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Abstract

We study the nonlinear localized solutions and their Riccati generalization for the
variants of inhomogeneous generalized nonlinear Schrödinger equation. In this
regard, we consider two different fields: (i) nonlinear fiber optics (ii) Bose-Einstein
condensates (BECs). In both the cases, the nonlinear excitations arise due to the
balancing of dispersive and nonlinearity terms.

There has been a surge of interest for investigating rogue wave propagation
through different nonlinear optical fibers and waveguides due to their possible ap-
plications in carrying large amount of energy. The governing model for these
physical systems is the inhomogeneous generalized nonlinear Schrödinger equa-
tion (GNLSE). We have obtained the optical rogue wave solutions for GNLSE
with the aid of self-similarity transformation and investigated the interesting fea-
tures of rogue waves as they travel through dispersion increasing and decreasing
fibers. To overcome the inherent losses experienced by the pulses during propa-
gation, we have discussed the role of doping of the fiber core with erbium atoms.
We have then studied the rogue waves propagation through the erbium doped fiber
system and predicted a mechanism to get their controllable recurrence and anni-
hilation characteristics. Additionally, we have made use of the analogy between
“dispersion in time” for fibers and “diffraction in space” for waveguides to anal-
yse the optical rogue wave propagation through tapered graded-index nonlinear
waveguide in different management regimes. For the nonlinearity management
regime we investigate the effects of modulated tapering profiles on the intensity
of optical rogue waves. This is accomplished by invoking isospectral Hamiltonian
technique, which enables us to identify a large manifold of allowed tapering pro-
files. It reveals that the intensity of rogue waves can be made very large for specific
choices of tapering profile and thus paves the way for experimental realization of
highly energetic waves in nonlinear optics.

We have further explored tapered graded-index nonlinear waveguides for op-
tical similaritons. Optical similaritons are self-similar waves which adjust them-
selves in accordance with the system parameters and hence are of great practical
relevance. Consequently, we have examined the nonlinear tunneling properties of
optical similaritons for different cases and predicted a way which allows us to get
the optical similaritons of desired width at desired location. The results obtained
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may be useful to study nonlinear optical devices based on similaritons.
We have also studied rogue waves for quasi-one-dimensional Gross-Pitaevskii

(GP) equation, with space and time dependent trapping potential, which describes
the wave propagation in BECs. We have shown the controllable dynamics of rogue
waves for the cases where the condensate is subjected to different forms of external
potential. This analysis shows the possibility of studying rogue waves in various
experimentally relevant systems. By employing self-similarity transformation, we
have also studied the controllable self-similar matter waves for the special case of
quasi-one-dimensional GP equation where the condensate is under the influence
of expulsive parabolic trapping potential. In this regard, we present a systematic
analytical approach to generate the class of nonlinearity parameter by using Riccati
generalization for a given trapping potential, within the integrability framework of
GP equation. This enables us to control the intensity profiles of self-similar matter
waves by tuning the Riccati parameter.
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Chapter 1

Introduction

Modern theories of nonlinear sciences have been widely developed over the last
half century as it is believed that they are the important element for understand-
ing nature [1]. They cover almost all branches of science such as plasma physics,
hydrodynamics, mechanics, biology, chemistry, etc. Various nonlinear phenom-
ena are encountered in our daily life such as the stock market, population growth,
weather forecast, planetary systems, etc. In general, the nature of a physical system
depends on the nature of the forces acting on it and on the initial conditions. A sys-
tem is said to be nonlinear if it is subjected to nonlinear forces and its behaviour
is significantly dependent on the initial conditions. These nonlinear systems are
quite complex and a small change in the initial input conditions can bring a drastic
change in their output. Hence, for these systems output is not directly proportional
to the input. In contrast, linear systems are generally gradual, smooth and reg-
ular and are involved in slowly flowing streams, engines working at low power,
slowly reacting chemicals, etc. Nonlinear systems comprise of regular as well as
complicated and irregular behaviours. Strictly, almost all systems can behave as
a nonlinear system if the input is large enough. In case of dielectric media, if the
strength of electric field is small, the refractive index of the medium remains con-
stant and the polarization varies linearly with electric field. For sufficiently large
electric fields, the linear response of polarization towards the electric field switches
to a nonlinear response and varies as the higher power of electric field. In case of a
simple pendulum, if the initial displacement is large then the system exhibits non-
linear response in contrast to the linear motion for a small initial displacement.
The dynamics of nonlinear systems are well described by the set of nonlinear evo-

1



2 Chapter 1

lution equations (NLEEs). The exact solutions of these NLEEs gives a deeper
insight to understand the behaviour of a nonlinear system. To find the exact so-
lutions of NLEEs is a challenging enterprise as mathematical tools like Fourier
and Laplace transform, Greens function, superposition principle hold for linear
systems only and can not be applied here. Since analytical solutions are easier to
interpret, hence with time various analytical methods like inverse scattering trans-
form (IST), Painléve analysis, Darboux transformation, ansatz method, factoriza-
tion method have been developed to find the exact solutions and the integrability
of the nonlinear systems. These NLEEs are known to possess various types of so-
lutions like solitary waves, periodic solutions, shock waves, exponentially grow-
ing and decaying solutions, etc. Nowadays a vast amount of research is taking
place in this area due to the advancement of high-speed computers, mathematical
softwares and the development of new analytical methods to solve NLEEs. The
well known NLEEs which are used to model various physical phenomenon are
Sine-Gordon equation, Korteweg de-Vries (KdV) equation, nonlinear reaction dif-
fusion equation (NLRD), nonlinear Schrödinger equation (NLSE), etc. The sine-
Gordon equation has been thoroughly exploited to study the properties of Joseph-
son junctions, charge density waves, etc. The KdV equation finds application in
studying the properties of many physical systems which are weakly dispersive and
weakly nonlinear such as blood pressure waves, internal waves in oceanography,
etc. The NLRD equation plays a vital role in understanding the flow in porous
media, heat combustion in plasma, image processing, chemical reactions, etc. The
NLSE and its variants appear in many fields such as nonlinear optics, condensed
matter physics, plasma physics, etc. Due to the wide applicability of NLSE and
its variants, they have been thoroughly employed to study the various nonlinear
phenomenon occurring in different areas.
The thesis involves the study of NLSE and its variants in two different contexts:
(i) nonlinear optics (ii) Bose-Einstein condensates (BECs). We report the exact
self-similar solutions like similaritons and their pairs, Akhmediev breathers, rogue
waves, etc. which helps in understanding the pulse propagation in various nonlin-
ear optical fibers, tapered graded-index waveguides and BECs. It is worth men-
tioning that the stability analysis of the self-similar solutions of generalized NLSE
(GNLSE) which we have obtained can be performed by using the standard meth-
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ods. Few such cases have been considered in [2] where the stability of optical
rogons against the periodic perturbation and noise have been discussed. In order
to understand the pulse propagation properties modelled by GNLSE, we provide a
brief introduction of standard NLSE and the various analytical solutions exhibited
by it.

1.1 The nonlinear Schrödinger equation and its so-
lutions

In the standard form, NLSE can be written as

i
∂ψ

∂t
+

1

2

∂2ψ

∂x2
+ σ|ψ|2ψ = 0, (1.1)

where ψ represents the complex field envelope. The first term describes the pulse
evolution with time. The second term represents the group velocity dispersion
(GVD) and the third term describes the nonlinearity. The parameter σ denotes the
self-focusing (σ = +1) or self-defocusing (σ = −1) nature of nonlinearity. In the
context of nonlinear fiber optics, in Eq. (1.1), t denotes propagation distance (t→
z) and x represents either retarded time (for pulses in optical fibers) or transverse
spatial co-ordinate (for beams in a waveguide). In 1972, the complete integrability
of the NLSE has been shown in [3] by Zakharov and Shabat. They have used
inverse scattering transform method which was originally developed by Gel’fand
et al. in the quantum theory of scattering [4, 5]. In general, NLSE possesses
bright and dark soliton solutions, kink and double-kink type solutions, fractional
transform solutions, breathers solutions, Peregrine-soliton/rogue wave solutions,
etc. The exact solutions help to understand the nonlinear phenomena in a better
way. We describe some of these solutions of NLSE, which will be used further in
the thesis.

Solitary waves and solitons

Solitary wave: A solitary wave is a non-singular and localized wave which propa-
gates without change of its properties like shape, velocity, etc. It arises due to the
delicate balance between the nonlinear and dispersive effects of a medium. The
term solitary wave has been given to them because they often occur as a single
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entity. The existence of stable solitary waves was first observed experimentally by
J. Scott Russell [6] while conducting experiments to determine the most efficient
design for canal boats. He found that these waves propagate for miles before being
lost in the meanders of the canal and called them Great Wave of Translation. He
reported his observations to the British Association in his 1844 Report on Waves

in the following words:
”I believe I shall best introduce the phenomenon by describing the circumstances

of my own first acquaintance with it. I was observing the motion of a boat which

was rapidly drawn along a narrow channel by a pair of horses, when the boat sud-

denly stopped not so the mass of water in the channel which it had put in motion;

it accumulated round the prow of the vessel in a state of violent agitation, then

suddenly leaving it behind, rolled forward with great velocity, assuming the form

of a large solitary elevation, a rounded, smooth and well-defined heap of water,

which continued its course along the channel apparently without change of form

or diminution of speed. I followed it on horseback, and overtook it still rolling on

at a rate of some eight or nine miles an hour, preserving its original figure some

thirty feet long and a foot to a foot and a half in height. Its height gradually dimin-

ished, and after a chase of one or two miles I lost it in the windings of the channel.

Scott Russell immediately realized that the distinct features of this wave are longevity
and the capability to possess finite non-zero energy. He then performed some labo-
ratory experiments to generate these waves in order to study the phenomena more
carefully. He successfully demonstrated solitary waves by dropping a weight at
one end of a water channel and made two key discoveries:

1. The laboratory existence of solitary waves which are long and shallow water
waves of permanent profile.

2. The speed of propagation v of a solitary wave in a channel given by

v =
√
g(h+ a),

where a is the amplitude of the wave, h is the undisturbed depth of water and g is
the acceleration due to gravity.

In 1895, the theoretical explanation of the formation of solitary wave was given
by the two Dutch physicists Korteweg and de Vries [7]. They deduced the famous
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wave equation, which is responsible for the Scott Russell phenomenon and now
known as the KdV equation. Soon the solitary wave solution was rediscovered as
a solution of KdV equation.

Solitons: The solitons are the special case of solitary waves which retain their
identity even after undergoing collisions and maintain their shape while travelling
at their original speed. The discovery of the solitons took place when Russell had
observed the interactions of nonlinear waves and found that these nonlinear waves
can interact strongly and then continue thereafter as if there had been no interac-
tion at all. The persistence of these waves demonstrates the particle-like character
and led Zabusky and Kruskal to coin the name “soliton”. The suffix “on” rep-
resents the particle nature as in photon, proton, etc. We can say that the soliton
is a localized self-reinforcing solitary wave solution of a NLEE, which is stable
against the mutual collisions with other solitons and retains its identity but under-
goes a phase shift after collisions. Many NLEEs which possess similar properties
exhibit solitary wave/soliton solutions. Though the distinction between the soli-
tons and solitary waves is clear, the former being a restricted subset of the latter,
yet in much of the literature the solitary waves are usually referred to as solitons.
After the experimental and theoretical investigation of solitary waves/solitons, nu-
merical studies took place in order to understand their characteristic properties.
In 1965, Zabusky and Kruskal solved KdV equation numerically for a nonlinear
lattice and found that the solitons interact elastically with one another.
After the acceptance of the soliton concept, a great amount of research took place
to employ different mathematical methods to obtain the soliton solutions. Soon
afterwards, Gardener et al. reported the existence of multi-soliton solutions of
KdV equation by using inverse scattering transform (IST) [8]. Lax generalized
these results and proposed the concept of Lax pair [9]. With time the same method
had been employed to work out the soliton solutions of various NLEEs. In 1972,
this method had been applied to obtain the exact solutions of NLSE [3]. It im-
mediately implied that the IST method is not restricted to KdV alone but it has
wider applicability. Hirota proposed a new method, known as the Hirota method,
to obtain the exact solution for the KdV equation for the case of multiple colli-
sions of solitons having different amplitudes [10]. Moreover, the analysis done by
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Zakharov and Shabat clearly suggested that the soliton property is a more compre-
hensive phenomenon possessed by a class of nonlinear dispersive systems. It gave
a tremendous motivation to other scientists to look for nonlinear equations which
exhibits soliton solutions. In 1974, Ablowitz et al. [11] revealed that the IST is
the nonlinear counterpart of the Fourier transform method applicable to linear dis-
persive systems and is used to solve a wide range of NLEEs such as the modified
KdV equation, NLSE, and the classical sine-Gordon equation. These techniques
stimulated the study of solitons and they have been widely investigated in various
fields such as in nonlinear optics, condensed matter physics, biophysics, hydrody-
namics, etc. Now we present the explicit mathematical expressions of exact bright,
dark solitons, 2-solitons, Akhmediev breathers (ABs) and rogue wave solutions of
Eq. (1.1).

