 

gold clusters at the end. 

The organization of the chapter is as follows. The computational details are given in 

Section 4.2, results and discussions are presented in Section 4.3. The germanium 

doped gold clusters are discussed in section 4.5 

4.2 Computational details  

We have used the well known Spanish Initiative for Electronic Simulation with 

Thousands of Atoms computational code, SIESTA, [25-27] based on Density 

Functional theory [28]. The electron density functional is treated by the generalized 

gradient approximation (GGA) with exchange correlation functional parameterized by 

Perdew, Zunger and Ernzerhof (PBE) scheme [29]. The core electrons are replaced by 

non-local norm conserving relativistic pseudopotential factorized by Kleimann-

Bylander form [30]. Relativistic pseudo potential for gold is generated with atomic 

valence electron configurations 5d10 6s1. The pseudo potentials for silicon and 

germanium are generated with atomic valence electron 3s23p2 and 4s2 4p2 respectively. 

The core radii (in units of Å) for gold are as follows: s (2.55), p (2.98), d (2.22), f 

(2.00). For silicon, they are: s (1.77), p (1.96), d (2.11) and f (2.11) and for 

germanium, they are:  s (2.06), p (2.85), d (2.58) and f (2.58). The valence states were 

described using DZP (double-zeta + polarization) basis sets. The reciprocal space 
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integrations are carried out at the gamma point. The clusters are optimized inside 

simulation cell of 15 ǖ and energy cutoff of 150 Ry. The symmetry unrestricted 

geometry optimization is carried using conjugate gradient method until all the forces 

are less than 0.001eV/Å. 

We have verified the computational procedure by calculating the ionization potential 

(IP) for a gold atom and performing test calculations on Au2 and Si2 dimer. The IP of 

the gold atom is found to be 8.90 eV which is in fair agreement with the experimental 

value of 9.22eV [31]. The structural parameters such as binding energy per atom and 

bond length for Au2 are found to be 1.43 eV and 2.55 ǖ respectively which are in 

agreement with experimental values, 1.15 eV and 2.47 ǖ [32]. 

For Si2, the Binding energy per atom is 2.40 eV and the bond length is 2.28 ǖ which 

agree with the experimental values of 1. 67 eV and 2.25 ǖ [33]. The ionization 

potential of Si2 is 7.97 eV which agrees with the experimental reported values, 7.87eV 

[34] and 7.97-8.08 eV [35]. The structural parameter such as bond length for Ge2 and 

AuGe dimer is 2.42 ǖ and 2.37 ǖ respectively which are in fair agreement with the 

experimental and theoretical reported value [36-38] 

In order to obtain the lowest energy structures of AunX (X= Si, Ge), we have 

considered all the possible isomeric structures obtained by placing the X atom at each 

distinct position of Aun+1 clusters .The ground state geometries of AunX (X= Si, Ge) 

along with their isomers reported in the literature were also considered and each 

structure is relaxed to a desired convergence limit.  

The harmonic vibrational frequency analysis was carried out on the ground state 

structure to verify the structure. 

4.3 Results and Discussions 

Using the scheme mentioned in section 4.2, we have obtained the lowest energy 

structures of AunX (X= Si). The simulation parameters obtained from Aun+1 

calculation was used for searching the ground states of AunX (X= Si) and calculating 

their equilibrium properties. The minimum energy structures as well as their isomers 

for AunSi clusters are presented in Figs. 4.2 – 4.6. The Au-Au and Au-Si bond 

lengths, as well as the point symmetries for all the lowest energy structures are 

tabulated in Table 4.1.  

In order to study the relative stabilities of the clusters, we study binding energy per 
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atom, the dissociation energy and the second difference in energies. These have been 

plotted in Figs. 4.7 – 4.9. The electronic properties -- HOMO-LUMO gap, ionization 

potentials, electron affinities and chemical hardness are plotted in Figs. 4.11 – 4.13. 

4.3.1   Aun+1 clusters 

We have first obtained the ground state (GS) structures for pure Aun+1 cluster, which 

have already been discussed in Chapter 3. It was found that for n=1-12 the ground 

state configurations adopt planar geometries. For Au3, Au4, Au5 and Au6 the  global 

minima structures are found to be a triangle with C2v symmetry, a rhombus with D2h 

symmetry, a trapezoidal ‘W-shaped’ structure with C2v symmetry and a planar 

triangular structure with D3h symmetry respectively. These results are in agreement 

with previously reported results [39-42]. 

The Au7 cluster has a capped triangular structure reported by Bonacic - Koutecky and 

Lee et al. The minimum energy geometries for Au8, Au9 and Au10 have D2h, C2v and 

D3h symmetries respectively, all of which are planar, in agreement with other 

theoretical results [42-44]. Our calculations predict Aun+1 with n =11-13 to have two 

dimensional geometries as well, in agreement with other reported results [42, 45].  

4.3.2  AunSi clusters  

The ground state (GS) structures for Si doped Au clusters for n=1 -12 are presented in 

Fig. 4.1 along with the pure gold clusters geometries to give a comparison between 

the two. To obtain the low lying isomers of AunSi, we start with the pure gold cluster 

Aun+1 and replace one gold atom with a Si atom and optimize the geometry. This is 

repeated with replacement of Au with Si on another site and so on till all the non-

equivalent sites have been tried. 

The Au1Si dimer bond length is found to be 2.29 ǖ which is smaller than the Au-Au 

bond which is 2.55ǖ. This bond length (2.29 ǖ) is in good agreement with the 

theoretically reported value 2.25 ǖ [46].  

Au2Si, a triangular structure (3a in Fig. 4.1) with C2v symmetry is more stable than its 

linear isomer (3b) by 1.30 eV. In the triangular structure, the Au-Si bond length 2.29 

ǖ is in agreement with the reported value, 2.28 ǖ [40]. The Au-Au bond distance is 

3.25 ǖ and has increased significantly compared to that in Au2 dimer.The angle Au-

Si-Au is found to be 89o where as the reported value is 112o [47]. 

For Au3Si, three different geometries are considered and are shown in Fig. 4.1 (4a - 
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4c). If an Au atom is replaced by Si in stabilized Au4, a planar rhombus, the lowest 

structure for Au3Si is obtained – a three dimensional capped triangle with C2v 

symmetry in agreement with the geometry predicted in other theoretical calculations 

[46, 47]. The Au-Si bond lengths are found to be in the range 2.39 – 2.46 ǖ and the 

maximum angle between Au-Si-Au bonds is found to be 105.8o. In Aun+1 the 

transition from two dimensional to three dimensional structures occurs for n > 13. The 

preference to planar low energy structures in pure gold clusters is attributed to 

relativistic effects which enhance the stronger sd hybridization and dd interaction in 

gold upto 13 atoms. It is observed that for AunSi, the transition from two dimensional 

to three dimensional configuration starts early, i.e., at n = 3. The reason for this early 

onset has been attributed to directional covalent bonding of Si with Au [47]. 

The lowest energy geometry of Au4Si (5a in Fig. 4.1) is a square prism with C4v 

symmetry. The Au-Si and Au-Au bond lengths are 2.48 ǖ and 2.79 ǖ respectively. 

The angle between Au-Si-Au bonds is found to be 68.48o. 

This lowest energy geometry of the Au4Si cluster is similar to the results presented by 

Li et al. [46] but in disagreement with Majumder [47] according to whom tetrahedral 

configuration similar to CH4 methane molecule is the lowest energy isomer. In our 

calculations tetrahedral configuration is only 0.28 eV higher than the square prism.  

While the Au6 prefers a planar triangular structure, the Au5Si (6a) stabilizes as a 3D 

structure with C4v symmetry. The structure of Au4Si cluster may be described as the 

square prism arrangement capped with a fifth Au atom which is in close competition 

with low lying isomer (6b) of C3V symmetry .Our result does not agrees with that  of 

Majumder et al. [48] 

The lowest lying isomer of Au6Si is pentacoordinated (7a) with C1 symmetry and is in 

agreement with Majumder [47] but different from the low lying isomer for 

SiAu
−

6
proposed by Rhitanker et al. [24]. The Au7Si (8a) and Au8Si (9a) lowest 

energy geometries with Cs symmetry also agree with the result predicted by Majumder 

[47]. It is observed that in lowest energy clusters of AunSi with n= 6-8, the Si atom is 

tetra- coordinated with Au atoms and all Au atoms prefer planar configuration.  

 

 



 69

  

 

 

Au3 

0.00 

Au2Si   (3a) 

 +1.30 

(3b) 

    

 

Au4 

0.00 

Au3Si     (4a) 

+0.35 +0.41 

(4c) 

 

  

  

 

Au5 

0.00 

Au4Si     (5a) 

+0.15 

(5b) 

+0.28 

(5c) 

  
 

 

 

 

Au6 

0.00 

Au5Si    (6a) 

+0.03 

(6b) 

+1.00 

(6c) 

 

 
 

 

 

 

Au7 

0.00 

Au6Si     (7a) 

+0.06 

(7b) 

+1.03 

(7c) 

 

 
 

 

 



 70

 

Au8 

0.00 

Au7Si (8a) 

+0.37 

8b) 

+0.59 

(8c) 

  
 

 

Au9 

0.00 

Au8Si (9a) 

+0.26 

(9b) 

+1.14 

(9c) 

 

Figure 4.1.  The ground state structures of Aun+1 and AunSi for n = 1-8. The numbers 
under the structures are relative difference of energy w.r.t the ground state structure. 
The blue and golden ball represents Si and Au atoms respectively. 
 

In Au9Si ((a) in Fig. 4.2) it is found that there are two lowest energy geometries with 

coordination numbers of Si as three and four. These structures are degenerate with a 

difference of only 0.002 eV in energies. The other close lying isomers are also shown 

in Fig. 4.2. 

  

 

Au10 

0.00 

Au9Si (a) 

+0.002 

(b) 

 

 

 

 +0.15 

(c) 

+0.35 

(d) 

 
Figure 4.2. The ground state structure of Au10 and Au9Si with other low lying 
isomers. The numbers under the structures are relative difference of energy w.r.t the 
ground state structure. The blue and golden ball represents Si and Au atoms 
respectively. 
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In Au10Si, there are two isomers ((a) and (b) of Fig. 4.3) are nearly isoenergetic with 

an energy difference of 0.001 eV. Other less favored isomers are also presented in 

Fig. 4.3. It can be observed that there is clear preference for clusters having Si with a 

coordination number of four. 

  

Au11 Au10Si  (a) 0.00   +0.001(b) 
 

 

 +0.159 ( c) +0.182 (d) 
 

Figure 4.3 The ground state structure of Au11 and Au10Si with other low lying 
isomers. The numbers under the structures are relative difference of energy w.r.t the 
ground state structure. The blue and golden ball represents Si and Au atoms 
respectively. 
 

To obtain the lowest energy isomer of Au11Si ((a)-(c), Fig. 4.4), we begin with initial 

geometries of Au12, such as icosahedron or cuboctahedron; out of which every atom is 

replaced by a Si atom by turns. The lowest energy structure is (a) with C1 symmetry.  

 
 

Au12 Au11Si (a) 0.00  +0.43 ( b) 
  

 +0.64 (c)  

Figure 4.4 The ground state structure of Au12 and Au11Si with other low lying 
isomers. The numbers under the structures are relative difference of energy w.r.t the 
ground state structure. The blue and golden ball represents Si and Au atoms 
respectively. 
 



 72

The lowest energy structure of Au12Si (a) is slightly distorted cuboctahedron. It is 

presented in Fig. 4.5. It was found that the silicon prefers peripheral position than at 

the centre of cuboctahedron .Other isomers were found to have very high binding 

energy w.r.t this structure hence are not shown here. 

  

Au13 Au12Si  (a) 
 

Figure 4.5 The ground state structure of Au13 and Au12Si. The blue and golden ball 
represents Si and Au atoms respectively 
 

Structures of clusters from n = 7 -12 (Fig. 4.1- 4.5) show that the lowest energy 

geometry always has silicon on the surface, with silicon preferring a tetra coordinated 

geometry, of the type 5a in Fig. 4.1. The cluster with n = 9 is an exception where the 

lowest energy geometry happens to be one with a coordination number of three for the 

Si atom; however, the next structure shown, (b in Fig. 4.2) where coordination 

number is four, is found to be isoenergetic. Another pair of nearly isoenergetic 3 and 

4 coordinated structures occurs for n = 10 in Fig. 3((a) and (b)). 

In Fig. 4.1, we find that it is possible to have local minima structures which are nearly 

planar.  As mentioned in the above paragraph we observe that Si prefers 4- 

coordination with Au atoms forming a square.  

4.3.3  Energetics 

The binding energy per atom is a measure of stability. The average atomic binding 

energy for these clusters can be defined as 

        ( ) ( ) ( ) ( )[ ] ( )1/ +−+= nSiAuEAunESiEnE nTTTb     (4.1) 

where   ET (Au) and ET (Si) denote total energies of Au and Si atoms and ET (Aun Si) 

denotes the energy of the AunSi cluster in its lowest energy configuration. The 

comparison between the binding energy per atom of AunSi with Aun+1 cluster is 

plotted in Fig. 4.6. Table 4.1 presents the binding energy (Eb) of AunSi clusters. The 

structural parameters presented are the bond lengths -- Au-Si (RAu-Si) and Au-Au (RAu-

Au).  
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Table 4.1  Binding energy per atom (Eb) and bond lengths (Rau-si and Rau-au) of AunSi 
clusters 

Cluster Symmetry B.E.(eV/atom) Rau-si  (A
o
) Rau-au (A

o
) 

(Au1Si) 

2a 

Dinfh 2.17 2.29 ------ 

(Au2Si) 

3a 

C2v 2.80 2.32 3.25 

(Au3Si) 

4a 

C2v 2.76 2.42 2.82 

(Au4Si) 

5a 

C4v 2.94 2.48 2.79 

(Au5Si) 

6a 

Cs 2.81 2.46-2.53 2.71-2.82 

(Au6Si) 

7a 

C1 2.90 2.43-2.63 2.66-2.83 

(Au7Si) 

8a 

Cs 2.86 2.47-2.51 2.63-2.88 

(Au8Si) 

9a 

Cs 2.91 2.49-2.52 2.65-2.83 

(Au9Si) 

10a 

C1 2.88 2.45-2.55 2.70-2.90 

(Au10Si) 

11a 

C1 2.93 2.47-2.56 2.73-2.92 

(Au11Si) 

12a 

C1 2.95 2.46-2.52 2.73-2.97 

(Au12Si) 

13a 

C1 2.89 2.50 2.73-2.81 

 

The binding energy of the gold-silicon clusters AunSi is seen to increases with 

increasing cluster size. The binding energy per atom of Au1Si is 2.17 eV while that 

for Au2 dimer is 1.47 eV which are in fair agreement with the experimental values of 

1.58 eV and 1.16eV respectively [49].  The higher binding energy of AunSi clusters 

can be attributed to strong covalent bonding between Au and Si atoms. 

 For Aun, atomic binding energy increases upto n=6 with small odd-even oscillations 

whereas the binding energy of AunSi rises sharply upto n=4 after which it falls 

slightly showing a dip at n=7. The graph indicates high stabilities of Au6 and Au4Si 

clusters.  

These trends in binding energy are in close agreement with the results of Majumder    

[47]. We also observe that as the size of the cluster grows, the average Au- Au bond 

length approaches the bulk value. Similarly, the Au- Si bond length also approaches a 

limiting value as in Table 4.1. 
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Figure 4. 6 The binding energy per atom curve of AunSi and Aun+1 cluster for n=1-12 

In order to examine the relative stability of clusters of different sizes we calculate 

their dissociation energy and the second order difference of the total energy. 

The dissociation energy De is defined as  

          ( ) ( ) ( )SiAuEAuESiAuED nTTnTe −+= −1                         (4.2) 

where ( )AuET , ( )SiAuE nT 1− , ( )SiAuE nT  represent energies of Au and the 

lowest energies of Aun-1Si and AunSi clusters respectively. The results are plotted in 

Fig. 4.7 and presented in Table 4.2. 

 
Table 4.2 Second order differences (eV) and Dissociation Energy (eV) of AunSi 
clusters 
 

Cluster Second Order 

differences 

(eV) 

Dissociation 

Energy(eV) 

Au2Si  
1.05 4.127 

Au3Si  
-1.03 2.589 

Au4Si  
1.42 3.626 

Au5Si  
-1.23 2.17 

Au6Si  
0.84 3.422 
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Cluster Second Order 

differences 

(eV) 

Dissociation 

Energy(eV) 

Au7Si  -0.70 2.591 

Au8Si  0.65 3.29 

Au9Si  -0.81 2.634 

Au10Si  -0.33 3.444 

Au11Si  0.89 3.113 

 

The computed values of dissociation energy given in Table 4.2 and in Fig. 4.7, show 

that local maxima appear in dissociation energy De at n = 2, 4, 6, 8, 10 which 

correspond to clusters Au2Si, Au4Si, Au6Si ,Au8Si and  Au10Si indicating that these 

clusters have higher stability. The calculated dissociation energies lie between 2.58eV 

and 4.12 eV, being highest at n=2. 
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Figure 4.7   The dissociation energy curve of AunSi cluster for n=1-12 

The second-order difference (∆2E) of the total energy is a sensitive quantity that 

characterizes relative stability of atomic clusters as a function of cluster size for 

different sized AunSi clusters. It is defined as  

( ) ( ) ( ) ( )SiAuESiAuESiAuEnE nTnTnT 2112 −+=∆ −+   (4.3) 
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∆2E as a function of cluster size is plotted in Fig. 4.8, and the values are given in 

Table 4.2. It again shows odd-even staggering with peaks at n = 2, 4, 6 and 8, 

indicating that these clusters are more stable than their neighboring clusters. It can be 

seen that the Aun+1 and AunSi clusters follow the same stability pattern. The 

exceptionally high stability of Au4Si and Au6, as evidenced in Fig. 4.6, can be 

observed from this graph also.  
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Figure 4.8 The second difference of energy ∆2E of AunSi and Aun+1 cluster for        
n=1-12 

4.4 Electronic Properties  

The size dependent electronic properties of AunSi are investigated by calculating the 

HOMO-LUMO gap, adiabatic ionization potentials, chemical hardness and electron 

affinities. The values are presented in Table 4.3. 

4.4.1 HOMO-LUMO gap 

The HOMO-LUMO gap reflects the ability of clusters to undergo activated chemical 

reactions with small molecules. 

Table 4.3 and Fig. 4.9 illustrates the HOMO-LUMO gaps of the lowest energy AunSi 

(n=1 -12) clusters. It is found that the gap lies between 0.0 eV and 2.03 eV. For the 

AuSi dimer, the gap is 0.0 eV and Au4Si has the largest gap of 2.03 eV indicating its 

higher stability. Most of the values of HOMO-LUMO gap are in typical magnitude 

(i.e, less than 2.0 eV) of semiconductors. Therefore it could be expected that the 

stable AunSi clusters might be considered as the novel building blocks in practical 

applications e.g., cluster- assembled semiconductors or optoelectronic materials. 
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Figure 4.9 HOMO-LUMO gap of AunSi and Aun+1 cluster (n=1-12) 

 

Table 4.3 HOMO-LUMO gap (Eg), Electron Affinity (AEA), Adiabatic Ionisation 
Potential (AIP), Chemical Hardness (Ș), Magnitude of charge (Qn(e)) on Si atom from 
Au atom  Q(e)  in AunSi clusters. All values are in electron volts (eV). 
 

Cluster HOMO –

LUMO  

gap (eV) 

Ionization

Potential

(eV) 

Electron 

Affinity 

(eV) 

Chemical 

Hardness(Ș) 

Qn(e)

Au1Si 0.0 6.968 0.13 3.419 -0.08

Au2Si 1.60 5.86 2.434 1.715 -0.12

Au3Si 1.94 6.769 3.865 1.452 -0.02

Au4Si 2.03 5.742 2.658 1.542 0.01

Au5Si 0.63 6.05 1.51 2.27 0.04

Au6Si 1.63 6.998 1.17 2.914 0.0 

Au7Si 1.29 6.285 2.243 2.021 0.04

Au8Si 1.35 6.868 1.63 2.619 0.02

Au9Si 0.40 5.966 2.07 1.948 0.08

Au10Si 0.84 5.817 1.95 1.933 0.11

Au11Si 0.77 5.93 2.14 1.895 0.12

Au12Si 0.56 4.945 2.07 1.437 0.11

 



 78

4.4.2.   Ionization Potential and Electron affinity 

The Ionization potential (IP) and electron affinity (EA) are defined using equations 

(4.4) and (4.5) 

 ( ) ( ) ( )SiAuESiAuESiAuIP nnn −= +
  (4.4) 

( ) ( ) ( )−−= SiAuESiAuESiAuEA nnn          (4.5)             

The variation in adiabatic ionization potential and electron affinity of AunSi clusters 

are plotted in Fig. 4.10 as a function of cluster size and the computed values are given 

in Table 4.3. It is observed from the graph that IP shows peaks at n=2 and n=4, then 

after n = 5 it again shows two maxima at n =7 and n=9. The electron affinity exhibit 

opposite trend to ionization potential except that it is highest at n=4, for Au3Si cluster 

indicating its high reactivity. 
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Figure 4.10   The electron affinities (EAs) and ionization potentials (IPs) AunSi 
cluster for n=1-12 
 

4.4.3. Chemical Hardness  

Chemical hardness is an electronic property used to characterize the relative stability 

of molecules. Chemical hardness Ș is interpreted as the resistance towards change in 

number of electrons. The chemical hardness (Ș) is defined as Ș = (VIP-EA)/2, 

displayed in Fig. 4.11 and the values are presented in Table 4.3. The graph shows 

peaks for even number of gold atoms, n=2, 7, 9, indicating high stability of these 

AunSi clusters. 
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Figure 4.11 Size dependence of the calculated chemical hardness (Ș) of lowest energy 
AunSi clusters 
 

4.4.4 Mulliken Charge Analysis 

We find the charge at each site, which helps to determine the qualitative nature of 

bonding in AunSi clusters. This data is tabulated in Table 4.3.  

It is observed that upto n= 5 the charge on Si decreases except at n=4 and for n> 5 

charge on silicon increases. Since the amount of charge transfer from Au to Si is very 

small, it can be concluded that the bonding between Au and Si atom is covalent in 

nature. 
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4.5 Germanium doped Gold clusters, AunGe (n =1 -10) 

Since Germanium belongs to the same group as Silicon and has same number of 

valence electrons in the outermost shell, it will be interesting to see how the different 

properties of gold cluster changes when doped with a Germanium atom. The aim of 

present study is to give a comparison between the structural and electronic properties 

of AunGe with that of silicon doped gold clusters and pure gold clusters. 

To study the lowest energy structures of AunGe (n = 1 - 10) the simulation parameters 

obtained from AunSi calculation were used. To find the low lying structures of AunGe 

clusters only the minimum energy structures of AunSi clusters and their first isomers 

were considered and the different geometries were obtained by replacing Si with Ge 

atom. The structures obtained are presented in Fig. 4.12 and different properties such 

as binding energy etc are presented in Table 4.4.  

4.5.1   Structure of AunGe 

The lowest energy clusters of AunGe are presented in Fig. 4.12. The AuGe cluster has 

a bond length of 2.37 Ao which is smaller than Au-Au bond of bond length 2.55Ao 

and is larger than the Au-Si bond of bond length 2.29 Ao. The bond length 2.37 Ao of 

AuGe is in good agreement with the experimental   reported value 2.38Ao [38].  

For Au2Ge, a triangular structure with C2v symmetry is more stable than its linear 

isomer. It is observed that the Au2Si also prefers triangular geometry over the linear 

arrangement. 

For Au3Ge, an Au atom is replaced by Ge in stabilized Au4, a planar rhombus the 

lowest structure for Au3Ge is three dimensional capped triangles with C2v symmetry 

similar to Au3Si. It is observed that both AunGe and AunSi cluster, the transition from 

two dimensional to three dimensional configuration starts early at n = 3 in comparison 

with Aun+1 clusters which prefers planar geometry upto n =13. 

The Au4Ge is a square prism with C4v symmetry as the lowest energy geometry 

shown in Fig. 4.12. The Au-Si bond length is 2.48 Ao and Au-Au bond length is 2.79 

Ao.  

While the Au6 prefers a planar triangular structure, the lowest energy geometry of 

Au5Ge can be viewed as derived by adding an additional Au atom to square pyramidal 

Au4Ge similar to the lowest energy structure of Au5Si.  

The lowest lying isomer of Au6Si is pentacoordinated with C1 symmetry while Au6Ge 
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prefers planar geometry with coordination number two. The Au7Ge and Au8Ge lowest 

energy geometries with Cs symmetry are similar to structures predicted by Rhitaker et 

al.for Au7Ge- and Au8Ge- geometries [24]. It is observed in lowest energy clusters of 

AunGe with n= 4-10, that Ge atom is tetra coordinated with Au atoms except at n=6. 

In Au9Ge and Au10Ge clusters, Ge atom also prefers coordination number four. 