1-soliton solutions

Solitons are mainly categorised into two types:
Bright soliton
For self-focusing case (σ = +1), Eq. (1.1) possess bright soliton solution which
appears as a localized intensity peak on a constant background and in the general
form can be express as

ψ(x, t) = asech[a(x− vt)]ei(vx+(a2−v2)t/2), (1.2)

where a and v represent the amplitude and the velocity of the propagating soli-
ton. At v = 0 the bright soliton has a simplified structure and referred to as a
fundamental bright soliton and can be expressed as [3]

ψ(x, t) = asech[a(x)]eia
2t/2). (1.3)

The intensity of bright soliton IB1 corresponding to Eq. (1.2) is given as

IB1 = |ψ(x, t)|2 = a2sech2[a(x− vt)]. (1.4)

The typical intensity profile is shown in Fig. 1.1(a).
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Dark soliton
For self-defocusing case (σ = −1), Eq. (1.1) admits dark soliton solution which
appears as a localized dip on a constant background [12]. The dark soliton can be
expressed as [13]

ψ(x, t) = u0 [B tanh(u0B(x− Au0t)) + iA] e−iu2
0t, (1.5)

where u0 is the amplitude of constant background, andA andB satisfy the relation
A2 + B2 = 1. We are introducing a parameter ϕ such that A = sinϕ and B =

cosϕ. Now instead of two parameters A and B we are now dealing with a single
parameter ϕ which corresponds to the total phase shift across the dark soliton i.e
2ϕ. The intensity expression for dark soliton will take the form

ID1 = u20
[
cos2 ϕ tanh2(u0 cosϕ(x− u0 sinϕ t)) + sin2 ϕ

]
. (1.6)

Hence, u0 sinϕ represents the velocity of the dark soliton and cos2 ϕ gives the mag-
nitude of the dip at the center. The evolution of dark soliton for NLSE is shown in
Fig. 1.1(b) for typical values of u0 and ϕ. It should be noted that for ϕ = 0, the
velocity of dark soliton becomes zero i.e. it is a stationary soliton and at the dip
center (x = 0) intensity also drops to zero and hence it is called as black soliton.
For ϕϵ(0, π), the intensity of soliton does not drop to zero and these are referred as
gray solitons.

2-soliton solutions

These second-order solutions are of utmost importance because they describe the
collisions between two solitons. Thus, they will help in determining if the basic
fundamental solution deserves the name of solitons.

2-bright soliton
For self-focusing case (σ = +1), Eq. (1.1) possesses two-bright soliton solution
of the form [14]

ψ = −8iab
A+ iB

D
e−2i(a2+b2)t+i(ϕ1+ϕ2), (1.7)
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Figure 1.1: Intensity profile of (a) bright soliton with a = v = 1. (b) dark soliton
with u0 = 1, ϕ = π/6.

with

A = cosh(4abt)[a cosh(2bx) cos(2ax+ δϕ)− b sinh(2bx) sin(2ax+ δϕ)],

B = sinh(4abt)[a sinh(2bx) sin(2ax+ δϕ) + b cosh(2bx) cos(2ax+ δϕ)],

D = a2 cosh(4bx) + (a2 + b2) cosh(8abt)− b2 cos(4ax+ 2δϕ),(1.8)

where δϕ = 2(ϕ1 − ϕ2) is the phase difference between the two solitons. For the
sake of simplicity, the two-bright soliton solution has been written by consider-
ing that the two solitons have equal amplitude b and have velocities a which are
equal in magnitude but opposite in sign. The intensity of two-bright soliton IB2

corresponding to Eq. (1.7) is given as

IB2 =
64a2b2

D2
[A2 +B2], (1.9)

where A, B and D are given by Eq. (1.8).
The intensity plots of two-bright solitons are plotted in Fig. 1.2. Fig. 1.2(a) depicts
the collision process of solitons when they are in phase and Fig. 1.2(b) displays
the collisions of out-of-phase solitons.

2-dark soliton
For self-defocusing case (σ = −1), Eq. (1.1) admits 2-dark soliton solution of the
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Figure 1.2: Intensity profile of 2-bright soliton for (a) in-phase collision δϕ = 0
(b) out-of-phase collision δϕ = π/2. The other parameters are a = 1/4, b = 0.1.

form

ψ(x, t) = µei(ζ(x,t))(1 +
A1

B1

), (1.10)

where

A1 = 4µ(ω1 + ω2 − 2µ)− 4i
λ1 + λ2
(β1 + β2)

η (1.11)

B1 = 4µ2(
λ1 + λ2
β1 + β2

)2η, η = (ω1 − µ)(ω2 − µ),

ωj =
(αj − iβj)(αj + iβj tanh(δj))

µ
,

δj = βj[x− xj0 − (Ω + αj)t],

ζ = −(µ2 +
Ω2

2
)t− Ωx− ζ0, µ = |λj|.

Here, λj represents the complex spectral parameter

λj = αj + iβj,

where j = 1, 2 for 2-soliton solution. The parameters αj and βj with j = 1, 2

depict the velocity and the amplitude of the first and second dark soliton, respec-
tively. The initial position and initial phase are related with the parameters xj0 and
ζ0. The typical intensity profile of 2-dark soliton is plotted in Fig. 1.3.
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Figure 1.3: Intensity profile of 2-dark soliton with β1 = β2 = 1, α1 = −α2 = 1.2,
x10 = 0, x20 = 10.

Breathers

The breathers are nonlinear waves which can carry energy in a localized and os-
cillatory fashion. In contrast to solitons which are localized in x the breathers are
localized in t and oscillating in x. These solutions increase their amplitude ei-
ther exponentially or according to a power law in t. They achieve their maximum
value and finally decay symmetrically to disappear forever. The mathematical
proof of the existence of breathers was given by MacKay and Aurbay [15]. The
breathers are not only a mathematical concept but they have also been realized
experimentally in different systems such as in BEC [16], dispersion managed op-
tical waveguides and fibers [17] and Josephson arrays [18]. Consequently, these
breather solutions have been obtained for various NLEEs like KdV [19], Gardener
equation [20], modified-KdV [21] and NLSE. In the context of NLSE, the spa-
tially periodic solutions are termed as Akhmediev breathers (ABs) [22]. For the
self-focusing case AB solution of NLSE can be expressed as

ψ(x, t) =
(1− 4a) cosh(βt) +

√
2a cos(px) + iβ sinh(βt)√

2a cos(px)− cosh(βt)
eit, (1.12)

where a is a free parameter and is known as the modulation parameter. The coef-
ficients β and p are related to a by: β =

√
8a(1− 2a) and p = 2

√
1− 2a. The

characteristics of AB depends on a. To demonstrate the role of a we have plot-
ted the intensity profiles of ABs for different values of a in Fig. 1.4. Clearly, as
the value of a increases, the separation between adjacent peaks increases and the
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width of each individual peak decreases.

Figure 1.4: Intensity profiles for ABs of the NLSE for modulation parameter: (a)
a = 0.25 and (b) a = 0.45.

In addition of ABs which are space periodic, the other kind of breather solu-
tions also exist which are periodic in time and termed as Ma-solitons (MS) [23].
Initially, it was predicted that the rational solutions or rogue wave solutions can
be obtained as the limiting cases of either periodic Ma solitons (MS) or ABs [24].
The analysis made in [23] reveals that MS are created directly from the initial con-
ditions consisting of the background plane wave and solitons. It means that the
MS must exist in the wave field from the very beginning. On the other hand, the
rational solutions and ABs belong to the class of excitations which appear from
nowhere [22, 25]. ABs arise due to modulational instability [26] and in the limit
when a → 0.5, it reduces to the rational solution which is known as rogue wave
solution.

Rogue waves

In 1983, the rational solutions of NLSE was first given by Peregrine and are so
known as Peregrine solitons [27]. The hierarchy of rational solutions have been
presented by using Darboux transformation [28] for the self-focusing NLSE. The
rational solutions are of utmost importance to study high amplitude rogue waves in
deep ocean [29, 30] and in optical fibers [28]. Akhmediev et al. suggested that the
collisions of two or more ABs results into the formation of high amplitude rogue
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waves [22] which offer the possibility of high energy concentration in space and
time. These doubly localized solutions (localized in space and time) are known as
rogue waves. The occurrence of rogue waves from the collision of two ABs has
been demonstrated experimentally by controlling their phases and velocities [31].
The general form of the rational solution is given as

ψ(x, t) =

[
1− K + iH

D

]
eit, (1.13)

where K,H and D are the polynomials in x and t. For the limiting case a → 1/2

in AB solution given by Eq. (1.12), the first-order rogue wave solution has been
obtained by choosing K = 4, H = 8t and D = 1 + 4t2 + 4x2. The exact solution
reads

ψ(x, t) =

[
1− 4

1 + 2it

1 + 4t2 + 4x2

]
eit. (1.14)

The intensity expression for first-order rogue wave is given by

IR1 = 1 + 8
1 + 4t2 − 4x2

(1 + 4t2 + 4x2)2
. (1.15)

The second-order rogue wave solution has the form given in Eq. (1.13), where the
polynomials K,H and D have the following form

K =

(
x2 + t2 +

3

4

)(
x2 + 5t2 +

3

4

)
− 3

4
,

H = t

(
t2 − 3x2 + 2(x2 + t2)2 − 15

8

)
,

D =
1

3

(
x2 + t2

)3
+

1

4

(
x2 − 3t2

)2
+

3

64

(
12x2 + 44t2 + 1

)
. (1.16)

The intensity expression for second-order rogue waves takes the form

IR2 =

(
D −K

D

)2

+

(
H

D

)2

. (1.17)

The intensity plots for first and second-order rogue waves are shown in the Fig.
1.5.

Here, we have presented the explicit expressions till second-order rogue waves.
The higher order rogue waves for Eq. (1.1) have been obtained and the explicit
analytical expressions of rogue waves from first to fourth order are given in [28].
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Figure 1.5: Intensity profiles for (a) first-order, and (b) second-order rogue waves
of the NLSE.

The higher order rogue waves have not only been predicted theoretically but up to
fifth-order these rogue waves have been observed experimentally [30]. We have
already mentioned that NLSE exhibits both bright and dark solitons in the self-
focusing and self-defocusing regime, respectively. The next question is whether
the dark rogue waves exist for the defocusing NLSE. In general, unlike the bright
rogue waves which appear as a single peak hump with two dips, the dark rogue
wave has one down dominant peak and two small lumps. In contrast to solitons we
can not get dark rogue waves for the defocusing NLSE because of the singularity
of the solution in this regime [32, 33]. However, the bright and dark rogue wave
solutions of the coupled nonlinear equations system such as in Manakov [34] and
erbium doped fiber system [35] have been obtained. Very recently, the N-order
bright and dark rogue wave solutions of the erbium doped optical fiber system
have been presented by using Darboux transformation method [36].