 It is observed that the ground state geometries of the clusters show patterns similar to 

silicon doped gold clusters except for n = 6, 9 and 10. It can be observed that as the 

size of the cluster increases there is deviation in the lowest energy geometries of Ge 

doped gold clusters from Silicon doped gold clusters. Germanium atom prefers tetra 

coordination just like silicon when doped in a gold cluster, for n > 3, except for 

Au6Ge cluster which stabilizes with co ordination number two.  

 
  

Au2Ge Au3Ge Au4Ge 

 
 

 
Au5Ge Au6Ge Au7Ge 

 
 

Au8Ge Au9Ge Au10Ge 
 

Figure 4.12 The ground state structures of AunGe for n = 1-10   .The numbers under 
the structures are relative difference of energy w.r.t the ground state structure. The 
grey and black ball represents Ge and Au atoms respectively 
 
4. 5. 2   Energetics  

The binding energy per atom is the measure of stability. The average atomic binding 

energy of AunGe (n=1-10) can be defined as 

( ) ( ) ( ) ( )[ ] ( )1/ +−+= nGeAuEAunEGeEnE nTTTb     (4.6) 

where  ET (Au ), ET (Ge  ), ET (Aun Ge)  denote total  energies of Au, Ge and the 

lowest energies of AunGe The comparison between the binding energy per atom of 

AunGe  w.r.t. Aun+1 and AunSi clusters is plotted in Fig. 4.13 
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Figure 4.13   Comparison of the binding energy per atom AunGe with AunSi and 
Aun+1 clusters. 
 

It is observed from the graph that the introduction of germanium atom has increased 

the binding energy of gold clusters. The binding energy curve of AunGe cluster 

exhibits higher values for even n compared to odd n, with peak at Au6Ge. It is 

observed that the binding energy curve for AunGe and AunSi clusters show similar 

pattern. The binding energy per atom of germanium doped cluster is smaller than the 

corresponding silicon doped gold clusters. 

The second-order difference (∆2E) of the total energy is computed using equation 

(4.3) and is plotted as function of number of gold atoms in Fig. 4.14 and the values 

are given in Table 4.4. 
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Figure 4.14   Comparision of the second difference of energy ∆2E of  AunGe, AunSi 
and Aun+1 cluster. 
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The germanium doped gold clusters are found to exhibit odd-even staggering with 

peaks at n = 2, 4, 6 and 8, indicating that these clusters are more stable than their 

neighboring clusters It can be seen that the Aun+1 and AunSi clusters follow the same 

stability pattern.  

Table 4.4 Binding Energy per atom (eV/atom), Second Energy Difference (eV), 
HOMO-LUMO gap (Eg), in AunGe (n= 1- 10) clusters.  
 

Cluster B.E.(eV/atom) Second Energy 

Difference (eV)

Eg (eV) 

(Au1Ge) 

 

2.05 -- 2.09 

(Au2Ge) 

 

2.64 1.246 1.45 

(Au3Ge) 

 

2.63 -0.99 1.89 

(Au4Ge) 

 

2.82 1.38 2.02 

(Au5Ge) 

 

2.72 -2.34 0.72 

(Au6Ge) 

 

2.98 3.16 0.63 

(Au7Ge) 

 

2.79 -1.89 1.32 

(Au8Ge) 

 

2.85 0.73 1.5 

(Au9Ge) 

 

2.826 -0.864 0.46 

(Au10Ge) 2.88 -- 0.86 
 

4.5.3 Electronic properties  

The HOMO–LUMO gaps of the lowest energy AunGe   (n = 1=10) clusters in 

comparison with the HOMO-LUMO gap of silicon doped and pure gold clusters are 

plotted in Fig. 4.15. 

The HOMO-LUMO gap (Eg) for Aun Ge clusters is found to vary between 0.46 eV – 

2.09 eV. It is seen that Eg for AuGe dimer is maximum while for AuSi is zero. This 

implies that AuGe dimer is chemically more stable than AuSi dimer. In general, it can 

be observed that the graphs peaks at   Au6 for pure Aun+1 clusters, at Au5Si for Silicon 

doped gold clusters and at AuGe for germanium doped gold clusters. Similar to AunSi 

clusters the HOMO–LUMO gap values are in the range of semiconductors. 
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Figure 4.15 Comparison of HOMO-LUMO gap of AunGe with AunSi and Aun+1 
clusters 

 

The Mulliken charge analysis indicates that charge of order of 0.1e always transfers 

from germanium atom to gold atom. Since there is no significant charge transfers take 

place between Ge atoms and Au atoms, it implies that the bonding is covalent in 

nature. 

4.6 Conclusion 

We have presented the results of our DFT based investigations of AunSi and AunGe 

clusters in comparison with Aun+1 cluster. The structural and electronic properties are 

investigated systematically and the results can be summarized as follows. 

The AunSi clusters adopt 3D structures from n=3 onwards, while pure Aun+1 clusters 

prefer planar structures upto n =13. In the stable structures (with n>4), Si is 

coordinated with 4 Au atoms. These four atoms are arranged in a square rather than 

the familiar tetrahedron associated with bulk Si. The ground state geometries of the 

AunGe clusters show patterns similar to silicon doped gold clusters except for n =  6 , 

9 and 10. Germanium atom prefers tetra coordination like silicon when doped in a 

gold cluster, for n > 3, 

• The binding energy per atom of AunSi clusters, compared with Aun+1 cluster, 

show an increase with the introduction of Si. The binding energy per atom 

of germanium doped clusters is smaller than the corresponding silicon doped 

gold clusters. 
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• All three curves -- binding energy, second energy difference and 

dissociation energy, show that even number of gold atoms in a cluster makes 

it more stable compared to its odd numbered neighbours. In fact Au4Si and 

Au6 are most stable in their respective classes.  

• The HOMO–LUMO gap values of both Silicon and Germanium doped gold 

clusters lies in the range of semiconductors. 

• The Mulliken charge analysis of AunSi and AunGe clusters indicates 

covalent bonding between Si and Au atoms, Ge and Au atoms. 
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Chapter 5 

5.  Doped Golden Fullerenes 

5.1 Introduction 

In previous chapters we have seen that gold clusters exhibit intriguing geometrical 

structures. They favor two-dimensional planar structures up to n = 13, a perfect 

tetrahedron at Au20 followed by tubular structures at Au24 and Au26. This size-

dependent evolution of geometric structure of gold for cluster size up to several 

hundred atoms strongly impacts its electronic, optical, and chemical properties. For 

such applications it is important to have a detailed knowledge of the cluster structures 

and their identification for the controlled use in future nanotechnology. 

Along with the small gold clusters, the medium-sized gold clusters have also been 

extensively studied [1-3]. Lechtken et al. [4] using a combination of trapped ion 

electron diffraction (TIED) method, PES, and (time dependent (TD)) density 

functional theory (DFT) have shown that Au-
34 cluster adopts a chiral structure. A 

highly stable Au32 cage cluster with the icosahedral (Ih) symmetry same as C60 was 

predicted by Johansson et al.[5] which was later confirmed by Ji et al. [6] using a 

photoelectron spectroscopy (PES) experiment combined with quantum mechanical 

calculations. They found that the Au32 fullerene is the most stable at zero temperature. 

This structure has been reported to be synthesized using ligands [7]  

As discussed in the last chapter, a suitable impurity can bring structural changes as 

well as can modulate different properties of the low lying geometries of pure gold 

clusters. By doping gold clusters with Si and Ge atoms, we can have early onset of 3D 

geometries in gold clusters. A relativistic density functional theory (DFT) of Au32 

cluster by Himadri et al. [8] have shown that the bare fullerene Au32 cluster (without 

any stabilizing ligands) can be used for potential catalytic applications. In an another 

theoretical study, Deng et al. [9] have doped Ag atom in the hollow cage-like and 

space-filling structures of Au32 and found that the Au31Ag cluster with the hollow 

cage-like configuration is highly stable.  It has been recently found that coating of 20 

Au atoms on an Al13 cluster leads to a highly stable and icosahedrally symmetric 

endohedral Al@Al12Au20 compound fullerene [10].  

Similar studies have been performed by Meng et al. [11] using first-principles 

calculations on the nano golden cages M12@Au20 (M=Na, Al, Ag, Sc, Y, La, Lu, and 

Au) clusters to explore their structural and electronic properties. In this chapter we 
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will perform the DFT study of effect of group 14 elements(C, Si, Ge) on the structural 

stability and electronic properties of Au32 cage.  We have calculated the binding 

energies, bond lengths, HOMO-LUMO gaps and plotted the partial density of states 

(PDOS) of these clusters.  

The organization of the chapter is as follows. The computational details are given in 

Section 5.2, results and discussions are presented in Section 5.3. 

5.2 Computational Details 

We have used the SIESTA code, based on Density Functional theory method. The 

electron density functional is treated by the generalized gradient approximation 

(GGA) with exchange correlation functional parameterized by Perdew, Zunger and 

Ernzerhof (PBE) scheme [12-14]. The pseudo potentials for Carbon, Silicon and 

Germanium atoms are generated with atomic valence electron 2s22p2, 3s23p2 and 4s2 

4p2 respectively. The core radii (in units of Å) for Carbon are s (1.49), p (1.52), d 

(1.52) and f (1.49): For Silicon, they are: s (1.77), p (1.96), d (2.11) and f (2.11) and 

for Germanium, they are:  s (2.06), p (2.85), d (2.58) and f (2.58). The valence states 

were described using DZP (double-zeta + polarization) basis sets. The reciprocal 

space integrations are carried out at the gamma point. The clusters are optimized 

inside simulation cell of 15 ǖ and energy cutoff of 200 Ry. The symmetry 

unrestricted geometry optimization is carried using conjugate gradient and quasi 

Newtonian methods until all the forces are less than 0.01eV/Å. 

We have already given the verification of the computational procedure for Au-Si and 

Au-Ge dimer in the last chapter. The test calculation results for the bond length of the 

ground state of AuC molecule is 1.875 A ˚ which is in the good agreement with the 

reported values (1.88 A ˚)  .The calculated value of the binding energy per atom for 

AuC is 2.47 eV  which  higher than the other reported values(1.97eV)[15]. 

5.3 Results and discussions 

5.3.1   Structure and Energetics of M12@Au20   

The structure of the hollow golden fullerene Au32 can be regarded as Ih symmetry 12-

atom icosahedron combined with Ih symmetry Au20 dodecahedron as shown in Fig. 

5.1. We have replaced Au atom at the center of each pentagon of Au32 with another 

metal atom to construct M12@Au20 clusters (M= C, Si and Ge) similar to Meng et 

al.[11].The initial structure and the final optimized structures of Au32 after doping are 

given in Fig. 5.1 and various computed values are given in Table 5.1.          
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          Si12@Au20 

                          (b) 
Ge12@Au20 

(c) 
C12@Au20 

(d) 
 
Figure 5.1 The initial geometry of Au32 cage with position of dopant (M) atoms is 
shown in  (a) by green spheres. The low lying geometries of the M12@Au20 clusters 
(M= Si, Ge and C) obtained from symmetry unrestricted optimization using density 
functional theory. The Si atom is represented by blue spheres (b), Ge atom is 
represented as purple spheres (c) and C atom is represented as brown spheres (d). 
 

It is found that after optimization the Si and Ge atoms doped M12@Au20 clusters 

retains the Ih symmetry of the initial Au32 fullerene but the Carbon doping completely 

destroys it. It is also found the coordination number of Si and Ge atoms is 5 and of C 

atoms is 3 and 4 in M12@Au20 cluster. 

Table 5.1   Symmetry, Binding Energy per atom (eV/atom), HOMO-LUMO gap (Eg) 

Cluster  Symmetry Eb (eV/atom) Eg (eV) 

Au32 Ih 3.16 1.59 

C12@Au20 C1 4.17 0.51 

Si12@Au20 Ih 4.02 0.57 

Ge12@Au20 Ih 3.77 0.91 

 

We can conclude by looking at the different optimized geometries of Si doped Au 

clusters that Si is hyper valent and can have a coordination of 3, 4(in Chapter 3), 5 or 

even 6( in Chapter 7). 
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The Binding Energy (Eb) gives the measure of thermodynamic stability of cluster. It is 

calculated using equation (1) and values are given in Table1.  

( ) ( ) ( )[ ] ( )32/20122012 AuEMEAuMEE TTTb −−=                  (5.1) 

The variation in binding energy of Au32 cluster with changing dopants is presented in 

Fig.5.2. The calculated binding energy per atom of Au32 is found to be 3.166 eV 

which is higher than the value predicted by Meng et al. [11]. 
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Figure 5.2 The average binding energy (Eb) of the M12@Au20 clusters (M=C, Si and                 
Ge) 
 
It can be seen from the graph addition of dopant atom to Au32 cage has increased its 

binding energy. The binding energy C12@Au20 is 1.00 eV higher than of Au32 cage 

and is found to be thermodynamically more stable than its neighboring clusters. 