1.2 Inhomogeneous NLSE and self-similar nonlin-
ear waves

So far, we have discussed the constant-coefficient standard NLSE and its various
analytical solutions. The constant coefficient NLSE represents the physical phe-
nomenon under highly ideal conditions. But in realistic systems some sort of inho-
mogeneities are always present in the system e.g in optical fibers inhomogeneities
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are due to the manufacturing defects and the density variations in the fiber core,
in NLRD system inhomogeneities are due to the fluctuations in the environmental
conditions, in BECs inhomogeneities are associated with the bosonic interactions,
etc. Such realistic nonlinear phenomenon are governed by variable coefficient
NLEEs. In this thesis we are considering variable coefficient NLSE (vcNLSE)
due to its applicability in nonlinear fiber optics and in BECs. In the context of
nonlinear optics, the coefficients of NLSE are z dependent and we call the sys-
tem as inhomogeneous system and the governing equation is the inhomogeneous
NLSE or generalized NLSE (GNLSE). In the context of BECs, the coefficients of
NLSE are t dependent and we call the system as nonautomous system, where time
appears explicitly and the governing equation is the nonautonomous NLSE.
In general, the variable coefficient NLEEs are not integrable and hence, cannot
be solved directly by using integrable techniques. Serkin et al. have deduced the
integrability conditions for the GNLSE with varying dispersion, nonlinearity and
gain term and discussed the soliton management regimes [37, 38]. In the con-
text of BEC they have deduced the integrability conditions for the nonautonomous
NLSE in the presence of external trap [39]. Subsequently, this model equation
has been explored thoroughly to understand the nonautonomous solitons and their
interactions in the presence of linear and expulsive harmonic trap [40]. Recently, a
new mathematical technique known as “symmetry reduction” has been developed
to obtain the exact solutions of variable coefficient NLEEs. It involves the use of
similarity transformation which maps the dynamics of the system at one time onto
the dynamics of the system at some other time by invoking a suitable scaling. This
similarity transformation led to the discovery of new class of solutions which are
called self-similar solutions. These solutions obey the scaling laws in such a way
that their evolution can be regarded as self similar [41]. For a highly nonlinear
media, these solutions correspond to the self-similar wave, retains their shape but
change their width and the amplitude in accordance with the system parameters
such as nonlinearity, dispersion and gain [42, 43]. In comparison to solitons which
become unstable at high power, self-similar waves are more robust with increasing
intensity [44].
These days there is a surge of interest to study the properties of self-similar non-
linear waves. Kruglov et al. have obtained the self-similar solutions for GNLSE
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[42] and studied their propagation in optical fiber amplifiers [45]. Their charac-
teristics have been investigated in optical waveguide amplifiers [46], in dispersion
decreasing fibers [47] and even in the femtosecond regime [48]. Zhao et al. have
studied their propagation in a slab waveguide amplifier with spatial inhomogene-
ity, inhomogeneous nonlinearity and gain or loss parameters [49]. These waves
have also been reported for the cubic-quintic NLSE [50]. Like the solitary wave
solutions are termed as solitons, the bright and dark self-similar waves are known
as bright and dark similaritons, respectively. The first experimental observation of
similaritons was reported by Ferman et al. in nonlinear fiber amplifiers [51]. These
waves have not only been explored in the context of nonlinear optics but also been
explored in the context of BECs. Yan et al. have studied these waves in BECs
with harmonic and gaussian potentials [52]. In the BEC framework they have
been investigated for quintic NLSE [53] and cubic-quintic NLSE [54] with time
and space modulated nonlinearities and potentials. From the theoretical analysis
of self-similar waves, it is expected that these solutions will also find applications
from experimental and industrial point of view.

1.3 Riccati generalization

Despite powerful integrability methods such as Lie group, Painléve analysis, and
inverse scattering transform it is in general a very difficult task to obtain solu-
tions of second-order NLEEs. Truncated WTC method, generalized Tanh method,
ansatz method, auxiliary equation method, similarity-transformations are a few
tools successfully employed to obtain solutions for non-integrable PDEs. Rosu
and his collaborators developed factorization method to find the solutions for the
class of equations having polynomial non-linearities. For nonlinear and dispersive
systems governed by NLEEs, the superposition principle does not hold and so it
is quite difficult to generalize solutions of NLEEs from a known simple solution.
In Quantum Mechanics Riccati generalization has already been known to obtain a
class of solutions since the work of Infeld and Hull [55]. It was exploited by Miel-
nik [56] in 1984 to find potentials which are isospectral to the simple harmonic
oscillator potential as shown in Fig. 1.6 and 1.7.
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Figure 1.6: The isospectral oscillator potentials Vλ(x)

. This method can be used not only to define the interdependence between dif-
ferent spectral subspaces but also to transform one Hamiltonian into another. The
new Hamiltonian is having different potential, wave function, moments, transition
amplitudes but the same energy spectra as that of the initial one. In the mathemat-
ical form we can express it as:

H1 = −1

2

d2

dx2
+ V1(x) = a†a, (1.18)

where

a =
d

dx
+W (x), a† = − d

dx
+W (x). (1.19)
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Figure 1.7: Spectra strictly isospectral to harmonic oscillator.

Here, W (x) is the super potential and is given by

W = − d

dx
[log ψ0], (1.20)

such that

V1(x) = W 2 −W ′, H2 = aa†, V2(x) = W 2 +W ′. (1.21)

Removing a bound state and re-inserting it results in solving a Riccati equa-
tion. This introduces a parameter ’λ’ known as Riccati parameter and the resultant
potential reads [56]

V̂1(x, λ) = V1(x)− 2
d2

dx2
[lnI(x) + λ], (1.22)

where, I(x) =
∫ x

−∞Ψ2
0(x

′)dx′. The normalized ground state wave function corre-
sponding to the potential V̂1 reads,

ψ̂0(x, λ) =

√
(λ(1 + λ)

I(x) + λ
Ψ0(x). (1.23)
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One could obtain a large class of exactly solvable quantum mechanical po-
tentials by factorizing the second-order Schrödinger equation into the product of
two first-order operators and using super symmetric (SUSY) Quantum mechanics
techniques described above [57]. This formalism has also proved advantageous in
studying various physical situations, such as in determining a spectra of a charged
particle in a wide class of nonuniform magnetic fields which are related to the uni-
form magnetic field [58], in the stability analysis of Sine-Gordon model [59]. It
has also been shown that given a kink bearing Hamiltonian, this methodology can
be used to generate new sets of Hamiltonian which also admit kink solutions [60].

This method was further extended by Rosu and his co-workers [61, 62] in the
context of differential equations. If a non-linear second-order differential equation
can be factorized into two first-order differential operators then it is easy to find
the particular solution of the problem. They considered the nonlinear equation of
the type:

ϕξξ + g(ϕ)ϕξ + F (ϕ) = 0. (1.24)

The above equation can be factorized in the following form

[D − u2(ϕ)][D − u1(ϕ)]ϕ = 0. (1.25)

which implies the following conditions on the function u

−(u1 + u2 + ϕ
du1
dϕ

) = g(ϕ), F (ϕ) = u1u2ϕ. (1.26)

One can easily obtain the solution of equation (1.24) by solving the following
first-order equation

[D − u1(ϕ)]ϕ = 0. (1.27)

Using this technique, solutions of various nonlinear equations like Modified Em-
den equation, Generalized Lienard equation, Convective Fisher equation, etc. have
been obtained [62]. If the factorization is of a particular type such that u1 = p+qϕ,
then Eq. (1.27) is a Riccati equation.

ϕξ = pϕ+ qϕ2, (1.28)

One can find its general solution as

ϕλ,q = ϕ1 +
eI1

λ− qI2
, (1.29)
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where

I1(ξ) =

∫ ξ

ξ0

(2qϕ1(ξ
′) + p) dξ′,

I2(ξ) =

∫ ξ

ξ0

eI1(ξ′) dξ′, (1.30)

λ is known as Riccati parameter which is to be chosen in such a way so as to avoid
singularities. It is also called ‘growth parameter’ in the sense that it takes solutions
from ϕ1 to ϕλ,q.
This method plays an important role in generalizing the solution of NLEEs of
physical interest. Recently, this method has been used to obtain a class of solitary
wave solutions for nonlinear dynamics of DNA [63]. We shall apply the Riccati
generalization formalism to obtain the class of analytical solutions for the GNLSE
in two different frameworks involving nonlinear fiber optics and BECs.

1.4 Outline of thesis

The layout of the thesis is as follows:

In Chapter 2, we have studied the propagation of controllable rogue waves
through different nonlinear systems in the context of nonlinear fiber optics. The
chapter begins with the introduction of optical fibers, nonlinear waveguides and
rogue waves. We have then obtained the rogue wave solutions for inhomoge-
neous GNLSE and investigated their properties for a periodic choice of system
parameters, through dispersion increasing fibers, and through dispersion decreas-
ing fibers. Further, we have presented the bright and dark rogue wave solutions for
the erbium doped optical fiber system which is governed by the inhomogeneous
coupled nonlinear Schrödinger equation and Maxwell-Bloch equation. By making
use of the obtained solutions we have presented a mechanism which allows us to
get the controllable propagation of rogue waves through a periodically distributed
fiber system. Additionally, we have also predicted the recurrence and annihila-
tion characteristics of rogue waves. The chapter then proceeds with the study of
optical rogons in a tapered graded-index nonlinear waveguide. Here we have dis-
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cussed three different management regimes of optical rogons namely, diffraction
management, nonlinearity management and combined nonlinearity and diffraction
management. In case of nonlinearity management we have found that the tapering
function resembles with the linear Schrödinger equation of quantum mechanics
and thus enables us to generate a class of tapering functions by introducing the
Riccati parameter. We have also revealed the effect of Riccati parameter on the in-
tensity profile of optical rogons as they propagate through a tapered graded-index
nonlinear waveguide.

In Chapter 3, we have studied the nonlinear tunneling properties of optical sim-
ilaritons through a tapered graded-index nonlinear waveguide. We have analysed
it for two cases: nonlinear tunneling with constant background; and nonlinear tun-
neling with exponential background followed by cascade pulse compression. Here
we have demonstrated that by suitable adjusting the barrier’s height and location
we can get optical similaritons of desired widths at the desired locations.

Chapter 4 deals with the study of self-similar matter waves for the quasi-one-
dimensional Gross-Pitaevskii (GP) equation with space and time dependent exter-
nal potential which governs the dynamics of waves in a cigar shaped BEC. We
have obtained the matter rogue wave solutions and exemplified their controllable
dynamics for different choices of the parameters. Then we have discussed the
special case of quasi-one-dimensional GP equation which describes the scenario
when the condensate is subjected to expulsive parabolic trap. For this case we have
presented a systematic analytical approach to construct the family of self-similar
matter waves including bright and dark solitons, 2-solitons, Akhmediev breathers
(ABs) and rogue waves. This is achieved by generating the class of nonlinearity
parameter for a given trapping potential through Riccati generalization procedure.
Additionally, the role of Riccati parameter on the intensity profile of self-similar
matter waves has also been discussed.

Chapter 5 describes the results obtained in the preceding chapters and provides
a summary of the significant findings of our work.
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Chapter 2

Controlling rogue waves in nonlinear
optical fibers and waveguides

2.1 Introduction

These days a great amount of theoretically as well as experimental research is
taking place on the study of rogue waves. This is because rogue waves are large
amplitude waves and are capable of transmitting highly intense signals through
nonlinear optical fibers. This opens up the flood gates for their use in digital com-
munication. These waves have also been explored in space plasma [1, 2] and are
related with the supercontinuum generation in a fiber [3, 4]. Thus, it is quite in-
teresting to study the dynamics of rogue waves through different nonlinear media.
In this chapter we study for different nonlinear optical systems the propagation
of self-similar rogue waves which adjust themselves with the modulating system
parameters. The entire chapter is divided into two parts: The first part involves
the study and management of self-similar rogue waves in nonlinear optical fiber
systems such as dispersion increasing and decreasing fibers, erbium doped fibers,
periodic systems while the second part involves the propagation of rogue waves
in the tapered graded-index nonlinear optical waveguides where we discuss the
various management regimes of rogue waves and also study the effect of tapering
of waveguides on the intensity of rogue waves by invoking Riccati generalization
scheme. The concluding remarks are given in the end. Before presenting the main
work we give a brief introduction of nonlinear optical fibers and waveguides and
show that nonlinear Schrödinger equation (NLSE) is the governing model equation
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to understand the dynamics of pulses in a nonlinear dispersive medium.