5.4 Electronic properties 

The HOMO–LUMO energy gap (Egap) of the M12@Au20 clusters is given in Table 5.1 

Earlier theoretical studies on Au32 in Ih symmetry have shown that it has a large 

HOMO– LUMO gap and is expected to be chemically inert. The energy gap of 1.59 

eV of Au32 in our computations is in good agreement with the previous results [2, 5, 

9].  

Table 5.1 shows the Eg of the doped fullerene M12@Au20 is smaller than the gap of 

Au32. Interestingly, C12@Au20 has the smallest HOMO–LUMO gap of only about 

0.51 eV, suggesting that it should be relatively chemically reactive. The Si12@Au20 

cluster is found to have the largest HOMO-LUMO gap of 0.91 eV. It can be 

concluded that while C12@Au20 is thermodynamically more stable, the Si12@Au20 is 

chemically more stable. 

The decrease in  the band gap of pure Au32 cage after doping can also be seen in 
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PDOS plot in Fig. 5.3 ((a)-(g)) .It can be clearly seen that a band gap exists at Fermi 

level for the Au32 cage. After  doping  the Au32 , there is an  increased electron density 

due to overlapping of s and p orbitals of the dopants around Fermi level and thus 

reducing  the HOMO-LUMO gap of cage .  

It can also be seen that when the dopant atoms are placed into Au32 cage, the PDOS of 

Au is shifted to the low energy side below Fermi level, causing an increase in the 

bonding electron numbers at lower energy level. As a result, the structural stability of 

the Au32 cluster increases. As a result, the structural stability of the M12@Au20 clusters 

increase. Therefore we can conclude on doping of C, Si and Ge atom improves the 

conductivity as well as stability of Au32 cage. 
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Figure 5.3 Partial density of states for (a) Au32, C12@Au20 (b&c), Si12@Au20 (d&e) and 
Ge12@Au20 (f&g)   clusters with their lowest-energy configurations. Fermi level is set 
at zero on the energy axis. 

5.5 Conclusion 

We have carried out a first-principles investigation with the density functional theory 

(DFT) to study the M12@Au20 (M= C, Si and Ge) clusters.  

• The Au32 cage retains its Ih symmetry after doping with Si and Ge atoms. 

• It is found that the addition of dopant atoms has increased the average binding 

energy. C12@Au20 is highly stable with the highest binding energy.  

• The HOMO–LUMO gap of M12@Au20 clsuter is much smaller, compared 

with that in the Au32 cluster, suggesting that they should be relatively 

chemically reactive. This is also confirmed by looking at the PDOS plots. 

We hope these results can inspire the experimentalist for further validation. 
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Chapter 6 

6. The Structural and Electronic Properties of Doped 

Tubular Gold Cages 

6.1  Introduction 

In the last chapter we have studied medium sized gold clusters . Just like small sized 

gold clusters the medium gold clusters also have size dependent geometries. Recent 

studies have found that Au18, Au32, Au50 and Au72 clusters are icosahedron based 

cages exhibiting high thermodynamic stabilities [1-4]. Although the  gold cage is still 

one of the focuses of attention, gold nanotubes and nanowires [5-9] have also 

attracted much interest in recent years. A joint theoretical and experimental study 

conducted by Bulusu et al. [10] of low-lying structures and structural transitions of 

gold cluster anions Au-
n in the size range of n= 21-25 suggests that the ground state 

are the pyramid-based structures for n = 21-23 and at n = 24, the hollow-tubular 

structures dominate the low-lying isomers while structural transition from hollow 

tubular to core/shell compact structure is observed at n= 25. Other theoretical studies 

also suggest the possible existence of highly symmetric hollow-cage structures Au32, 

Au42, and Au50 as well as hollow-tubular structure Au26 [1, 2,11-13]. The possibility to 

form a hollow tubular Aun cluster by closing ends of a SWGNT has opened the 

possibilities of new stable structures in competition with other possible structures, 

such as the amorphous, the bulk fragment, and the cage-like ones. The tubular 

structure of Au24 has been verified both theoretically and experimentally [14,15]. It is 

obvious that the tubular Au24 structure can accommodate guest atoms to form a new 

kind of endohedral tubular gold cluster. 

It is known that coinage metals (Cu, Ag, Au) have many similarities in their bulk 

behavior and exhibit some differences at the stage of small clusters. In recent years, 

the transition bimetallic clusters, particularly of Au, Ag, and Cu, have received much 

attention because of their particular physical and chemical properties and potential 

technological applications in solid-state chemistry, materials science, nanotechnology, 

catalysis, biology, and medicine. [16-19]. A density functional study with relativistic 

effective core potential by Zhao et al. [20] indicate that the stability of copper-gold 

clusters is higher than that of bare gold clusters and then the bare gold clusters is more 

stable than the sliver-gold isomers.  
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Another similar study by Ghanty et al. [21] on the structural and electronic properties 

of Au19X clusters doped with Li, Na, K, Rb, Cs, Cu, and Ag suggests that the 

endohedrally doped Au19X clusters (X = Li, Na, and Cu) have higher binding energies 

comparable to those of the corresponding exohedrally doped clusters and the 

endohedrally doped cage-like structures of larger atoms (X = K, Rb, Cs, and Ag) are 

found to be less stable than the corresponding exohedral structures. Kanhere et 

al.studied the equilibrium geometries of Au-
n and Aun1-1Cu- (n=13-19) using Density 

Functional Theory (DFT). They have found that the introduction of copper atom has 

enhanced the binding energy per atom of gold cluster anions [22]. Haeck et al. [23] 

have studied Carbon monoxide adsorption on silver doped gold clusters and observed 

that inclusion of a single silver atom causes significant changes in the reactivity for a 

few cluster sizes. The structural and magnetic properties of the tubular Au24 doped 

with different 3d transition-metal atoms M (M = V, Cr, Mn, Fe, Co, and Ni) is studied 

by Yang et al. [24] using the scalar relativistic DFT calculations. It is found that all of 

the M@Au24 clusters retain their tubular structure even when the dopant atom is 

located at the center of the Au24 cluster. 

There are lot of studies on doping of gold clusters  with Ag and Cu atoms but they 

limited to smaller size range. As we have already discussed the importance of Au24 

tubular cage,  we would like to introduce transition metals Cu and Ag  as dopant and 

study their effect on structural and electronic properties of these  gold tubular cages in 

details.  

6.2 Computational Details 

The computational method is same as explained in previous chapters. The core radii 

used for pseudopotential generation (in units of Å) for Cu are as follows: s (2.74), p 

(2.39), d (2.13), f (2.13); for Ag: s (2.46), p (2.65), d (2.46), f (2.46). The core radii 

for gold are the same as given in the previous chapter. The structures are optimized 

until the forces on atoms reduce down to 0.01eV/ǖ or less.  

The calculated bond length from DFT for Au-Cu dimer is 2.37ǖ and for Au-Ag is 

2.56ǖ, which is in good agreement with experimental value [25, 26].  
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6.3  Results and Discussion 

6.3.1 Structure of M@Au24 (M = Cu, Ag) 

We have studied the effect of doping transition metals such as Cu and Ag in the 24 

atom gold cluster. As discussed in the introduction, Au24 is found to have an 

interesting tubular structure and is presently studied for modification of its structural 

and electronic properties by encapsulation of different dopants [14, 15, and 23]. 

We will consider two initial structures of Au24 tube i.e., Au24-I and Au24-II, differing 

only in the relative orientation of their end-caps, with D3d and D3h symmetries 

respectively. These structures of Au24 tubular gold are then optimized using DFT. The 

ground state structure of both Au24-I and Au24-II obtained after optimization are then 

used for doping. For the initial doped structure, we have placed two atoms of each 

transition-metal M (M = Cu, Ag) at the centre of Au24-I and Au24-II structures 

respectively. Then the respective structures are optimized without any geometric or 

symmetry constraint. The same optimization procedure is repeated by placing three 

atoms of Cu and Ag at the center of Au24-I and Au24-II structure respectively .The 

ground state structures of the Au24 and M@Au24 (M = Cu, Ag) after optimization are 

displayed in Fig. 6.1 and the various computed values such as binding energy per 

atom, HOMO-LUMO gap etc are presented in Table 6.1. 
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Figure 6.1 Au24-I and Au24-II represents the two different arrangement of Au24 cage 
and other represents the optimized geometries of M@ Au24 where M is Cu, Ag. The 
yellow ball represents Au atom, silver ball is Ag atom and blue ball represents Cu 
atom. 
 
From the study of the optimized geometries in Fig.6.1 ((a) - (d)), it can be seen that 

the introduction of two impurity atoms (M = Cu, Ag) has not deformed the structure 

of Au24-I and Au24-II cage. The same observation can be made from the bond distance 

values of Au-Au atoms given in Table 6.1. The ranges of bond distances between Au-

Au atoms in doped gold cages are almost same as the empty gold cages. It can also be 

seen that the bond distance of Ag-Ag atom is larger than that of Cu-Cu atom. The 

distance between the Cu atoms in both M@Au24-I and M@Au24-II structures is 

comparable with the interlayer distance Au-Au atoms. Hence it can be inferred that 

Cu atoms are more suitable for endohedral doping in the Au tubular cage. 

To confirm this, we put an additional impurity atom (M= Ag, Cu) in our initial two 

atom impurity structures of M@Au24-I and M@Au24-II cages.  

These structures are then optimized and are given in Fig. 6.1 ((e)-1(h)). As expected 

the bond distances between Ag –Ag atoms (Table 6.1) has become greater than the 

interlayer distance of Au-Au atoms. In both structures Ag3Au24-I and Ag3Au24-II the 

Ag atom has come out on the surface of the cages.  

While in both Cu3Au24-I and Cu3Au24-II the copper atoms has stayed well within the 

cage. In terms of geometry the Cu3Au24-I has retained its tubular shape while the 

Cu3Au24-II cage is distorted. Thus we can conclude that copper atoms are better suited 

to be substituted as a backbone in gold tubular cage. 
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Table 6.1 Average Binding Energy per Atom (E b), Average Distances of Dopants 
from the bonded Au atoms in the shell (R), HOMO-LUMO gap (Eg) 
 

Cluster Eb 
 (eV)

R (ǖ) Eg (eV) 

  Au-Au 

(inter layer) 

X-X (at 

centre) 

Au24-I 3.031 2.75-2.83 --- 0.64 

Cu2Au24-I 3.142 2.75-2.83 2.48 0.38 

Cu3Au24-I 3.17 2.75-2.83 2.56 0.35 

Ag2Au24-I 3.048 2.77-2.91 2.77 0.31 

Ag3Au24-I 3.039 2.77-2.88 3.55-4.03 0.13 

Au24-II 3.045 2.73-2.84 --- 0.97 

Cu2Au24-II 3.109 2.77-2.88 2.40 0.09 

Cu3Au24-II 3.156 2.73-2.91 2.59-2.64 0.35 

Ag2Au24-II 3.044 2.75-2.97 2.81 0.12 

Ag3Au24-II 3.047 2.75-2.83 3.97-5.49 0.25 

 

6.3.2 Energetics 

In order to compare the relative stabilities of the doped tubular M@Au24 (M= Cu, Ag) 

cages, we compare their average binding energies (BEs) with that of the pure Au24 

cages and present the results in Fig. 6.2. The computed values of Binding energy per 

atom are given in Table 6.1. The Binding energy is computed using equation (6.1), 

                    ( ) EEEE AuMAuMb
N

24@
24 −+=             (6.1) 

where EM and EAu are the energies of single M (M= Cu , Ag) atom and Au atom, 

respectively, while E (M@Au24) is the energy of the M@Au24 cluster. N is the number of 

impurity atom doped in Au24 cage. 

From the binding energy values given in the Table 6.1 and the Fig. 6.2, it is seen that 

the empty Au24 -II has higher binding energy than Au24-I. After doping the Au24-I and 

Au24-II cages with impurities Cu and Ag, it is observed that their binding energy per 

atom has increased. It can also be seen addition of Ag atoms has not much changed 

the binding energy of Au24-I and Au24-II cage. On the other hand the addition of Cu 

atoms has increased the binding energy of Au24-I and Au24-II cage substantially.  
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Figure 6.2 The average binding energy of the ground-state of M@Au24-I and 
M@Au24-II (M = Cu, Ag) 
 

Thus Cu doped gold cages have higher binding energy than silver doped gold cages. 

This observation is in agreement with other reported studies [20]. From the graph we 

can conclude that Cu3Au24-I has the highest binding energy per atom among all the 

optimized geometries.  

6.4 Electronic Properties 

6.4.1 HOMO-LUMO gap 

A large HOMO-LUMO gap (Eg) corresponds to a high strength required to perturb 

the electronic structure; namely, a bigger gap indicates a weaker chemical reactivity 

and higher stability. From Table 6.1 and Fig. 6.3, we observe   that Au24-II   has the 

large HOMO-LUMO gap of 0.97 eV and also have high binding energy per atom 

value. It indicates that Au24-II has highest stability among all the structures. It is 

observed that the Eg of all the doped cages M@Au24 (M= Cu, Ag)   is   smaller than 

the gap of pure Au24 cages suggesting that they should be relatively chemically 

reactive. In general, the Cu doped Au24 cages found to have higher energy gap than 

the Ag doped gold cages except for Cu2Au24-II.  Thus, Cu doped gold tubular cages 

have higher stability. 

The reduced band gap of M@Au24 cages can have interesting possibilities that may 

serve as a dynamical system in catalysis and nano structured material science 
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Figure 6.3 The HOMO-LUMO gap of M@Au24-I and M@Au24-II (M=   Cu, Ag) 

6.4.2 Mulliken populations (MP)  

The MP analysis was performed on the M@Au24-I and M@Au24-II (M= Cu, Ag) 

isomers. The MP value of the Cu atoms for all isomers is approximately -0.1 e, which 

means that the Au atoms act as electron donor in all M@Au24-I and M@Au24-II (M= 

Cu) isomers.  

The Ag atoms found to act as electron donor in Ag2@Au24-I and Ag2@Au24-II while 

in Ag3@Au24-I and Ag3@Au24-II; it has also become an electron acceptor. The order 

of magnitude of charge transferred (donor or acceptor) in Ag atoms is about 0.01e -

0.2e. The important factor influencing the charge distribution in the M@Au24-I and 

M@Au24-II (M= Cu, Ag) clusters can be the geometric structure of cluster and its 

symmetry. We also find that 9.93-9.95 electrons in 3d subshell of Cu atoms and 9.73- 

9.98 electrons occupy the 4d subshell of Ag atoms in M@Au24-I and M@Au24-II (M= 

Cu, Ag) isomers. The values reveal that the d obitals of M atoms in M@Au24-I and 

M@Au24-II clusters are dominant core orbitals participating in bonding. 

6.5 Conclusion 

We have studied the effect on the structural stability and electronic properties by 

doping transition metal such as Cu and Ag in the Au24 tubular cage using DFT.  

• From the study of binding energy values we find Au24-II and   Cu3Au24-I has 

the highest binding energy per atom among all the optimized isomers of 

M@Au24-I and M@Au24-II (M= Cu, Ag). 

• The HOMO-LUMO gap is found to be highest for Au24-II cluster. In general, 
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the Cu doped Au24 tubular cages found to have higher energy gap than the Ag 

doped cages except for Cu2Au24-II. 

• On the basis of the calculated Mulliken populations, reveals that the d obitals 

of M (Cu, Ag) atoms in M@Au24-I and M@Au24-II clusters are dominant core 

orbital participating in bonding. 

• At the end we can conclude that the Cu doped gold cages are more stable than 

Ag doped. 
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Chapter 7 

7. Tubular Gold Clusters with Spinal Support 

7.1 Introduction 

In the Chapter 6 we have discussed 24 atom tubular cage like structure of gold with 

hexagonal cross-section. The existence of the hollow-tubular structures dominating at 

larger size range in the low-lying isomers for gold has already been pointed out in the 

last chapter [1-6]. This tubular structure can be extended along z axis to form a single 

wall gold nanotube (SWGNT). In our group, Veena et al. [7] have studied single wall 

gold nanotube of various cross sections using Gupta Potential and found that gold 

nanowires consisting of pentagonal layers are most stable among the structures 

studied. 

The tubular structure of Au24 has been verified both theoretically and experimentally 

as discussed in the Chapter 1. The tubular Au24 structure can accommodate guest 

atoms to form a core–shell structure. Properties of such a core shell system differ 

from those of its all metal counterparts (empty or filled). A core–shell structure can 

also be exhibited by a system whose shell is unstable by itself but can be supported by 

the core. A large number of theoretical and experimental studies have been carried on 

hollow gold clusters endohedrally doped with various dopants. Some recent examples 

include a stable icosahedral cluster W@Au12 which was confirmed experimentally [8, 

9] and gold-encapsulated fullerenes [10]. Such mixed core doping has potential 

applications as catalyst [11, 12]. For catalytic applications, GNPs are usually first 

affixed on a support, such as one of various kinds of oxide (e.g., silica, titania, 

alumina), carbon nanotube, graphene sheet, etc. [13-16]. However, in suspensions 

GNPs are susceptible to aggregation. To prevent aggregation and increase stability of 

GNPs in suspension, researchers have utilized different stabilizing ligands such as 

alkanethiols and alkylamines [17]. The potential use of gold clusters in catalysis , 

opto-electronic applications etc requires further understanding of the effect of ligands  

and solvent on the  structural and electronic  properties and to compliment 

experimental and theoretical studies[18]. 

We have discussed in details in Chapter 4 that Si doped gold clusters can form a 

stable geometry. Hence it is of interest to study the interaction of Si atoms with Aun 

clusters of various dimensionalities. In this chapter we place Si atoms as a backbone 
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in gold nanotube. Silicon has already been incooperated with gold atoms to form 

nanowires. For example, an Au–Si alloy is used for microchip packing and 

interconnection in microelectro-mechanical systems (MEMS).The Au–Si eutectic 

nanowires of diameter 60nm have been generated by Lin et al. successfully. The   

SEM and TEM images of the nanostructure of Au–Si eutectic nanowires show Si 

nanoparticles dispersed in the Au matrix [19]. 

Another element we are going to dope with gold cages is Aluminum. Although Al and 

Au are metals in their bulk form, the atomic states have large difference in their 

electro negativity values which are 2.54 and 1.61 for Au and Al respectively [20]. 

Therefore, it is expected that the interaction between Al and Au would involve 

significant charge transfer or, in other words, the chemical bonding will have more 

ionic than covalent character. Walter and Hakkinen show that endohedral doping of 

the Au16 cage by Al or Si yields a geometrically robust, tunable oxidation and 

reduction agent [21]. A study on the atomic and electronic structures of Au5M 

clusters, where M atom represents elements of the second period, revealed that with 

the exception of S, impurities with p electrons (Al, Si, P) adopt non-planar geometries 

while those with s electrons (Na, Mg) prefer planar geometries [22, 23]. 

The possibility to form a hollow tubular AuN cluster by closing the ends of a SWGNT 

has opened the possibilities of new stable structures in competition with other possible 

structures, such as the amorphous, the bulk fragment, and the cage-like ones. Though 

a lot of theoretical and experimental work has been carried out recently to study the 

interaction of Al or Si  atoms with small gold clusters (n <16), very few studies are 

available which investigate the interaction Si or Al with gold clusters of larger size. 

 In the present study, we have placed Al, Si and Au atoms as backbones to the AuN 

tubular cages of different sizes and study their effect on the tubular structure and 

electronic properties. By this we wish to evaluate some of the important features:  

(1) how these impurity atoms with different numbers of 3p valence electrons 

influence the ground-state properties of gold clusters; (2) how the geometrical 

structures and electronic properties of 3p atom doped AuN clusters evolve with 

increasing cluster size and (3) comparing the changes brought about by Si and Al 

doping in AuN clusters with those of all gold clusters (core + shell). The chapter is 

organized as follows. In Section 7.2 computational method is described. In Section 

7.3 , the details of our work are displayed and discussed. Finally, a summary is given. 
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7.2  Computational Details 

All calculations were performed using SIESTA and VASP codes based on the density 

functional theory (DFT). The details for SIESTA code are same as discussed earlier. 

The interaction to the (frozen) ion cores was described by scalar-relativistic non-local 

norm-conserving pseudopotentials using Au (5d106s1), Al (3s23p1) and Si (3s23p2) 

valence electrons. The valence states were described using DZP (double-zeta + 

polarization) basis sets and a mesh cut off 250 Ry was used. A tetragonal supercell of 

size 20 Å X 20 Å X 50 Å has been used and the Brillouin zone integrations were 

carried out using only the gamma point. The self-consistent equations were solved 

with an iterative matrix diagonalization scheme. Geometry optimizations were 

performed with the conjugate gradient algorithm and the geometries were considered 

to be optimized when the forces were reduced upto 0.006eV/Å. In VASP code, we 

have used ultrasoft pseudopotentials and plane wave basis set with spin polarized 

Perdew–Wang generalized gradient approximation to calculate the exchange 

correlation [24,25]. While optimizing some of the structures using VASP, a quasi-

Newtonian algorithm was used to relax the systems to their local minima. 

Finally, the vibrational frequency calculation has been performed to validate the 

stability of XMAuN (M= Si, Al and Au) clusters. 

Test calculations were done for dimers of Au, AuSi and AuAl in order to verify the 

accuracy of our computational methodology. 

In Table 7.1, we summarize the computed results along with the experimental values 

which clearly show that the computed values of bond lengths and binding energies 

(BE) are in fair agreement with experimental values. 

 
Table 7.1 Computed and experimental Binding Energy per atom (BE) and Bond 
lengths of the dimer 
 

System Bondlength (ǖ) B E per atom (eV/atom) 

 Comp Exp Comp Exp 

Au2 2.53 2.47 [20] 1.22 1.16 [20] 

AuSi 2.25 2.25 [26] -- -- 

AuAl 2.37 2.34 [27,28] 1.95 1.67  [26,28] 
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7.3  Results and Discussions 

7.3.1 Pure AuN (N= 24, 42 and 60) cages 

We have performed first-principle calculations within the supercell geometry using a 

tetragonal unit cell. The initial geometries of AuN tubes (N= 24, 42, 60) are optimized 

using SIESTA code, and then the relaxed lowest energy geometries are further 

optimized using VASP code.The optimized  geometries of XMAuN (N =24, 42, 60) 

tubular clusters are shown in Fig. 7.1 

24 Au atoms + 3 X atoms 42 Au atoms + 6 X  atoms 60 Au atoms + 9 X atoms
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Figure 7.1 Lowest energy geometries of XMAuN where X= Si, Al and Au, M=3, 6, 9 
and N= 24, 42, 60. The outer tubular framework represents Au atoms and the ball 
along the central axis of tube represents X, the dopant atoms 

 

The initial structure of AuN (N=24, 42, 60) is composed of hexagonal rings repeated 

three, six, nine times respectively with two triangle caps on the two ends . It can be 

considered as a short segment of the (6, 0) SWGNT (single-wall gold nanotube) 

capped by two triangle caps at both ends, yielding a highly symmetric tube-like cage 

with D3d symmetry. It has been found that the end capes remain triangular while the 

six atom hexagonal layer in contact with the tiangular capes gets distorted and 

become triangular. The results for Au24 agree well with previous studies as far as 

structure is concerned .The energy differs from that of Zhao et al.by 0.23 eV [29] . 

The basic structure of Au24 tube can be extended to form larger tubular structures. The 

structure for Au42 and Au60 tubular cages are formed by repeating the hexagonal 

layers present between two triangular caps of Au24. After optimization of initial 

structures  of  Au42 and Au60 tubular cage , it is seen that hexagonal layer in contact 

with a triangular cap get distorted. This distortion  is very pronounced in case of Au24 

and Au42 while in Au60 these layers remain hexagonal but somewhat distorted. 

7.3.2 Doped AuN cages (XMAuN, X = Si, Al and Au) 

It has been shown in previous studies that Si and Al form exohedral structures when 

doped in Au16 and Au20 cages [30,31]. The endohedral doping of the Au16 cage by Al 

or Si studied by Walter et al.have shown that the ground state consist of the off-center 

doped clusters [21]. In our case, when we place Si and Al atom at two different 

positions namely on the surface and at the centre of Au24 tube, both Si and Al atom 
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prefer the exohedral position i.e, on the surface of Au24 cluster. The binding energy 

per atom of SiAu24 cluster was found to be 2.549 eV/atom with Si atom on the surface 

and 2.527 eV/atom with Si atom at the centre; the difference in energy of two low 

lying configurations is being only 0.022 eV. Similarly for AlAu24 cluster the Al atom 

on surface is the preferred position and the difference in energy of the two low lying 

configurations is also 0.022 eV. We then place three Si and Al atoms at the center axis 

of the Au24 tube and find that the binding energy per atom has increased.  

For Si3Au24 tubular cluster the BE has become 2.679 eV/atom while for Al3Au24 it is 

2.645eV/atom, suggesting the possibility of low lying state. 