2.2 Optical Waveguides and Fibers

The dramatic reduction of transmission loss in optical fibers coupled with the de-
velopments in the area of light sources has resulted in a phenomenal growth of
nonlinear fiber optics industry. Recent developments in optical amplifiers and
wavelength division multiplexing (WDM) are paving the way to a communica-
tion system with almost zero loss and infinite bandwidth. To understand a non-
linear optical system, it is important to study the propagation of electromagnetic
wave through an optical waveguide. An optical waveguide guides the propaga-
tion of electromagnetic pulse in the optical spectrum. They can be classified in
accordance with their geometry, the form of refractive index and the nature of the
material. In general they comprise of a high refractive index region (core) which
is surrounded by a low refractive index dielectric material (cladding). The pulse
propagates in the core region through the process of total internal reflections. Like
all electromagnetic processes, Maxwell’s equations are used to study the propaga-
tion of optical fields in a nonlinear medium. In the international system of units,
these equations in vector form are given as

∇ × E = −∂ B
∂ t

, (2.1)

∇ × H = J +
∂ D
∂ t

, (2.2)

∇ . D = ρ, (2.3)

∇ . B = 0, (2.4)

where E and H are the vector electric and magnetic fields. The corresponding
electric and magnetic flux densities are represented by D and B, respectively. The
vector J and ρ stand for the free current and charge densities. For a nonmagnetic
dielectric medium such as optical fibers, J and ρ become zero and the relation
between the flux densities and the fields is given as

D = ϵ0E + P, (2.5)

B = µ0H, (2.6)
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where P is the induced electric polarization in the medium, ϵ0 and µ0 are the per-
mittivity and permeability of free space, respectively.
In order to study the pulse propagation in nonlinear dispersive media it is necessary
to incorporate the nonlinear effects in P and it takes the following form:

P(r,t) = PL(r, t) +PNL(r, t), (2.7)

where PL(r, t) indicates the linear contribution of polarization vector and PNL(r, t)

arises due to the third-order nonlinear effect governed by the third-order suscepti-
bility χ(3). This in turn leads to nonlinear intensity dependent refractive index n of
the medium which is given as

n = n0 + n2|E|2, (2.8)

where n0 and n2 characterize the linear and nonlinear (due to Kerr nonlinearity)
response, respectively. At very high intensities, obtained by using lasers, the re-
fractive index deviates from the linear response and in the generalized form can be
written as

n = n0 + nnl(I), (2.9)

where nnl represents the variation in refractive index due to the intensity depen-
dence of light (I = |E|2). For a Kerr medium Eq. (2.9) becomes Eq. (2.8).
To simplify the calculations PNL(r, t) is treated as a small perturbation to the to-
tal induced polarization P(r,t) and represents the weak Kerr nonlinearity. The next
important step is to use the wave envelope function E(r, t) which is slowly vary-
ing in time and can be expanded in the Fourier space by using ∆ω = ω−ω0. This
signifies a small frequency shift of the side band from the carrier frequency ω0,
which in turn induces a shift in the carrier wave number as ∆k = k − k0. The
expansion of the wave number k(ω) around k0 can be given as follows:

k − k0 = kω|ω=ω0 (ω − ω0) +
1

2
kωω|ω=ω0 (ω − ω0)

2 + ........., (2.10)

where the first derivative (kω) represents the group velocity and the second deriva-
tive (kωω) stands for group velocity dispersion. Expanding the electric field en-
velope and combing the effects of group velocity dispersion and the weak Kerr
nonlinearity, the following nonlinear equation is obtained [5]

iAz + i
α

2
A− β2

2
ATT + γ|A|2A = 0, (2.11)
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where A(z, t) represents the complex amplitude of the electric field envelope E,
z is the normalized distance along the fiber and T is the retarded time which is
measured in the reference frame moving along the fiber with group velocity. Also,
α is the gain/loss term, β2 stands for group velocity dispersion parameter and γ
signifies self phase modulation parameter. For α = 0, Eq. (2.11) is known as stan-
dard NLSE, which is used to describe ultrashort pulse propagation in a nonlinear
system. It is completely integrable by inverse scattering transform method and is
known to exhibit soliton solutions [6]. Although Eq. (2.11) has been successful
in explaining a large number of nonlinear phenomena, it needs to be modified de-
pending on the experimental conditions. If the peak power of the incident pulse
is above than a certain threshold value then the higher order nonlinear effects in
the system such as stimulated Raman scattering (SRS), self-steepening, third order
dispersion, etc. need to be incorporated in the model equation. To study the pulse
propagation in silica fibers, Eq. (2.11) is used and refer as cubic-NLSE. However,
the fibers doped with highly nonlinear materials like organic dyes and semicon-
ductors show the dependence on the fifth powers of the amplitude at 1GW/cm2

incident power intensity. To study the pulse propagation in these fibers, the effect
of the fifth powers of the amplitude is included by quintic term and the resulting
equation is known as cubic-quintic NLSE. This analogy is further extended and the
model equation is refer as extended or higher order NLSE. It should be noted that
Eq. (2.11) has constant coefficients and the constant coefficients NLSE describe
the pulse propagation in a homogenous fiber. In realistic situations, fibers are not
homogeneous due to manufacturing defects and density variations. Moreover, the
longitudinal homogeneities drastically affect the pulse propagation. Hence, it is
quite relevant to investigate the pulse behaviour in an inhomogeneous fiber. To
introduce the effects of inhomogeneity of the fibers, the coefficients of NLSE are
considered as space dependent and the governing equation is known as general-
ized NLSE (GNLSE). The variants of GNLSE have been studied in different con-
texts [7]. Surprisingly, if we replace the variable T with a spatial coordinate then
the same equation governs the propagation of continuous wave beams in a planar
waveguide. The β2 term represents diffraction in the plane of the waveguide in-
stead of dispersion in time. Therefore, the same equation governs the underlying
physics for nonlinear fibers and waveguides. The analogy between “diffraction in
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space” and “dispersion in time” can be exploited to understand the pulse propa-
gation in waveguides and fibers. A brief discussion on nonlinear waveguides is
provided in the next section.

2.3 Nonlinear waveguides

It is known that both the fibers and the waveguides support bright and dark soliton
propagation. For fibers, they are termed as temporal solitons and for waveguides,
they are known as spatial solitons. In case of optical fibers the GVD vanishes at
a wavelength of about 1.3µm and is positive at large wavelengths and negative at
short wavelengths [8]. The silica optical fibers always have positive Kerr coef-
ficient and two different signs of GVD: positive (normal dispersion regime) and
negative (anomalous dispersion regime), which in turn support two different kinds
of solitons, dark in the first case and bright in the second case. A similar situ-
ation arises for self-guided beams or spatial solitons for waveguides. Here, the
dispersion role in fibers is replaced by diffraction and the nonlinearity can be ei-
ther positive or negative characterising the self-focusing or self-defocusing nature
of the nonlinear medium. This is in contrast to the optical fibers where the non-
linearity (Kerr) can only take positive values. The two choices of the nonlinearity
parameter again gives rise to two distinct types of solitons, bright and dark, respec-
tively. Due to this spatio-temporal analogy in wave propagation, it is considered
that the stationary beam propagation in planar waveguides is similar to the pulse
propagation in fibers. This implies that the propagation coordinate is treated as
the evolution variable and the spatial beam profile along the transverse direction
(for waveguides) is similar to the temporal pulse profile (for fibers). This anal-
ogy has been explored by many researchers, by using the simple fact that both the
phenomena are described by the NLSE [9].

We shall also exploit this analogy and discuss the propagation and management
of rogue waves in different nonlinear fibers and tapered graded-index waveguide.
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2.4 Rogue waves in nonlinear optical fibers

Rogue waves have become a subject of intense research owing to their potential
applications in highly intense signal transmission through nonlinear optical sys-
tems. They are also going by the name of freak waves, monster waves, giant
waves, etc. as they appear when certain conditions are met and then disappear
without a trace. They appear in the ocean and cause vast destruction [10]. Their
amplitude is two to three times larger than the amplitude of the average wavelets.
The nonlinear theories provide a tool to understand the cause behind their gen-
eration as their occurrence is a nonlinear phenomena. Their possible nonlinear
mechanisms are nonlinear focusing via modulation instability in one-dimensional
and two-dimensional crossing, nonlinear spectral instability, focusing with caus-
tic currents and anomalous wind excitation [11, 12]. While nobody wishes their
emergence in the oceans due to their capability of carrying large amount of energy
to cause vast destruction, experimentalists were excited to create these waves in a
laboratory so that they can harness their properties for various practical purposes.
Solli et al. successfully demonstrated these waves in an optical system, based on
a microstructured optical fiber [13]. Since then, there was a surge of interest to
understand the dynamics of rogue waves experimentally and theoretically. Vari-
ous studies took place in this regard and these waves were extensively investigated
in different contexts. Just like solitary waves are called as solitons, the term ro-
gons is coined for rogue waves as they appear virtually unaffected in their size
and shape after undergoing collisions [14]. The corresponding terminologies of
oceanic rogons, optical rogons and matter wave rogons are used in the field of
hydrodynamics, nonlinear optics and Bose-Einstein condensates (BECs), respec-
tively. The NLSE admits modulation instability and hence is used as a model
equation for rogue waves. Interestingly, it is also the governing model to describe
pulse propagation in nonlinear optical systems and matter waves in BECs. Hence,
nonlinear fiber optics and BECs provide a good platform to study rogue waves.
Here we study the propagation of rogue waves through different nonlinear optical
systems. The study of rogue waves in the context of BECs will be presented in
Chapter 4.

As mentioned, the rogue waves are high amplitude pulses which make them
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capable of transmitting highly intense signals through optical fibers and opens
the flood gates for their use in digital communication. Consequently, their util-
ity in telecommunication data streams has been revealed in [15]. Dai et al. have
discussed the management and control of optical rogue waves as they propagate
through nonlinear fibers [16, 17]. In addition to analytical investigations, numeri-
cal studies have also been carried out to study the generation and validity of opti-
cal rogue waves by including higher order terms like third order dispersion, self-
steepening and self-frequency shift [18, 19, 20]. Very recently, J. Zamora-Munt
and his coworkers predicted rogue waves in an optically injected laser [21]. The
intriguing developments made in the field of rogue waves have motivated us to
understand their behaviour analytically.

2.4.1 Model equation

We consider the model which is given by Serkin and Hasegawa to formulate the
effect of varying dispersion with external harmonic oscillator potential, by using a
methodology based on the generalized inverse scattering transform (IST) concept
[22]

i
∂U

∂Z
+
D(Z)

2

∂2U

∂τ 2
+R(Z)|U |2U

+i(α(Z) + δD(Z)P (Z)τ)
∂U

∂τ
− i

2
Γ(Z)U = 0 (2.12)

where U(τ, Z) represents the normalized slowly varying complex envelope of
the pulse, τ and Z are the retarded time and the normalized propagation distance
in the nondimensional form, respectively. D(Z), R(Z), P (Z) and Γ(Z) are real
functions and account for the varying dispersion corresponding to which it has
a harmonic oscillator potential form, varying nonlinearity, nonlinear focus length
and gain/loss respectively. The parameter α(Z) denotes the velocity of propa-
gation. In the above equation it is mandatory that the radius of curvature of the
wavefront must be an oscillating function of the propagating distance in order to
have the oscillating self-focusing light beam in nonlinear Kerr-like media. We
would like to mention that the model Eq. (2.12) is nonautonomous in nature due
to the explicit presence of time τ . It has been used to study the various aspects
of dispersion management of solitons and their interactions pertaining to in-phase
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and off-phase injection with equal and unequal amplitudes [23, 24]. Now we have
to find the exact analytical rogue wave solutions for Eq. (2.12) and to discuss their
controllable propagation for different choices of dispersion parameter.

2.4.2 Similarity transformation

In general, the inhomogeneous NLSE with distributive coefficients is not inte-
grable and hence can not be solved directly by using integrable techniques. These
days a very effective mathematical tool, known as similarity transformation is used
to find the exact solutions of NLEEs with distributive coefficients. The similarity
transformation involves the mapping of distributive coefficients NLEEs to their re-
spective constant coefficient NLEE. Then, by borrowing the known solutions of
constant coefficient NLEEs and by doing the back transformation the exact so-
lutions of distributive NLEEs can be obtained. The advantage of this method is
that it ensures the stability or instability of the solutions as they are obtained from
the respective counterparts of the constant coefficient NLEEs. If the solution of
the constant coefficient NLEE is stable then the solution of the distributive coeffi-
cient will be stable, worked out by similarity transformation and vice-versa. This
technique has been successfully employed to obtain the exact solution of (1+1)-
dimensional and (2+1)-dimensional GNLSE [25, 26]. Dai et al. have adopted this
method to obtain the solutions of GNLSE with linear potential term [27]. Various
researchers have applied this method to study the similaritons, similariton pairs
and the class of self-similar nonlinear waves as they propagate through a tapered
graded-index nonlinear waveguide [28, 29, 30]. Raju and Panigrahi have investi-
gated the optical similaritons through a tapered graded-index nonlinear waveguide
amplifier by including external source term [31]. This method has not only been
applied in nonlinear optics but has also been used in the context of BECs to study
the dynamics of nonautonomous bright-dark matter wave solitons [32].

In order to work out the exact solution of Eq. (2.12) we are choosing the following
similarity transformation

U(τ, Z) = A(Z)ψ[χ(τ, Z), ρ(Z)]eiΦ(τ,Z), (2.13)
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with
χ(τ, Z) =

τ − τc(Z)

w
, (2.14)

where the amplitude A(Z), the similarity variable χ(τ, Z), the phase Φ(τ, Z), di-
mensionless pulse width w and the position of the rogue wave center τc(Z) are real
functions and ψ(χ, ρ) is a complex function. Explicitly, the form of quadratically
chirped phase can be considered as

Φ(τ, Z) = C(Z)
τ 2

2
+B(Z)τ + d1(Z), (2.15)

where C(Z), B(Z) and d1(Z) are parameters related to the phase-front curvature,
the frequency shift, and the phase offset, respectively.
For the given D(Z), R(Z) and α(Z) the gain Γ(Z) and the nonlinear focus length
P (Z) can be obtained by using the following integrability conditions

Γ(Z) =

(
W [R,D]

RD
− δPD

)
, (2.16)

with

W [R,D] = RDZ −DRZ ,

PZ = −δP 2D. (2.17)

The functional form of the parameters R(Z) and D(Z) must be chosen in such a
way so that the gain Γ(Z) does not become singular. On inserting the transforma-
tion given in Eq. (2.13) and Eq. (2.14) in Eq. (2.12) along with the phase Φ, it
reduces to the standard NLSE

i
∂ψ

∂ρ
+

1

2

∂2ψ

∂χ2
+ |ψ|2ψ = 0. (2.18)

where ρ(Z) represents the effective propagation distance and is given as

ρ(Z) =

∫ Z

0
D(S)dS

w2
, (2.19)

It is worth mentioning here that the form of ρ is governed by the dispersion param-
eter D(Z) as w represents the width of the pulse which is constant.
The rogue wave center τc(Z) is given as follows

τc(Z) =

(
τ0 + C02

∫ Z

0

(α(S) +D(S)B(S))dS

)
, (2.20)
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where τ0 and C02 are constants. The parameters A(Z), B(Z), C(Z) and d1(Z)
are obtained by collecting the similar terms after the substitution of Eq. (2.13) and
Eq. (2.14) in Eq. (2.12) along with the phase Φ and demanding the coefficients of
real and imaginary parts of each term to be separately equal to zero. In the explicit
form they can be defined as

A(Z) =
1

w

√
D

R
, B(Z) =

∫ Z

0

δP (S)dS,C(Z) = −δP (Z),

d1(Z) = −
∫

(α(Z)B(Z) +
D(Z)B(Z)2

2
)dZ. (2.21)

The nonlinear focus length P (Z) can be obtained by using Eq. (2.17) as

P (Z) = − 1

(c0 − δ
∫ Z

0
D(Z ′)dZ ′)

, (2.22)

where c0 is an integration constant and has to be chosen in such a way so that P (Z)
is non singular.

2.4.3 Self-similar first and second-order rogue waves

We can obtain the exact solutions of Eq. (2.12) by reducing it to standard NLSE
through the transformation given in Eq. (2.13) for the conditions given in Eqs.
(2.16) and (2.17). Through this methodology, one can obtain the known solutions
of the standard NLSE such as single soliton or multisoliton, breathers, rogue wave
solutions, etc. (discussed in Section 1.1) for Eq. (2.12). Here, we are interested in
obtaining first and second order rogue wave solutions because of their capability
to carry large amounts of energy. The first-order (U1) and the second-order (U2)
rogue wave solution of Eq. (2.12) can be given as [17]

U1(Z, τ) =
1

w

√
D

R
[1− 4(1 + 2i(ρ− ρ0))

1 + 4((ρ− ρ0))2 + 4χ2
]e(i(ρ−ρ0)), (2.23)

U2(Z, τ) =
1

w

√
D

R
[1− k + ih1

l
]e(i(ρ−ρ0)), (2.24)

The corresponding intensities of first (I1) and second (I2) order rogue waves read

I1 = |U1|2 =
1

w2

D

R

[
1 + 8

1 + 4(ρ− ρ0)
2 − 4χ2

(1 + 4(ρ− ρ0)2 + 4χ2)2

]
. (2.25)
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I2 = |U2|2 =
1

w2

D

R

[
(l − k)2

l2
+
h21
l2

]
, (2.26)

where

l =
1

3
[χ2 + (ρ− ρ0)

2]3 +
1

4
[χ2 − 3(ρ− ρ0)

2]3

+
3

64
12χ2 + 44(ρ− ρ0)

2 + 1, (2.27)

k =

(
χ2 + (ρ− ρ0)

2 +
3

4

)(
χ2 + 5(ρ− ρ0)

2 +
3

4

)
− 3

4
, (2.28)

h1 = ρ

(
−3χ2 + (ρ− ρ0)

2 + 2(χ2 + (ρ− ρ0)
2)2 − 15

8

)
. (2.29)

Here ρ0 is an arbitrary constant. The effective propagation distance ρ and the sim-
ilarity variable χ can be obtained from Eq. (2.19) and Eq. (2.14), respectively.

In order to understand the pulse propagation, various forms of distributed param-
eters can be chosen according to the specific problem. Here, we are exempli-
fying it for two cases: one corresponds to W [R,D] = 0 and the other one for
W [R,D] ̸= 0.

Case(i) Wronskian W [R,D] = 0

Consider the following forms of nonlinearity and dispersion parameter

R(Z) = D(Z) = a cos[κZ]. (2.30)

For these periodic choices of the parameters, the corresponding P (Z) and Γ(Z)

can be obtained by using Eq. (2.22) and Eq. (2.16). Clearly, the above choice of
parameters yields the zero value of Wronskian W [R,D].

The profile of Γ(Z) is plotted in Fig. 2.1. It reveals that the gain/loss parameter
Γ(Z) is periodic in nature and possesses a constant amplitude. So the pulse does
not suffer any broadening and compression but an overall phase change, which is
depicted in Fig. 2.2(a) and Fig. 2.2(b) for first and second order rogue waves,
respectively.

The periodic choice of dispersion and nonlinearity parameters is of practical
relevance as it has been used to study nonautonomous solitons in external poten-
tials [34] and indicates the improved stability of solitons [35]. In particular, peri-
odic form of dispersion finds applications in enhancing the signal to noise ratio,
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Figure 2.1: The profile of Γ(Z) for D(Z) = R(Z) = a cos(κZ), κ =
√
2 and

w = 1, a = 1, ρ0 = 0, c0 = 1.5.

Figure 2.2: Intensity profile (a) for first-order rogue waves of Eq. (2.12) (b) for
second-order rogue waves of Eq. (2.12) withD(Z) = R(Z) = a cos(κZ), κ =

√
2

and w = 1.

reducing Gordon Hauss time jitter and in suppressing the phase matched condition
for four wave mixing in single mode optical fibers [36].

Case(ii) Wronskian W [R,D] ̸= 0

For this case we have taken the nonlinearity and dispersion parameters as follow

R(Z) = γ cos(κZ), D(Z) =
γ

d0
cos(κZ) exp(σZ), (2.31)

where the parameters κ and d0 are related to Kerr nonlinearity and the initial peak
power in the system, respectively. The parameter σ can take positive and negative
values. The positive (negative) value of σ stands for dispersion increasing (de-
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creasing) fibers. For these choices of the parameters, the corresponding nonlinear
focus length P (Z) and the gain/loss function Γ(Z) can be obtained by using Eq.
(2.22) and Eq. (2.16), respectively. The profile of Γ(Z) for the dispersion increas-
ing and dispersion decreasing fiber case has been plotted in Fig. 2.3 which demon-
strates that the gain/loss parameter Γ(Z) increases with propagation distance Z for
dispersion increasing fiber, and decreases with Z for dispersion decreasing fiber.

Figure 2.3: The profile of Γ(Z) for (a) dispersion increasing fiber case with c0 =
−2 and σ = 0.1 (b) dispersion decreasing fiber case with c0 = 1 and σ = −0.1.
The other parameters are κ = 1 and γ = 0.5.

We have plotted the intensity profiles for first and second order rogue waves
for both dispersion increasing and decreasing fibers in Fig. 2.4(a), Fig. 2.4(b), Fig.
2.5(a) and Fig. 2.5(b), respectively.

Figure 2.4: Intensity profile in dispersion increasing fiber (a) for first-order rogue
waves of Eq. (2.12) (b) for second-order rogue waves of Eq. (2.12) with c0 = −2,
κ = 1,γ = 0.5 and σ = 0.1
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Clearly the amplitude of the pulse changes as it propagates through the fiber
while its width remains constant. In case of dispersion increasing fiber, the am-
plitude of the rogue wave increases while the opposite happens for dispersion de-
creasing fiber case. This is because the dispersion increasing (decreasing) fiber
is under the influence of the gain parameter Γ(Z) whose amplitude increases (de-
creases) with Z, as depicted in Fig. 2.3. This is in contrast to the other known
results where the increase in the amplitude occurs at the cost of the width of the
pulse.

Figure 2.5: Intensity profile in dispersion decreasing fiber (a) for first-order rogue
waves of Eq. (2.12) (b) for second-order rogue waves of Eq. (2.12) with c0 = 1,
κ = 1, γ = 0.5 and σ = −0.1

A similar analysis of rogue waves has been reported in [37] by using lens-type
transformation. However while studying the dynamical properties of the system in
[37], the gain term is explicitly made zero whereas in our study the gain/loss pa-
rameter Γ(Z) is Z dependent which corresponds to more realistic systems. Conse-
quently, our results hold greater practicality. Additionally, we have also obtained
the rogue wave solutions for GNLSE by including an approximate form of self-
induced Raman effect and have revealed that their interactions can be tuned by
properly choosing the system parameters [38].
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2.5 Signal attenuation in optical fiber

We have discussed the rogue wave propagation through different nonlinear optical
fiber systems by using GNLSE and by employing self-similarity transformation. In
general, when the pulse propagates through a nonlinear optical fiber system it gets
attenuated or even sometimes vanishes due to the inherent absorption and scatter-
ing processes. The typical transmission loss exhibited by silica fiber is 0.2dB/Km
near 1.55µm. To measure the power loss during transmission, a fiber parameter is
introduced, known as attenuation constant. It is a measure of total losses from all
the sources. It is expressed in units of dB/Km. If the power launched at the input
of the fiber length L is P0 and the transmitted power is PT then the attenuation
parameter α1dB is given as

α1dB = −10

L
log(

PT

P0

). (2.32)

The fiber losses depend on the wavelength of the light. Several factors contribute
to the spectrum loss but the major contribution towards the spectrum loss are the
material absorption and Rayleigh scattering.

Absorption losses

The absorption losses are caused by the presence of impurities such as traces of
metal ions and hydroxyl ions. Optical power is absorbed in the molecular excita-
tion of these impurities in the glass in the vicinity of definite wavelength which cor-
responds to the natural oscillation frequencies and their harmonics of the particular
material. In modern fibers, the absorption losses are almost entirely present due to
hydroxyl ions which has a fundamental vibrational absorption peak at ≈ 2.7µm.
To minimize the losses due to absorption special precautions need to be taken dur-
ing the manufacturing of the fibers to ensure that the hydroxyl ion level should
not exceed one part in one hundred million [39]. These losses virtually disappear
in the so called “dry” fibers [40]. Such fibers which show low losses in the spec-
tral regime 1.3µm−1.6µm are considered suitable for fiber optic communication.
Unlike scattering losses which are wideband effects, absorption losses due to each
type of impurity behave like a band suppression filter which show absorption peak
at well defined wavelengths.
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Scattering losses

On the other hand, despite careful manufacturing techniques, fibers are inhomo-
geneous in nature and have disordered structures. The scattering losses are caused
by the imperfections present in the core material and the irregularities between the
core-cladding interface [41]. These inhomogeneities result in the fluctuation of
the refractive index. If the scale of these fluctuations is on the order of 1/10 or
less, each irregularity acts as a scattering center. This form is known as Rayleigh
scattering and is characterized by an effective absorption coefficient that varies as
λ−4 and are dominant at shorter wavelengths. These losses are not localized and
can even be caused by the tiny dielectric inconsistencies in the glass. They can be
minimized by having low thermodynamic density fluctuations.
Modern fibers exhibit a loss of ≈ 0.2dB/Km near 1.55µm. These losses can be
compensated by doping the core of the fiber with erbium atoms. We now discuss
the basics of erbium doped fibers and then demonstrate the rogue wave propaga-
tion and their management through the erbium doped fiber system.