The above results have encouraged us to study the effect of the monatomic chain 

backbone of Al and Si atoms on the tubular structure of gold. These impurity atoms 

are from the same row of the periodic table and their principal quantum numbers 

remain the same while increasing the valence electrons. We have placed an Au, Al or 

Si atoms at the centre of each hexagonal layer of AuN (N=24, 42, 60) tubular cluster 

and tried to see whether a long monatomic chain can be formed inside the AuN tube. 

We will also investigate how these 3p atoms can influence the ground-state properties 

of Au24 tube. 

The dopant atoms XM (X = Au, Al, Si and M= 3, 6, 9) are placed as the central axis of 

the tubular AuN (N= 24, 42, 60) structures respectively and geometry optimizations 

were performed without any geometric or symmetry constraint. The optimized stable 

structures of the XMAuN cluster are also displayed in Fig. 7.1 and Table 7.2 gives 

various structural and energetic characteristics of XMAuN clusters.  

In the Au24 cage, the dopants X (X = Si, Al and Au) are placed initially at the center 

of each of the three hexagonal layers of the tubular Au24 structure and the geometry 

optimizations performed without any geometric or symmetry constraint. It is clearly 

seen that the ground-state of X3Au24 (X= Si, Al ) clusters still maintain the original 

D3d structural symmetries. In the optimized structures, Si atoms shift sideways while 

Al atoms stay at the centre of the Au24 tube. The low lying geometry of Au3Au24  

shows larger distortion after minimization.  

It is seen that the bond length between the Au backbone atoms is 2.88 ǖ which is 

larger than the interlayer separation in Au24 tubular i.e, 2.81 ǖ .This has caused the 

two Au atoms to remain inside the cage while the third Au atom has come out of the 

tubular and converted the triangular cap into a rhombus at one of the ends of the tube. 

We have optimized the Au2Au24 tubular structure to see whether the two Au atoms 
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present at the centre remain inside . It is found the two Au atoms present within the 

Au24 cage indeed remain at the center, with negligible distortion to the parent 

structure. 
 

Table 7. 2 Average Binding Energy per Atom (Eb ), Average Distances of Au-Au 
atoms (inter-layer) and X-X (X=Al, Si, Au) present at the centre(R) and HOMO-
LUMO gap (Eg),  Energy of HOMO level 
 

Cluster Eb 
 (eV) 

R (A
o
) Eg 

(eV) 

Energy of  

HOMO level 
  Au-Au 

(inter layer) 

X-X (at 

centre) 

Au24 2.437 2.77 ---- 0.97 -4.60 

Si3Au24 2.679 2.79 Si-Si = 
2.58 

0.27 -3.86 

Al3Au24 2.646 2.81 Al-Al = 
2.66        

0.67 -4.07 

Au3Au24 2.43 2.80 Au-Au= 
2.81 

0.07 -4.18 

Au42 2.529 2.73 ---- 0.24 -4.74 

Si6Au42 2.799 2.81-2.90 Si-Si=2.52 
-2.92 

0.24 -3.84 

Al6Au42 2.739 2.79-2.86 Al-Al  =  
2.79 - 2.87

0.26 -4.03 

Au6Au42 2.529 2.72-2.80 Au-Au  =   
2.72-2.76 

0.19 -4.27 

Au60 2.579 2.76 ---- 0.27 -4.45 

Si9Au60 2.858 2.81-2.85 Si - Si = 
2.50-2.60 

0.33 -4.11 

Al9Au60 2.812 2.76-2.86 Al-Al =   
3.61-4.71 

0.13 -4.14 

Au9Au60 2.567 2.77-2.83 Au-Au  = 
2.76-2.89 

0.12 -4.29 

 
The doped Au42 structure is initiated by placing the dopant atom at the centre of each 

of the six hexagonal layers. After the geometry optimizations were performed, it was 

found that the dopant atoms have not distorted the tube like structure of Au42 and still 

form a linear chain at the centre of tube. In the Au doped Au48 cluster it is found that 

similar to the case of Au3Au24, one of the gold atoms lying at the central axis has 

come out to form a rhombus at one end of the tube while rest of the Au atoms form a 

chain. Interestingly, as Fig. 7.1 shows the Si and Al atoms lying near one end of the 

Au42 tube, has broken off from the rest of the chain. The reason can be assigned to the 

size mismatch between Si-Si atoms, Al-Al atoms and the interlayer distance between 
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the Au atoms layers. Since the size mismatch is more pronounced in case of Al –Al 

atoms, it can be concluded that Si is more compatible as a backbone to AuN cages. 

The doped Au60 tube is generated when each dopant atom is placed at the centre of 

each of the nine hexagonal layers. The resultant geometry is then optimized. The 

Au9Au60 is found to have similar distortions as Au3Au24 and Au6Au42. Fig. 7.1 shows 

that, Au60 cage having Si and Au atoms as a backbone has tube like geometry. The Al 

doped Au60 tube is completely deformed due to size mismatch as discussed above and 

most of the Al-Al bonds are broken. It is also seen that Al atoms are occupying 

position where they can have maximum coordination number i.e, 7 with Au atoms. 

However in Si doped Au60 cage the size matching between Si-Si atoms and Au layers 

seems to be more compatible. Therefore the structure is still symmetric with a slightly 

zigzag backbone. 

From these simulations it is apparent that in order to provide a stable backbone, size 

matching is a requirement. So Si-Si distance which is slightly larger than gold 

interlayer distance will form a good backbone if it has some breaks instead of being a 

continuous chain. 

With this view we incorporated in our calculations Si8Au60 which has one missing 

atom compared with presented above. The new structure is shown in Fig. 7.2. It is 

indeed found true that these chains are absolutely straight and not bent as the 

backboned Si9Au60 in Fig. 7.1.  

 

Figure 7.2 The lowest energy geometry of Si8Au60. The outer tubular framework 
represents Au atoms and the balls along the central axis of tube represent Si atoms.
  

7.3.3 Energetics 

In order to investigate the stabilities of the doped tubular XMAuN clusters, we have 

compared their average BE with that of the pure AuN .The obtained results are 
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presented in Table 7. 2 and Fig. 7.3. The BE is calculated using, 

                   ( ) EEEE XMAuNAuXb
NM −+=                   (7.1) 

where EX and EAu  are the energies of single X and Au atoms, respectively, while 

EXMAuN   is the energy of the XMAuN . 

 

Figure 7.3 The average binding energy ( Eb
) of the ground-state XMAuN (X= Al, Si 

and Au, M=3, 6, 9 and N= 24, 42, and 60) tube like structures 
 

It can be seen from Table 7.2 that for all the structures, average binding energy for the 

doped Au24 clusters is larger than that of the ground state pure Au24 cluster with D3d 

symmetry. Therefore, the introduction of dopant atom has enhanced the 

thermodynamic stability of the tubular Au24 cluster. The structure doped with Si and 

Al atoms have higher binding energy in comparison with Au doped Au24 structure. It 

is found that Au24 doped with Si atom is most stable in comparison with Al and Au 

doped Au24 tube.The average binding energy of Au42 and Au60 is found to be higher 

than Au24 tube by  0.092 eV and  0.142 eV respectively. It indicates that Au42 and 

Au60 clusters are thermodynamically more stable than Au24 tubular cage. 

 It is clear from the Fig.7.3, that out of the Al6Au42 and Si6Au42, the Si doped Au42 

cage is the most stable. Similar conclusions  can be made about X9Au60 (X = Si , Al) 

tubular cage . It is also observed that the presence of Au atoms as backbone has not 

changed the binding energy of the Au42 structure while in case of Au60 tube it has 

lowered the binding energy , making it less stable than pure Au60 tube. 

From the binding energy graph, it can be concluded  that the Si and Al doped AuN 

(N= 24, 42, 60) tubes are more stable than Au atom doped AuN tube for all the 

structures. 
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7.4 Electronic Properties 

The calculated HOMO-LUMO energy gap (Eg) values of the ground-state 

geometeries of XMAuN clusters are presented in Table 7.2. 

7.4.1 HOMO –LUMO Gap  

The HOMO-LUMO gap of tubular Au24 is found to be 0.97eV, suggests that it is 

chemically inert and relatively stable. Our result for HOMO-LUMO gap of tubular 

Au24 is in close agreement with Zhao et al.[29]. It can be seen from the PDOS plot in 

Fig. 7.4 and Table 7. 2 that the dopants have decreased the band gap of pure Au24 

making it chemically reactive. In Fig. 7.4 (a), it can be clearly seen that a band gap 

exists at Fermi level for the Au24 tube. Similarly the doping of Si inside the Au24 tube 

has increased the electron density around fermi level and reduced the HOMO-LUMO 

gap of tube to 0.27eV; therefore conductivity of bare tube has been improved. 

 

 

 Figure 7. 4  Partial density of states for (a) Au24 tube (b) Si3Au24 (c) Al3Au24 and (d) 
Au3Au24, clusters with their lowest-energy configurations representing s,d states of 
Au24 tube and comparison of the s, d states of Au24 tube after doping  with the s and p 
states of dopant Al and Si. Fermi level is set at zero on the energy axis. 
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This observation is further strengthened by plot of density of the states. In PDOS plot 

Fig. 7. 4 (b), there is a clear shift of d-energy levels to deeper energy levels on silicon 

doping. It can also be seen from Table 7.2, the HOMO level of Au24 tube on doping 

with Si shifts from -4.60eV to -3.86eV. In Fig. 7.4 (d), PDOS of Au3Au24 tube is 

plotted. The placing of Au atoms within Au24 has increased the electron density at 

Fermi level reducing the band gap to 0.07eV but has not produced any significant 

shift in the d-orbitals towards lower energy.Thus it can be concluded that Si doping 

enhances the conductivity and stability of the Au24 tube. Similar observations can be 

made for the Al doped Au24 tube. However the effect of Al doping on the shifting of d 

orbitals of Au24 tube and in reducing the HOMO-LUMO gap is less in comparison 

with Si. 

For higher AuN tubes, the similar trend can be observed. Table 7.2 shows, that the 

HOMO energy levels of the AlMAuN and SiMAuN (where M=6, 9 and N= 42, 60) 

clusters are shifted upwards (less −ve) with respect to that of pure AuN spectrum.  

7.4.2 Mulliken Charge Analysis  

The Mulliken Charge analysis of silicon doped Au24 shows systematic charge transfer 

from the ends of the tube towards the centre. No such trend is followed by Al atoms 

doped within AuN tubular cage. In general the effect of Si doping is more pronounced 

than Al and Au atoms within AuN tube. 

7.5   Conclusion 

In summary, we have made relativistic DFT studies on the stability and electronic 

properties of the tubular XMAuN (X= Si, Al and Au, M=3, 6, 9 and N= 24, 42, 60) 

clusters. It was found that the encapsulations of Si and Al atoms do not destroy the 

tubular frameworks of the gold host though they change the energy hierarchy of the 

pure AuN isomers, showing a high possibility to form a novel binary cluster with gold 

providing tubular structures. 

• The ground states of Al3Au24 and Si3Au24 still possess the D3d structural 

symmetry of the host tubular Au24, but Au3Au24 have the lower symmetries of 

C1 and C2V, respectively, because Au atoms have induced the structural 

distortions. 

• As the size of the AuN tube increases, the tubular structure of AuN is retained 

in presence of Si and Au atoms while it get distorted due to Al atoms. 
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• The Si and Al atoms can form long chains within Au nanotube if a gap is 

given after every 4-6 layers of Au atoms to accommodate the size mismatch 

between Si-Si, Al-Al and Au layers. The Si doping within AuN tube is more 

compatible than the Al doping. 

• The PDOS of the tubular AuN tube has been significantly changed by the 

dopant atoms.The dopant atoms have increased the electron density around 

fermi level and shifted the d-energy levels to deeper energy levels thus 

reducing the HOMO-LUMO gap of AuN tube. The effect is more pronounced 

in Si doped AuN than Al and Au atoms doped AuN tube. 
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Chapter-8 

8. Gold Monoatomic Chains 

8.1 Introduction 

Nanoscale materials have peculiar properties different from crystalline structures due 

to the quantum confinement of electrons. Among the nanostructured materials, 

nanowires have emerged as one of the important structural components in future 

nanomaterials, mainly due to their high strength and ductility as compared to bulk 

materials. Metal nanowires display interesting quantum behavior, quantization of 

conductance, even at room temperature due to large energy level separation of the 

transport channels unlike in semiconductors. To simulate these structures a series of 

wire geometries are studied containing different number of atoms and under varying 

stretching conditions. The formation of these atomic wires has been supported by 

many theoretical and experimental calculations [1-4] 

Among the metals, Gold nanowires (GNW) exhibit very interesting properties such as 

quantized conductance and the ability of evolution into linear gold chains which 

display large Au-Au interatomic distances before breaking as well as great potential in 

applied fields such as nanoelectronic [5-8].  