2.6 Erbium doped fiber amplifiers (EDFA)

It is well known that the optical soliton pulses which arise due to the delicate bal-
ance between the GVD (in the anomalous regime) and the Kerr nonlinearity prop-
agate in an optical fiber. Their propagation is governed by NLSE of the following
form [42]

UZ = i(
1

2
Uττ + |U |2U). (2.33)

As these pulses propagate along the fiber they get attenuate and can vanish due
to the above mentioned losses inherently present in the system. To overcome this
problem it is necessary to incorporate some medium which can provide contin-
uous amplification to the pulse. This is achieved by doping the silica fiber core
with a two-level resonant medium. The amplifier properties such as operative
wavelength and the gain bandwidth are determined by the dopants rather than the
silica fiber which plays the role of a host medium. For this purpose, many rare
earth elements such as erbium, holmium, neodymium, samarium, ytterbium, etc.
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have been used to realize fiber amplifiers operating at different wavelengths rang-
ing from 500nm − 3500nm. Among all, erbium atoms have gathered significant
attention because they operate in the wavelength region near 1550nm which is
suitable for optical telecommunication. The EDFA is pumped from a laser at a
wavelength of 980nm or 1480nm and exhibits gain at the 1550nm region. These
transitions are shown in Fig. 2.6

Figure 2.6: Energy-level diagram of erbium ions in silica fiber.

The two-level resonant medium like erbium atoms support soliton kind of pulse
propagation known as self-induced transparency (SIT). The SIT arises when the
ultrashort optical pulse of central frequency ω propagates in a two-level resonant
medium with the frequency separation close to ω. The coherent interaction be-
tween the optical field and the two-level erbium atoms makes the medium optically
transparent at resonance [43]. These coherent interactions arise due to resonant ab-
sorption and control the optical losses in the fiber medium.
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2.6.1 Background and Motivation

McCall and Hahn proposed that the coherent pulse propagation (SIT) is described
by Maxwell-Bloch (MB) equations [44]. The MB equations are given as

UZ =< p >,

pτ = iωp− fUη,

ητ = 2f(Up∗ + U∗p), (2.34)

where p = v1v
∗
2 , η = |v2|2 − |v1|2 and f describes the interaction between the

propagating field and the two-level resonant atoms. Here v1 and v2 stand for the
wavefunctions in a two-level system, ω is the frequency and < p > represents the
averaging with respect to inhomogeneous broadening of the resonant frequency;

< p(Z, τ ;ω) >=

∫ ∞

−∞
p(Z, τ ;ω)g(ω)dω, (2.35)

with ∫ ∞

−∞
g(ω)dω = 1. (2.36)

Here, g(ω) is a distribution function and is a measure of the uncertainty in the en-
ergy level of resonant atoms.

In general, the optical fibers support two types of solitons. One type have been
predicted by Hasagawa that arise due to the delicate balance between dispersion
and the nonlinear term and are governed by well the known NLSE [42]. The other
type are due to the presence of erbium atoms in the fiber core which causes the
coherent absorption and re-emission of light from the atoms and are governed by
MB equations. From a practical point of view, Eq. (2.33) represents the soliton
propagation in an impurity-free optical fiber but despite powerful manufacturing
techniques it is not possible to get impurity-free fibers. These impurities contribute
to radiation absorption and lead to inhomogeneous broadening of the impurity en-
ergy levels. There is always a group of energy levels that are in resonance with
the radiation transmitted through the fiber. This will make the system contribute to
SIT. The impurities can be added in the form of erbium atoms which will result in
the amplification of optical pulses which tend to decay during the course of their
propagation. The dynamics of optical pulses in an erbium doped fiber system are
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described by coupled nonlinear Schrödinger-Maxwell-Bloch (NLS-MB) equation
of the form

UZ = iDUττ − iR|U |2|U |+ < p >,

pτ = iωp− fUη,

ητ = 2f(Up∗ + U∗p). (2.37)

The solitons supported by Eq. (2.37) are termed as NLS-MB solitons. The model
Eq. (2.37) was predicted by Maimistov and Manykin to treat the ultra-short pulse
propagation in a light pipe with a two-level resonant medium with Kerr nonlinear-
ity [45]. Nakazawa et al. have observed SIT solitons experimentally in an erbium
doped silica fiber waveguide [46]. In their experiment, they cooled the fiber to 4.2
K and the corresponding dipole-dephasing time was of the order of nanoseconds.
The resulting SIT solitons which were generated this way were short enough to
be in the coherent photon-atom interaction regime. The co-existence of NLS and
SIT soliton has also been confirmed in [47, 48]. The experimental observation
of NLS-MB soliton stimulated the research on EDFA. Soon afterwards, Painléve
analysis and Lax pair [49] had been carried out to study the integrability of the
system and even the soliton solutions of the coupled NLS-MB model have been
reported [50]. Nakkeeran investigated the optical solitons in erbium doped fibers
by including higher order terms and pumping effects [51, 52]. With time, an enor-
mous amount of analytical research took place to study the integrability aspect
[53], soliton propagation, their management and their properties in an inhomoge-
neous erbium doped fiber system which is governed by variable coefficient NLS-
MB equations [54, 55]. Recently, the two soliton solutions for an inhomogeneous
NLS-MB model have been constructed by using the Lax pair and Darboux trans-
formation technique where interesting features of the solitons have been revealed
[56, 57]. Moreover, the nonlinear tunneling properties of optical solitons in the
inhomogeneous NLS-MB model have also been investigated [58]. In addition to
analytical studies on EDFA, these fibers have also been exploited experimentally
[59, 60, 61]. Very recently, He et al. have shown the existence of bright and dark
rogue waves in a homogeneous optical fiber doped with erbium atoms [62]. They
have further extended this study and obtained the N-order bright and dark rogue
wave solutions for constant coefficient NLS-MB model equation using Darboux
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transformation by assuming periodic seed solutions [63]. In realistic situations,
fibers doped with erbium atoms are not homogeneous due to density variations
and manufacturing defects and so it is quite relevant to work out the rogue wave
solitons for the variable coefficient NLS-MB model equation which describes the
pulse propagation in an inhomogeneous erbium doped fiber system. The next sec-
tion of this chapter is devoted to obtain the bright and dark rogue wave solutions
for the inhomogeneous NLS-MB model, followed by studying their characteristics
for the hyperbolic choices of the parameters.

2.6.2 Bright and dark rogue waves in an inhomogeneous er-
bium doped fiber system

We are considering coupled generalized nonlinear Schrödinger-Maxwell-Bloch
(GNLS-MB) equations of the form

iUZ+
D(Z)

2
Uττ +R(Z)|U |2U − i

2
Γ(Z)− 2iβ(Z) < p >= 0,

pτ = 2iωp+ 2f(Z)Uη, (2.38)

ητ = −f(Z)(Up∗ + U∗p).

The parameter β(Z) accounts for the interaction between silica and doped atoms
and Γ(Z) represents the gain/loss term.

For simplicity, we have chosen the distribution function g(ω) as a Dirac delta
function at resonant frequency ω0 i.e. an infinitely narrow line. So the averaging
function given by Eq. (2.35) becomes

< p(Z, τ ;ω) >=

∫ ∞

−∞
p(Z, τ ;ω)δ(ω − ω0)dω,

= p(Z, τ ;ω0) (2.39)

Using this, Eq. (2.38) reads

iUZ+
D(Z)

2
Uττ +R(Z)|U |2U − i

2
Γ(Z)− 2iβ(Z)p = 0,

pτ = 2iω0p+ 2f(Z)Uη, (2.40)

ητ = −f(Z)(Up∗ + U∗p).
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Now we are interested to obtain the exact bright and dark rogue wave solutions
of Eq. (2.40). As we have used earlier, we will employ the same methodology
that involves the mapping of the variable coefficient NLEE to its corresponding
constant coefficient model equation to get the desired rogue wave solutions of Eq.
(2.40) . To do so we have chosen the ansatz for U(Z, τ) as

U(Z, τ) = A(Z)ψ[χ, ρ] (2.41)

with χ = χ(t) and ρ = ρ(Z). Here ψ is a complex function and A(Z) denotes the
amplitude of the rogue waves.

We are setting χ of the form

χ(τ) =
τ

w
. (2.42)

The main task is to determine the concrete expressions for ρ and the various
conditions among the parameters R(Z), D(Z), A(Z), f(Z), Γ(Z) which reduces
Eq. (2.40) to the following homogeneous equation

iψρ +
1

2
ψχχ + |ψ|2ψ − 2ip = 0,

pχ = 2iωp+ 2ψη, (2.43)

ηχ = −(ψp∗ + ψ∗p).

On substituting Eq. (2.41) along with Eq. (2.42) into Eq. (2.40), the explicit form
of ρ(Z) and the various conditions can be worked out by collecting the coefficients
of similar terms. Then on demanding the coefficients of real and imaginary parts
of each term to be explicitly zero, we get

ρ(Z) =

∫ Z

0
D(S)dS

w2
, (2.44)

A(Z) =

√
D(Z)

R(Z)

1

w
. (2.45)

with the following conditions among various equation parameters

β(Z) = R(Z)A3, f(Z) =

√
R(Z)

D(Z)
, (2.46)

Γ(Z) =
W [R,D]

RD
. (2.47)
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Since Eq. (2.40) has been reduced to homogeneous NLS-MB system, hence by
using Eqs. (2.41) and (2.42) we can present the exact rogue wave solutions for
inhomogeneous GNLS-MB model as follows [62]

U(Z, τ) =
1

w

√
D(Z)

R(Z)
exp(is1)[−d−

4d(2ids3(ρ−ρ0)
s2

− 1)

4d2(−s2χ+s4(ρ−ρ0))2

s22
+ 1 +

4d2s23(ρ−ρ0)2

s22

],

(2.48)

p =
k1
k2
, (2.49)

η = −k3
k2
, (2.50)

Here,

k1 =[−64d4s5s4s
2
3s2χ(ρ− ρ0)

3 − 64d4s5s4s
3
2χ

3(ρ− ρ0)− 64d4s5s
3
4s2χ(ρ− ρ0)

3

+ 16d4s5s
4
3(ρ− ρ0)

4 + 16d4s5s
4
4(ρ− ρ0)

4 + 16d4s5s
4
2χ

4 + 32d4s5s
2
4s

2
3(ρ− ρ0)

4+

32d4s5s
2
3s

2
2(ρ− ρ0)

2χ2 − 8d2s6s
2
4s

2
2(ρ− ρ0)

2 − 8d2s6s
4
2χ

2

− 8d2((
1

2
b− ω0)

2 + 3d2)s23s
2
2(ρ− ρ0)

2 + 16d2s6s4s
3
2(ρ− ρ0)χ+

96d4s5s
2
4s

2
2χ

2(ρ− ρ0)
2 + 32d3s4s3(−

1

2
b+ ω0)s

2
2(ρ− ρ0)

2 − 32d3s3(−
1

2
b+ ω0)s

3
2(ρ− ρ0)χ+

(d2 − 3(
1

2
b− ω0)

2)s42 + 8is7s
3
3s2d(ρ− ρ0)

3 + 8is3s
3
2(
1

4
b2 − d2 − bω0 + ω2

0)d(ρ− ρ0)+

8ids7s3s
3
2(ρ− ρ0)χ

2 − 16ids7s4s3s
2
2(ρ− ρ0)

2χ+ 8i(db− 2dω0)ds
4
2χ−

8i(db− 2dω0)d(ρ− ρ0)s
3
2s4 + 8is7d(ρ− ρ0)

3s24s3s2] exp(is1)id,

k2 = (4d2(s2χ− s4(ρ− ρ0))
2 + 4d2s23(ρ− ρ0)

2 + s22)
2(
1

2
b− ω0)s5, (2.51)

k3 =− (16d4s8s
4
2χ

4 − 64d4s8s4s
3
2χ

3(ρ− ρ0) + ((32d4s8s
2
2s

2
3 + 96d4s8s

2
2s

2
4)(ρ− ρ0)

2+

8d2s9s
4
2)χ

2 + ((−64d4s8s2s
3
4 − 64d4s8s4s2s

2
3)(ρ− ρ0)

3 + (−32d5s3s
3
2−

16d2s9s4s
3
2)(ρ− ρ0))χ+ (16d4s8s

4
4 + 16d4s8s

4
3 + 32d4s8s

2
4s

2
3)(ρ− ρ0)

4+

(32d5s4s3s
2
2 + 8d2(

1

8
b3 + d2ω0 − ω3

0 −
3

4
b2ω0 +

3

2
bω2

0 −
1

2
d2b)s22s

2
3+

8d2s9s
2
4s

2
2)(ρ− ρ0)

2 + (−3

4
b2ω0 +

3

2
bω2

0 +
1

8
b3 − ω3

0 −
3

2
d2b+ 3d2ω0)s

4
2),

with
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s1 =
−b(1

2
b− ω0)χ+ (2 + 2(1

2
b− ω0)(

1
4
b2 − 1

2
d2))ρ

−1
2
b+ ω0

, (2.52)

s2 = (−1

2
b+ ω0)((

1

2
b− ω0)

2 + d2), (2.53)

s3 = −dω0(d
2 + ω2

0)−
3

2
dbω0(

1

2
b− ω0) +

1

2
db(d2 +

1

4
b2) + d, (2.54)

s4 = −1

2
b2(d2 +

1

4
b2) + bω0(d

2 + ω2
0) +

3

2
b2ω0(

1

2
b− ω0) +

1

2
b− ω0, (2.55)

s5 = (
1

2
b− ω0)

2 + d2, (2.56)

s6 = (
1

2
b− ω0)

2 − d2, (2.57)

s7 = 4d4 + 4d2ω2
0 − 4d2bω0 + d2b2, (2.58)

s8 =
1

8
b3 − d2ω0 − ω3

0 −
3

4
b2ω0 +

3

2
bω2

0 +
1

2
d2b, (2.59)

s9 = −3d2ω0 +
1

8
b3 +

3

2
d2b− 3

4
b2ω0 − ω3

0 +
3

2
bω2

0. (2.60)

Here U(Z, τ) represents bright rogue wave solution while p and η express dark
rogue wave solutions. The results obtained here are in general valid for any form
of R(Z) and D(Z), provided certain constraints are specified. To demonstrate the
intensity profiles of rogue waves propagating through an inhomogeneous erbium
doped optical fiber, we are considering the hyperbolic form of nonlinearity and
dispersion parameter. We have chosen this specific form because it is practically
feasible and was first used for soliton dispersion management in an optical fiber
by Dianov’s group [64]. Choosing

R(Z) = l1sech (Z), D(Z) = l2sech (Z) (2.61)

where l1 and l2 are constants associated with nonlinearity and GVD parameters.
The intensity profile for bright rogue waves are plotted in Fig. 2.7(a), the maxima
occurs at Z = 0 and τ = 0 and is equal to 12.7 for the choices of parameters
mentioned in the caption. By choosing different values of the parameters and
different function form for various coefficients one can control the amplitude and
the spatial distribution of the rogue waves and can set them as per the requirements
of the system under study.

Fig. 2.7(b) depicts the dark rogue waves of |p|2. In this case the maximum am-
plitude appears in the form of upper rings and is equal to 21 while the minimum
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Figure 2.7: (a)Intensity profile of bright rogue waves (|q|2) (b)Intensity profile of
dark rogue waves (|p|2) (c)Dark rogue waves properties of η of Eq. (2.40). The
parameters are d = 1, b = 3

2
, ω0 =

1
2

, l1 = 1 and l2 = 2

amplitude equal to 1 appears in the form of four down peaks which are localized in
the area of upper rings. Fig. 2.7(c) is plotted for η. For this case the maximum am-
plitude (approaches to 4) occurs in the form of two upper peaks and the minimum
amplitude (approaches to −3) occurs in the form of two down peaks.

2.6.3 Controlling bright and dark rogue waves in a periodically
distributed system

In the previous section, we have obtained the bright and dark rogue wave solu-
tions for the coupled GNLS-MB equations. Now we discuss a mechanism which
is used to control the dynamics of rogue waves as they propagate through a peri-
odically distributed fiber system and will reveal their interesting features. In order
to demonstrate controllable rogue waves for a periodically distributed system we
consider the following form of dispersion and nonlinearity parameters

D(Z) = d10 cos(κZ), R(Z) = r0 cos(κZ), (2.62)
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Figure 2.8: (a) Recurrence (b) annihilation of bright rogue waves of Eq. (2.40)
|q|2. The parameters are w = d10 = r0 = ρ0 = 1 with (a) κ = 0.8 and (b) κ = 6.

where the parameters d10 and r0 are related with GVD and nonlinearity, respec-
tively. To analyse the behaviour of rogue waves as they travel through a periodi-
cally distributed fiber system we concentrate on the relation between the effective
propagation distance ρ and actual propagation distance Z. For the choice of pa-
rameters made in Eq. (2.62), an effective propagation distance comes out to be

ρ =
d10
w2κ

sin(κZ). (2.63)

Clearly ρ is periodic and its maximum value ρmax reads

ρmax = | d10
w2κ

|. (2.64)

It is clear from Eq. (2.63) that effective propagation distance is confined to
− d10

w2κ
≤ ρ ≤ d10

w2κ
, while normalized propagation distance Z can take any value

from zero to infinity. On closely observing the Fig. 2.8 we interpret that if
| d10
w2κ

| > ρ0, the bright rogue waves get excited from their initial value at Z =
1
κ
arcsin(ρ0d10

κ
) and recur periodically while for | d10

w2κ
| < ρ0 the rogue waves do not

have an appropriate propagation distance to get excited and get annihilated. So by
properly regulating the values of ρmax and ρ0 we can control the rogue waves as
they propagate through a nonlinear optical fiber. Similar behaviour is observed for
dark rogue waves as shown in Fig. 2.9. It is worth mentioning that for this periodic
system W [R,D] = 0 which implies that there is no gain in the fiber and as a result
the pulse does not experience any compression or broadening during propagation
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Figure 2.9: (a) Recurrence (b) annihilation of dark rogue waves of Eq. (2.40) |q|2.
The parameters are w = d10 = r0 = ρ0 = 1 with (a)κ = 0.7 and (b )κ = 5.

Figure 2.10: Sectional view of Recurrence (black) for κ = 0.8 and annihilation
(red) for κ = 6 for (a) bright rogue waves at τ = 0.2 (b) dark rogue waves at
τ = 1 of Eq. (2.40).

but an overall phase change. This behaviour is clearly depicted in sectional plots,
shown in Fig. 2.10 for bright and dark rogue waves.

In the framework of Eq. (2.43) rogue wave appears from nowhere and dis-
appear without a trace, while for the case of normalized propagation distance Z,
bright and dark rogue waves exhibit periodic behaviour. This is happening be-
cause of the periodic functional form of the distributive parameters, which excites
the rogue waves again and again after a particular interval of time. This kind of
behaviour is not possible for the homogeneous optical fiber system, only an inho-
mogeneous system enables this new property of rogue waves.
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2.7 Tapered graded-index nonlinear waveguide

So far we have discussed the rogue waves and their management in various nonlin-
ear optical fibers. Now we make use of the analogy between “dispersion in time”
and “diffraction in space” and study the rogue waves in the context of nonlinear
waveguide. The study of pulse propagation through nonlinear waveguides is a hot
topic of research these days. The basic principle of a waveguide is to guide a
beam of light by using the variation of refractive index in the transverse direction.
This allows the wave to propagate in a well defined channel. The variations of re-
fractive index in the transverse direction can be continuous or discontinuous. The
main feature is that the refractive index should be maximal in the channel along
which the light is to be guided. There are different kinds of waveguides such as
step-index, graded-index, birefringent, etc. which hold great practicality in com-
munication. We are considering tapered graded-index waveguide because tapering
is a tool that allows to add the desired form of inhomogeneity in a nonlinear sys-
tem. It has various application such as maximizing the light coupled into optical
fibers, integrated-optic devices and waveguides by reducing the reflection losses
and mode mismatch [65]. It also finds application in the phenomena which require
longitudinally varying waveguide properties such as in highly efficient Raman am-
plification [66].
The refractive index distribution in a nonlinear tapered graded-index waveguide
can be written as [67]

n(x, z) = n0 + n1F (z)x
2 + n2R(z)I(x, z), (2.65)

where x is the spatial coordinate, z is the propagation distance and I(x, z) is the
beam intensity. The first two terms represent the linear contribution towards the
linear refractive index and the third term is intensity dependent which arises due
to Kerr type nonlinearity. Here we have assumed n1 > 0 and the dimension-
less tapering function F (z) can be positive or negative, depending on whether the
graded-index medium acts as a defocusing (R(z) < 0) or focusing (R(z) > 0)
linear lens. The parameter n2 can be positive or negative characterizing nonlinear
self-focusing or self-defocusing and R(z) is a dimensionless function which sig-
nifies the inhomogeneity of Kerr nonlinearity along the medium. It is worthwhile
to mention that the shape of the taper F (z) can be modelled appropriately depend-
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ing upon the practical requirements. A taper can be made by heating one or more
fibers up to the material softening point and then stretching it until a desired shape
is obtained. Recently, the tapered graded-index waveguides have been explored to
study dark solitons on a parabolic background [67], optical similaritons [31] and
controllable rogue waves [68].
Under slowly varying envelope approximations, the nonlinear equation which gov-
erns the wave propagation in an inhomogeneous waveguide whose refractive index
is given by Eq. (2.65) is GNLSE and can be written as

iQz+
D(z)

2k0
Qxx+

k0n2

n0

R(z)|Q|2Q−iθ(z)Qx+
k0n1

n0

F (z)x2Q = i
γ(z)

2
Q, (2.66)

where D(z) is diffraction parameter, θ(z) is related inversely with the group ve-
locity of modes (a walk-off effect) [69, 70] and γ(z) is the gain-loss coefficient.
The wavenumber is k0 = 2πn0/λ where λ is the wavelength of optical source gen-
erating the beam. Introducing the normalized variables as U = (k0|n2|LD/n0)

1
2Q,

X = x/ω0, Z = z/LD, Γ(Z) = γ(z)LD and α(Z) = θ(z)k0ω0, where ω0 =

(2k20n1/n0)
− 1

4 and LD = k0ω
2
0 depict the characteristic transverse scale and the

diffraction length, respectively. In dimensionless form Eq. (2.66) can be rewritten
as

iUZ +
D(Z)

2
UXX + σR(Z)|U |2U − iα(Z)UX +

F (Z)

2
X2U = i

Γ(Z)

2
U, (2.67)

where σ = ±1 represents the self-focusing (+1) and self-defocusing (-1) nonlin-
earity of the waveguide. Now we obtain the optical rogon solutions by using the
similarity transformation (mentioned in Section 2.4.2) and discuss their control-
lable propagation through graded-index waveguide in different regimes. In Chap-
ter 3 we shall study the propagation of optical similaritons through the tapered
graded-index nonlinear waveguide and reveal their interesting features.

2.7.1 Optical rogons in a tapered graded-index nonlinear waveg-
uide

Here, we work out the rogue wave solutions for Eq. (2.67) with the aid of similarity
transformation for the case Γ(Z) = 0. The case with Γ(Z) ̸= 0 will be dealt in
Chapter 3 in the context of optical similaritons.
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For Γ(Z) = 0, Eq. (2.67) becomes

iUZ +
D(Z)

2
UXX + σR(Z)|U |2U − iα(Z)UX +

F (Z)

2
X2U = 0. (2.68)

The Gauge and similarity transformation as given in Eq. (2.13) can be rewritten in
the case of waveguides as follows [17, 29]

U(X,Z) = A(Z)ψ [χ(X,Z), ρ(Z)] eiΦ(X,Z), (2.69)

with
χ(X,Z) =

X −Xc(Z)

w(Z)
,

where Xc(Z) represents the dimensionless position of the rogon wave center. Eq.
(2.15) implies that the corresponding quadratically chirped phase is given by

Φ(X,Z) = C(Z)
X2

2
+B(Z)X + d1(Z), (2.70)

where the parameters C(Z), B(Z) and d1(Z) need to be determined.