The evolution, formation, and breaking of atomically thin gold nanowires with 

diameters of a few atoms, is another important aspect of theoretical and experimental 

studies. In the case of gold nanowires large interatomic distances for one atom thick 

nanowires have been reported by various experimental groups. Ohnishi et al. [9] using 

transmission electron microscopy (TEM) technique reported results of Au−Au 

distances in the range of 3.5 to 4.0Å for gold chain. Yanson et al.  using a 

mechanically controllable break junction (MCBJ) on a scanning tunneling microscope 

(STM),  reported distances for Au −Au of 3.6Å inferred from histograms of chain 

lengths and have recently re-analyzed those results and argued that a precise 

calibration gives Au−Au distances of 2.6 ± 0.2Å  [6, 10].  

The simulation methods, ranging from effective potentials to tight binding based, up 

to ab initio electronic structure, have helped to aid the understanding of experiments 

as well as stimulate new experiments, since these techniques have the predictive 

power.  
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The tight-binding molecular dynamics method are  much faster than first principles 

methods but  this gain in speed comes with the cost of loosing some of the flexibility 

of fully ab initio methods. 

Novaes et al. [11] have used a density functional theory (DFT)-based tight binding 

molecular dynamics method (TBMD), to study the formation and breaking of Au 

nanowires under tension. Their calculations have shown how defects induce the 

formation of one-atom chains. They have obtained five atoms long chains, before 

breaking. Similar method had been used by Silva et al. [12] to simulate the formation, 

evolution and breaking of very thin Au nanowires and the effect of impurities on its 

properties. 

The mechanical response of nanoscale structures is known to be different than that of 

their macroscopic analogs and surface effects in these high-surface-to-volume devices 

are important [13]. Young’s modulus has a direct relevance to the function of 

nanoscale devices as it forms the basis of variety of mechanical properties. Diao et al. 

[14], investigated elastic properties of gold nanowires aligned in the ‹1 0 0› and ‹1 1 

1› crystallographic directions using atomistic simulations and have shown the 

Young’s modulus increases with a decrease of cross-sectional area in the nanowires. 

In an experimental study using an atomic force microscope by Wu et al. it is shown 

that in Au nanowires, Young’s modulus is independent of its diameter [15]. 

In this Chapter, we will study finite monoatomic gold chains. It has been   

demonstrated by De Maria and Springborg [16] that finite chains were very similar to 

infinite chains and the general picture does not change. We will investigate the tensile 

strength of short monatomic (finite) gold chains of five and seven atoms using DFT 

and will compare the results of similar calculations done with Gupta potential [17]. 

The organization of the chapter is as follows. The computational details are given in 

Section 8.2, results and discussions are presented in Section 8.3 and conclusion in 

Section 8.4. 

8.2  Computational Details  

The details of the computational method have already been discussed in previous 

chapters. In brief, we have used the SIESTA code, based on Density Functional 

theory method. The electron density functional is treated by the generalized gradient 

approximation (GGA) .We have used relativistic pseudo potential for gold. The 
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reciprocal space integrations are carried out at the gamma point. The clusters are 

optimized inside simulation cell of 15 ǖ and energy cutoff of 200 Ry. 

The results of the test calculations on Gold dimer have already been discussed in the 

earlier chapters. 

8.3 Results and Discussions  

In our preliminary work on gold monoatomic chains, we have considered two linear 

finite chains of gold with different number of atoms i.e., five and seven and studied 

their structures, energy variations, force and modulus. After the relaxation of linear 

chain of gold atoms, the minimum energy configuration is found to be a zig-zag 

chain. The relative stability of zigzag chain has been explained by giving the 

comparison between the band structure of the linear chain and zigzag chain. In the 

linear chain, the overlap between the filled d states broadens the d bands until they 

reach the Fermi level, destabilizing the wire with their associated high density of 

states. For a given wire length, the zigzag configuration allows a larger bond distance 

bringing back the d bands below the Fermi level [18]. The zigzag structure is 

confirmed in the work of Ref. [19] 

These zig - zag monatomic chains of gold containing 5 and 7 atoms are then stretched 

between two fixed end atoms. We displace all the atoms according to a uniform strain 

along x direction, by fixing the atoms at ends of the nanowires, and then relax the 

nanowires to obtain the equilibrium configurations of nanowires at the given strain. It 

is found as the longitudinal strain on the chains is increased the zig-zag chain 

straightens at a particular length and ultimately disintegrates via an interesting dimer 

or trimer phase on further increase in strain.  

The optimized geometries at various stages of stretching of 5 and 7 atoms gold chains 

are shown in Fig. 8.1 

 
Five atom gold chain Seven atom gold chain 
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Figure 8.1 Various stages of stretching for pure monatomic Au chain containing 5 
and 7 atoms.  
 

8.3.1 Energy vs Length of chain 

The variation in total energy (U) of the chain with the increase in total length of the 

chain for five and seven gold atoms is plotted in Fig. 8.2. The plot shows the 

comparison of results with the similar calculations done through Gupta Potential (GP) 

[17].  

It can be seen in Fig. 8.2, the total energy is a monotonic function of chain length. 

From the DFT calculations, the potential energy curve shows the expected minimum 

while in GP results a plateau is seen where crossover from zig-zag to straight 

character takes place. In DFT calculations, the minimum in the energy is quite evident 

for five atoms gold chain than in seven atoms chain. At minimum (or at the plateau in 

case of GP) the energies are at variance in the two methods, but the chain lengths 

agree very well. 
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Figure 8.2 Comparison of variation in total energy with the total length of gold chain 
from different approaches DFT and GP. 
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This energy vs length of the chain curve is used to find the relation between force and 

total length of the wire using equation (8.1) 

                                          L

U
F

∂
∂

−=
                                                               (8.1) 

8.3.2 Force vs Length of chain  

Force as a function of length (or the stress-strain curve) for two different approaches - 

DFT and GP is shown in Fig. 8. 3. The usual elastic region is where the curve rises 

with increase in length. However it reaches a maximum and then turns down 

depicting the onset of plasticity.  

Thus the peak represents the maximum permissible force, or the breaking force. The 

breaking forces calculated by DFT are somewhat larger -- 2.94nN for the 5- atom 

chain and 2.5nN for the 7-atom chain which are higher than predicted experimental 

value 1.56 ± 0.3 nN. Though the breaking forces of the chains calculated using Gupta 

potential of order of 1.6nN, are in better agreement with the experimental value, the 

overall energy vs. length curve using DFT matches the experimental findings [20]. 
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Figure 8.3 Comparison of variation of force with the total length of gold chain of 5 
and 7 atoms for DFT and GP 
 
8.3.3 Modulus vs Length of chain 

In Fig. 8.4 we have plotted variation in modulus with the total length of the wire. 

Since for a nano cross-sectioned zig-zag chain, it is difficult to define the area of cross 

section, the modulus thus defined is taken as proportional to Young’s modulus. It is 

defined using equation (8.2) 
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The ‘unphysical’ regions in Fig. 8. 4, where the stress-strain curves have negative 

slopes moduli are negative, cannot exist as stable states of the wire. However in a 

dynamic situation (e.g., when the wire is being pulled continuously) they may well 

exist. These plastic regions are more clearly seen in GP calculations than in DFT. 
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Figure 8.4  Comparison of variation of modulus with total length of gold chain of 5 
and 7 atoms for DFT and GP 
 
8.4  Conclusion 

We have studied the structures, energy variations, force and modulus of two linear 

finite chains of gold with five and seven atoms and compared the results with similar 

calculations done through Gupta Potential.  

• It is seen that a given monatomic gold wire which has a zig-zag shape can 

assume structures containing qualitatively different regions for different 

strains. Interestingly, such regions of strain are separated by plastic regions 

which can be accessed by applying the strain dynamically. These plastic 

regions are more clearly seen in GP calculations than in DFT results. 

• The breaking force more or less agrees with experimentally observed values.  
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Chapter 9 

9.  Phonon Dispersion Of Gold Nanotube 

9.1  Introduction 

The developments of nanoscale devices require the understanding of nanoscale 

phenomena. At such scale, properties like electrical, optical, vibrational and 

mechanical become distinctly different from bulk behavior. For example, 

nanostructures have been observed to exhibit sharper density of states, reduced 

electron-phonon coupling [1-6]. Nanowires and nanotubes have been widely studied 

because of their importance in the fundamental physics and the potential applications 

in the future nanodevices e.g. gold and carbon nanowires and nanotubes [7, 8]. 

However, the gold nanotubes and nanowires in comparison with the carbon nanotubes 

CNTs, had been found much later and relatively less studied. A finest gold nanowires 

of about 0.6 nm in diameter and 6 nm in length were synthesized by Kondo et al.in an 

ultrahigh-vacuum (UHV) transmission electron microscope with the electron-beam 

thinning technique. They found using high-resolution electron microscopy that the 

gold nanowires had a coaxial helical multishell structure, which was similar to that of 

the multiwalled carbon nanotube [7]. Recently, Oshima et al. have experimentally 

found a single-walled (5, 3) gold nanotube (SWGT) which composed of five atomic 

rows coiling around the tube axis [8]. The formation of experimentally observed (5, 3) 

gold tube was explained by Senger et al. [9]. Theoretically, the gold nanowires were 

studied by Bilalbegović using the molecular-dynamics simulations and the embedded-

atom potential. They found that the gold atoms could form the concentric cylindrical 

sheets and even have a double-walled gold nanotube like structure. In the vibrational 

density of states (VDOS) study of two cylindrical gold nanowires they found that 

maximal vibration frequency is about 6 THz (200 cm−1), higher than that of the bulk 

gold, being 4.7 THz (157 cm−1) [10, 11].  

Most of the studies focus on the electronic structures and transport properties of the 

gold nanowires and nanotubes [12-15] but there are relatively very few studies are 

available on the vibrational properties of SWGTs and gold nanowires. Most of the 

vibrational analysis studies focus on finding VDOS; a few studies involve the 

calculation of vibrational modes of nanowires. The behavior of a material depends on 

phonon dynamics, and these dynamics are change substantially as nanostructure 

dimensions approach the phonon mean-free path length. A phonon is a quantized 
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mode of vibration occurring in a rigid crystal lattice, such as the atomic lattice of the 

solid. The study of phonons is an important in solid state physics as they play a major 

role in determining the physical properties of solids such as thermal and electrical 

conductivities. In a lattice dynamics calculations of gold using phenomenological 

model Thapa has computed the phonon frequencies, Lattice specific heats, 

compressibility and Poission’s ratio. They have evaluated force constants and phonon 

dispersion relations of bulk gold along symmetry directions [100], [110] and [111]  

[16]. The phonon dispersions calculations have been made using both empirical 

methods and the accuracy ab initio calculations [17-21].   

Phonons are a quantum mechanical version of type of vibrational motion, known as 

normal modes in classical mechanics. The normal modes are the elementary 

vibrations of the lattice and any arbitrary vibrational motion of the lattice can be 

represented as a superposition of normal modes with various frequencies. Although 

normal modes are wave like phenomenon in classical mechanics, they acquire particle 

like character in quantum mechanics. They are then known as phonons. There are two 

types of phonons: Acoustic and Optical phonons.The Lattice dynamics (LD) deals 

with problem of finding the normal modes of vibration of a crystal i.e, calculating  the 

energies (or frequencies ) of the phonons as a function of their wave vector's k . 

The relationship between and k is called phonon dispersion. 

Optical phonons are found in crystal with more than one atom in the unit cell and 

have non zero frequency of vibration, even when the wavelength is large. They are 

called optical because in ionic crystal they are easily excited by light (infrared light) 

and therefore are called infrared active. The Longitudinal and Transverse optical 

phonons phonons are abbreviated as LO and TO respectively. 

Acoustic phonons have frequencies that become small at long wavelengths and 

correspond to sound waves in the lattice. Longitudinal and Transverse acoustic 

phonons are abbreviated as LA and TA respectively. For system with one atom per 

unit cell the phonon dispersion curves are represented only by acoustical branches and 

if the numbers of atoms in a unit cell are more than one, the optical branches will also 

appear. In acoustic modes the atoms moves in phase with each other while in optical 

modes the atoms moves out of phase. In general for a system containing N atoms per 

unit cell there will be 3 acoustical branches (1 longitudinal and 2 transverse) and 3N-3 

optical branches (N-1 longitudinal and 2N-2 transverse). 
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9.2 Methodology 

We have discussed in Chapter 3 that GP calculations give good results as far as 3 D 

geometries of gold clusters is concerned. It is observed that GP predicts 3 D structures  

as low lying  geometries while DFT calculations results in planar geometries for gold 

clusters upto n =13 . As already pointed the difference in lowest energy structures 

predicted by GP and DFT has been attributed to relativistic effects in gold clusters. It 

has been discussed that as size of gold clusters grows the GP results become 

reasonably better and the calculations with GP are also computationally less 

demanding in comparision with DFT. Hence it may be suggested that for the larger 

gold clusters we can use GP. 

Keeping in mind the above discussion, we have tried to calculate the vibrational 

properties of gold nanotube using GP. The GP calculations can give a reasonably 

good idea about the vibrational properties of gold nanotube in much less 

computational time than the DFT calculations. We have considered the 120 atoms 

gold nanotube. It consists of alternate hexagonal rings similar to Au60 nanotube 

already discussed in Chapter 7. The free standing Au120 nanotube was optimized using 

GP.  

Since GP has a tendency to form 3 D geometries in case of gold, it was found that the 

tube gets twisted and distorted. Therefore then the tube was optimized by holding the 

end layers at fixed heights, the final optimized geometry consisting of 108 atoms of 

gold nanotube is shown in Fig. 9.1 

 

Figure 9.1 The optimized Au108 nanotube using GP (without the top and bottom 

layer) 
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In general, to find the vibrational properties of any system, we first need to build a 

dynamical matrix containing the quantities ⎟
⎠
⎞

⎜
⎝
⎛→

qD j

i

β
α

 by calculating the force constants 

corresponding to the system. For a 2D system [23] containing r number of atoms per 

unit cell, we have 2r different solutions. For non trivial solutions, we should have 

                               02 =
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where   ⎟
⎠
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∑ m

m
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i
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i rqi
MM

qD .exp
1

0
β
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β
α  and jm

i

β
α0Φ  are the force constants which 

are calculated, in this work, using Gupta potential. Here rm are position vector of the 

mth cell and M are the masses of the atoms.The force constants jm

i

β
α0Φ  are defined as 

the second derivative of energy w.r.t. atomic displacements. 

These force constants can generally be determined by numerically displacing the 

atoms from their equilibrium positions and calculating energies. However, the tube 

optimized above is not uniform at the atomistic scales and force constants are derived 

for different atoms gave different results.  

Therefore we take recourse to the sheet which, when folded into a cylinder would 

yield a perfect gold nanotubes. The sheet is then optimized by holding its end layers. 

The optimized sheet is shown in Fig.9.2  

 

Figure 9.2 The unit cell of sheet of gold atoms having a rhombus crosssection 
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9.2.1 Dynamics of a sheet of Au atoms 

From the above diagram we can identify the unit vectors and reciprocal lattice.The 

basis vectors are shown in Fig. 9.2(a). Each unit cell is a 60o rhombus with side a (a = 

bondlength) conatins one lattice point. 

The basis vectors of the reciprocal lattice are also shown in Fig 9.2 (b). They are 

∧→

= z
a

b
π2

2   ; 
∧→

= απ
a

b
2

1              (9.2) 

where 
∧∧∧

+= yx
2

1

2

3α .  We have to study the waves propagating in the z direction  

(parallel to the axis of tube). According to the geometry of the sheet, the propagation 

vector in this direction is restricted as follows: 

0 ≤ ky  ≤ ʌ/a       (9.3) 

The sheet corresponding to our sheet AuNT is of limited dimensions along x axis- it is 

only 6 a wide as the propagation vectors are restricted in this direction can have only 

following values: 
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    (9.4) 

We need to solve for all ky values in equation (9.3) along with equation (9.4), which 

can be called the circumferential wave vectors. 

9.2.2 Cell at origin and neighboring cells 

We shall use the method of dynamical matrix incorporating only forces between 

nearest neighbours. Therefore we need lattice vectors only for nearest neighbors’ cells 

(nearest to the origin, at the 0th cell). These are denoted by 1, 2 …..6 in the Fig. 9.2 

and the corresponding lattice vectors are, 
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9.2.3   Evaluation of the force constants 

We now numerically evaluate the second derivative of energy with respect to any two 

coordinates of the neighbouring atoms, are of the atoms being the central (0th ) one. 

The symbols used for the force constants is 

   
nji
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i ss ∂∂
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2
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Where Φnj

i0
 is the energy of the system; soi is the ith (i= 1, 2, 3 ⇔ x, y, z) coordinate of 

the atom at origin and snj is the jth coordinate of the atom in the nth cell . We shall need 

only the following force constants. The self terms i.e., 
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For numerical calculations, we use the following expressions 
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And similarly for   ΦΦ 03

01
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02
, , where ∆ is step size. In our calculations the values of 

∆=0.02Ao.The interactive terms are  
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Here the underlined pairs are equal in magnitude considering the geometry of the 

lattice, therefore 
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The other interactive terms are  
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Thus , between atom 0 and 1, we have 0
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And by the symmetry of the lattice, 
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The force constant between 0 and 2,3,…..6 can be found by rotation symmetry of the 

matrix .  (Φ 3

03

n   are all equal as already shown). 

Choose a primed coordinate system x’,y’ such that x’ connects atoms 0 and 2 and y’ 

is normal to it. Then in the rotated coordinate system the new coordinates are 
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The relation between 0 and 1 in original coordinate system  is same as that between 0 

and 2 in new coordinate sysytem.Therefore 
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where ′
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2y , 21s = 2x . Similary we can also write  
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In equation (9.27), the underlined term will vanish . In general we can write 
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Expanding the equation (9.28) and using  
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We can rewrite the equation (9.28) 
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Applying the above formulation , we get the following terms 
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Again using the symmetry of lattice we can write the force constants between 0 and 3 
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By the translational symmetry of the lattice  (atom # 0→1 and atom # 4→0 everything 

remain same) . Hence we can write 
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And the rest are zero.Similary writing the force constants for between atom# 0 and 5, 
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For atom # 0 and 6 ( atom 6 is opposite to atom 3) 
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The  calculated values of the required  force constants of the optimized two 

dimensional gold sheet for the nearest neighbours are 

   2303

03

202

02

01

01

/1025.1

/1025.4

−°−

−°

×−=

==

Φ
ΦΦ

AeV

AeV

    (9.34) 

The other force constants are  
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9.2.4 Evalution of Dynamical Matrix 

The secular determinent of the dynamical matrix to be solved as 
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On solving the above 2 X 2 matrix we get the frequency as, 
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where the dynamical matrix elements can be solved as 
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For expanding equations (9.38 – 9.40) , we have used the  rn values from  equations 

9.5 (a-f) and we take 
∧→

= nqq  . Then the  on simplification above equations become  
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These elements of the dynamical matrix are solved for the different  values of qx and 

qy.The allowed values of qx are 0, 
aaa

πππ
,

6

4
,

6

2
±±  and for each value of qx , we have 

taken the values of qy lying between 0<qy<
a

π
. After finding the value of  elements of 

the dynamical matrix, we diagonalise it using  equation 9.36  and frequencies are 

calculated using equation 9.37. The calculated dispersion curve is plotted in Fig. 9.3. 

The dispersion curve shows six branches corresponding to each atom in hexagonal 

layer of Au60 nanotube. 
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Figure 9.3 Dispersion curve for 2D gold sheet 

9.3 Conclusion 

We have developed algebra for computing a phonon -dispersion curves for gold 

nanotube using Gupta potential and explained it by taking an example of small 2D 

gold sheet. As far as our knowledge very few theoretical works literature are available 

on calculating the vibrational modes using Gupta potential (GP) of gold nanotubes. In 

case of first principle study of  the phonon frequencies and vibrational modes, the 

dynamical matrix is diagonalized but in order to get an accurate dynamical matrix, 

one needs to take a very large supercell including more number of atoms .In such 

cases the GP can give reasonable results in less computational time with more careful 

optimization of the initial geometry.We will further improve upon  this work by 

plotting the dispersion curve  for gold sheet with larger number of atoms using both 

Gupta potential and DFT.  
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Chapter 10 

Summary and Conclusions 

This thesis focuses on different geometries of gold nanostructures of various sizes 

such as gold clusters, gold nanotubes and nanowires over different size ranges. 

Keeping in view the vast amount of literature available theoretical as well as 

experimental on the intriguing nature of the lowest energy geometries of gold clusters 

we have employed two different approaches i.e., a semi empirical potential and first 

principle method - density functional theory .The changes in the structural and 

electronic properties of gold nanostructures with the introduction of different foreign 

elements as a substitutional or at the endohedral sites of the nanostructures were also 

studied using DFT.  

We have presented a detailed discussion on the different geometries of small gold 

clusters using Gupta Potential and DFT. The two approaches predict different lowest 

geometries  for gold clusters for n ≤ 13 .While the use of Gupta Potential has 

predicted the early onset of 3D geometries, the DFT predicts planar structures for n up 

to 13.  The results of our calculations are in fair agreement with available theoretical 

and experimental data. It can be remarked that GP are gives reasonably good results 

as far as 3D geometries of gold clusters are concerned. It is recommended that GP can 

be used to study higher atom gold clusters as it gives reasonably good results with the 

increasing size (n) and is computationally less demanding than DFT. 

There is lot of research on the effect of doping on gold nanostructures due to the 

observation of interesting changes in its geometry and different properties with the 

introduction of impurity. The focus of the research is mainly on doping of gold 

clusters with transition metals. In our work we have presented a systematic study of 

the effect of doping Si and Ge on the ground state structures of pure gold clusters. It is 

found that on doping of silicon and germanium atoms in Aun clusters, they adopt 3D 

structures from n=3 onward. The introduction of Si and Ge atoms in Aun+1 cluster 

increase their binding energy per atom. Silicon doped gold clusters have higher 

binding energy than germanium doped clusters. The HOMO–LUMO gap values of 

both Silicon and Germanium doped gold clusters lies in the range of semiconductors. 

The Au32 is a highly stable cage with the icosahedral (Ih) symmetry which has been 

verified both theoretically and experimentally. We have carried out a DFT study of 

the M12@Au20 (M= C, Si and Ge) clusters. The addition of dopant atoms has 

increased the average binding energy of Au32 cage.  Pure Au32 cage is chemically 
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inert with HOMO-LUMO gap of 1.59eV, the substitutional doping of impurity atoms 

have found to decrease this gap making them relatively chemically reactive. Hence 

these materials can be used as novel materials in nanostructured devices. 

Cu, Ag and Au are known as ‘coinage elements’ and forms an isoelectronic series 

.The study of interaction of these elements with each other forms a part of research for 

long time. We have studied the effect of encapsulation of small chain of Cu and Ag 

atoms within a short segment of gold nanotube i.e., Au24 tubular cage using DFT. In 

general, the Cu doped Au24 tubular cages found to have higher energy gap than the Ag 

doped cages except for Cu2Au24-II. The Mulliken population analysis, reveals that the 

d obitals of M (Cu, Ag) atoms in M@Au24-I and M@Au24-II clusters are dominant 

core orbital participating in bonding. 

We have further extended our work of studying the interaction of group 14 elements 

with gold by  studying  the  structural and electronic properties of of the tubular 

XMAuN (X= Si, Al and Au, M=3, 6, 9 and N= 24, 42, 60) clusters. It is known from 

previous studies that silicon when doped in gold clusters , forms an exohedral 

geomerty. In our work , we have shown that the Silicon can be doped inside  the gold 

cluster, though we recommend futher theoretical and experimental research on this . 

We have found that the encapsulations of Si and Al atoms within the tubular 

frameworks of the gold host do not destroy its geometry though they change the 

energy hierarchy of the pure AuN isomers. It was concluded that the Si and Al atoms 

can form long chains within Au nanotube if a gap is given after every 4-6 layers of Au 

atoms to accommodate the size mismatch between Si-Si, Al-Al and Au layers. The Si 

doping within AuN tube is more compatible than the Al doping. This research shows  

a high possibility of a novel binary clusters with gold providing tubular framework. 

Lastly we have studied  the structures, energy variations, force and modulus of two 

linear finite chains of gold with five and seven atoms . The calculated value of 

breaking force for two monoatomic chains using DFT  is more or less in agreement 

with the experimental value. The Chapter IX gives brief review of  literature and the 

results of some prelimilnary work on the phonons study  of hollow gold (6,0) 

nanotube using GP. 

In brief, this work provides an insight to the  systematic theoretical understanding of 

the geometric optimization, relative stability, electronic properties of gold clusters and 

gold nanotubes of different sizes. The  present study can be  useful for the analysis of 

the theoretical and experimental data related to gold clusters and their applications in 

nanodevices. 
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