On substituting Eq. (2.69) along with Eq. (2.70) in Eq. (2.68), it reduces to the
standard NLSE, given by Eq. (2.18)
with

ρ(Z) = ρ0 +

∫ Z

0

R(S)A2(S)dS, (2.71)

and

Xc(Z) = w(Z)

(
X0 + C02

∫ Z

0

α(S)−D(S)B(S)

w(S)
dS)

)
, (2.72)

where X0 and C02 are constants. The conditions among various other equation
parameter are the following

A(Z) =
1√
w(Z)

, B(Z) =
α(Z)

D(Z)
,

C(Z) =
wZ

w(Z)D(Z)
, d1(Z) = I2

∫
D(Z)dZ, (2.73)

The functions R(Z), w(Z), α(Z) and D(Z) are not independent and are related to
each other as:

R(Z)w(Z) = D(Z), (2.74)
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α(Z) = ID(Z). (2.75)

Here I is a constant. The corresponding tapering profile becomes

F (Z) =
wZZ

wD
− wZDZ

wD2
. (2.76)

We can obtain analytical solutions for Eq. (2.68) as it has been reduced to standard
NLSE, given by Eq. (2.18) for the certain conditions among the parameters. The
explicit expression for the intensity of rogon solutions, possessed by Eq. (2.18) is
given as [17]

|ψ|2 = 1 + 8
1 + 4ρ2 − 4χ2

(1 + 4ρ2 + 4χ2)2
. (2.77)

ρ and χ can be obtained from Eqs. (2.71) and (2.70). The solutions of Eq. (2.68)
can be obtained by using the transformation (2.69) with the conditions (2.71-2.73).
The intensity of optical rogons for Eq. (2.68) is given as

|U(X,Z)|2 = |Ψ|2

w(Z)
. (2.78)

It is worth mentioning that the various parameters of Eq. (2.68) are spatially de-
pendent and related to each other through Eqs. (2.74)-(2.76). The most important
feature is that the coefficients being spatially dependent, can be controlled easily.
This provides an insight to managing the optical rogons propagating through an
inhomogeneous tapered waveguide.

2.7.2 Management of optical rogons

In order to demonstrate the management of optical rogons in different regimes
we divide our study into three parts (i) diffraction management, (ii) nonlinearity
management, and (iii) both diffraction and nonlinearity management which are
described as follows:

Case I: Optical rogon diffraction management

The effect of D(Z) is studied by considering R(Z) to be constant. For simplicity
we are choosingR(Z) = 1. In correspondence with the Eq. (2.74-2.76) this choice
yields
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w(Z) = D(Z), (2.79)

α(Z) = ID(Z), (2.80)

and

F (Z) =
DZZ

D2(Z)
− D2

Z

D3(Z)
. (2.81)

Clearly, width w(Z), the parameter α(Z) and the tapering function F (Z) can
be managed by diffraction parameter D(Z). The intensity profile of rogons for
D(Z) = asechZ and D(Z) = 1 + a cosZ with a = 0.2 are shown in Fig.
2.11(a) and Fig. 2.11(b), respectively. The reason for these specific choices of
the diffraction coefficient lies in their practical applications. The sech type diffrac-
tion/dispersion variation is useful as it gets saturated with propagation distance.
The importance of periodically varying diffraction has been shown in stabilizing
the two-dimensional soliton [71]. It is important to mention here that the taper-
ing function corresponding to hyperbolic diffraction is hyperbolic and for periodic
choice is periodic and these choices of tapering function are practically feasible.

Case II: Nonlinearity managed optical rogons

The influence of nonlinearity coefficient R(Z) has been worked out by taking
D(Z) to be constant and equal to unity for simplification. Hence following Eq.
(2.74) the width of rogons is governed by nonlinearity as

w(Z) =
1

R(Z)
. (2.82)

The resulting tapering function is

F (Z) = − RZZ

R(Z)
+

2R2
Z

R2(Z)
. (2.83)

Here the parameter α(Z) becomes constant α(Z) = I , which can be made as
small as is practically possible depending upon the design of the system. This in
turn proves to be advantageous as for its smaller value, less power will be used
to overcome it for pulse propagation in a nonlinear waveguide. Intensity profile
of rogons for hyperbolic and trigonometric form of the nonlinearity parameter are
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plotted in Fig. 2.12(a) and Fig. 2.12(b), respectively. The motivation of consid-
ering trigonometric form of R(Z) came from [67], where similar form has been
used to investigate the robustness of solitons in a planar graded-index nonlinear
waveguide. The tapering function for the hyperbolic choice of nonlinearity is hy-
perbolic and for trigonometric form is periodic. The exact form can be worked out
by using Eq. (2.83).

Figure 2.11: Intensity profile of rogons for Eq. (2.68) (a) for D(Z) = a sechZ (b)
for D(Z) = 1 + a cosZ with a = 0.2 .

Figure 2.12: Intensity profile of rogons for Eq. (2.68) (a) for R(Z) = b cosh Z (b)
for R(Z) = 1 + a cosΩZ with b = 1, a = 0.1 and Ω = 0.5.

It is worth noting that the periodic choice of diffraction parameter D(Z) leads
to the periodic evolution of rogons (Fig. 2.11(b)). However, the periodic choice of
nonlinearity parameter R(Z) does not lead to the periodic evolution of rogons but
may cause a periodic background.
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Case III: Combined nonlinearity and diffraction managed optical rogons

Here we consider that both the nonlinearity and diffraction have spatial depen-
dence and study the combined effect of their management on the intensity profile
of rogons. In Fig. 2.13 we have plotted the intensity profile for different functional
forms of the various parameters.

Figure 2.13: Intensity profile of rogons for Eq. (2.68) with w(Z) = 1 + sechZ (a)
for R(Z) = sechZ (b) for R(Z) = 1+ c0 sinZ (c) for R(Z) = exp(−c0Z) coshZ
with c0 = 0.5.

Now we define the motivation behind the specific forms of the chosen param-
eters. The first choice of nonlinearity yields the hyperbolic form of D(Z) which
gets saturated after an appropriate propagation distance. For the second case, non-
linearity is having a sinusoidal variation which results in sinusoidal D(Z). It has
been predicted that these forms of nonlinearity and diffraction parameters stabilize
the pulse against decay and provide undisturbed propagation [72]. The last choice
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of nonlinearity yields an exponentially varying diffraction and this form of diffrac-
tion has been used in [73].
We have analytically predicted the possibility of optical rogons and their man-
agement as they propagate through a tapered graded-index nonlinear waveguide.
These optical rogons may be used in signal transmission as they are stable against
small periodic perturbations and noise and their stability analysis has been shown
in [74].

2.7.3 Riccati parameterized optical rogons in a tapered graded-
index nonlinear waveguide

So far, we have obtained optical rogons and discussed the various management
regimes. In this analysis, we have found that Eq. (2.76) resembles the Schrödinger
equation of quantum mechanics for D(Z) = 1 and can be written explicitly as

F (Z) =
wZZ

w(Z)
. (2.84)

This allowed us to invoke the isospectral Hamiltonian approach discussed in
Section 1.3. As we have discussed earlier by using this formalism we can introduce
a Riccati parameter λ which allows us to tune the intensity of the nonlinear pulses
and generalize the system parameters. The tapering function F (Z) and the width
w(Z) in Eq. (2.84) can be treated as a quantum mechanical analog of potential
and wave function, respectively. Since the Schrödinger equation is known to be
exactly solvable for a variety of potentials, we can analogously study Eq. (2.68) for
a variety of tapering functions. Following Eqs. (1.22) and (1.23), we can generate
the class of tapering F̂ (Z) and width ŵ(Z) as follows

F̂ (Z) = F (Z)− 2
d

dZ

(
w2(Z)

λ+
∫ Z

−∞w2(S)dS

)
, (2.85)

ŵ(Z) =

√
λ(λ+ 1) w(Z)

λ+
∫ Z

−∞w2(S)dS
. (2.86)

The value of λ has to be chosen so as to avoid singularities in the expression of
the modified tapering and the width functions. The corresponding class of the
nonlinearity parameter can be obtained by using Eq. (2.82) (for D(Z) = 1) and
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reads
R̂(Z) =

1

ŵ(Z)
. (2.87)

To demonstrate the importance of invoking isospectral technique we are choosing
the width of the rogons w(Z) = sechZ, λ /∈ [−2, 0]. A class of ŵ(Z) can be given
as follows by using Eq. (2.86)

ŵ(Z) =

√
λ(λ+ 1)sechZ

λ+ 1 + tanhZ
. (2.88)

It is straightforward to obtain the explicit expressions of F̂ (Z) and R̂(Z) corre-
sponding to ŵ(Z) by using Eqs. (2.85) and (2.87). To demonstrate the role of Ric-
cati parameter λ, we have plotted the width, tapering and the nonlinearity function
profiles for its different values (Fig. 2.14).

Figure 2.14: The profiles of (a) width (b) tapering (c) nonlinearity parameter. Each
plot is drawn for the absence of Riccati generalization (black), for λ = 0.1 (red),
for λ = 1 (green), for λ = 10 (blue).

Fig. 2.14 reveals that for a small value of Riccati parameter λ the profiles differ
remarkably from the original one but for its higher values they tend to the original
ones. It is interesting to note that for the smaller values of λ < 0.414, F̂ (Z)
is always positive which means that tapering of the waveguide is only defocusing
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type while in the other cases the nature of the tapering is changing from focusing to
defocusing type. The width function is increasing and the nonlinearity parameter
is decreasing with increase in λ.
To study the role of λ we compare the intensity profiles of rogons for the case that
does not involve the effect of Riccati generalization with the one which contributes
its effect. The intensity of rogons corresponding to Riccati generalization can be
obtained from Eq. (2.78) by replacing w(Z) with ŵ(Z). The intensity profiles of
optical rogons with and without Riccati generalization corresponding to different
values of λ are plotted in Fig. 2.15.

Figure 2.15: The intensity profiles of rogue waves (a) in the absence of Riccati
generalization, (b) for λ = 0.1, (c) for λ = 1 , (d) for λ = 10.

It is clear from the intensity plots that for a small value of λ the intensity is
increased and tends to the original case for a large value. Thus, by invoking the
parameter λ we can tune the amplitude of the optical rogons and can get high
energy optical rogon pulses which are useful for practical applications. Similar
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corroboration has been predicted for the special case of Eq. (2.67) with D(Z) =

R(Z) = 1 in [75, 76].

2.8 Conclusion

We have obtained the exact analytical rogue wave solutions for the variants of
GNLSE corresponding to pulse propagation through different nonlinear fibers and
waveguides. The exact solutions have been worked out with the aid of similarity
transformation that maps the inhomogeneous model equation to the corresponding
constant coefficient model equation. Then by making use of the known results
of the constant coefficient model and a transformation we have obtained the ex-
act solutions for the inhomogeneous model. We have found that all the system
parameters can, in general, take any functional form depending upon the system
under study but all of them can not be chosen independently and certain condi-
tions need to be satisfied. In this chapter we have investigated three models (i)
generalized nonautonomous NLSE in the context of fibers including periodically
distributed, dispersion increasing and decreasing fibers (ii) NLS-MB model for
erbium doped fibers (iii) GNLSE in the context of tapered graded-index waveg-
uide. In the first case we have studied the dynamics of rogue waves for the cases
when W [R,D] = 0 and W [R,D] ̸= 0. The former case represents the scenario of
periodically distributed fiber system and we have noticed that as the rogue waves
propagate through it, they do not suffer any broadening and compression but un-
dergo an overall phase change.

For the latter case we have studied the propagation of rogue waves through dis-
persion increasing and decreasing fibers and found that the amplitude of the rogue
waves increases (decreases) as they travel through dispersion increasing (decreas-
ing) fiber. The second case involves NLS-MB model and represents the pulse
propagation through inhomogeneous erbium doped fiber system. We have ob-
tained bright and dark rogue wave solutions and discussed the mechanism which
is used to control the propagation of rogue waves. Additionally, we have also
shown that by tuning a few parameters we can get the excitation or annihilation
of rogue waves at the desired location. The third case involves the study of rogue
waves through a tapered graded-index waveguide. We have discussed the differ-
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ent management regimes of optical rogons which may be practically achievable
through tapering. We have also shown the possibility of producing high energy
optical rogons through the coherent control of tapering profile. This is achieved
by invoking the concept of isospectral Hamiltonian which allowed us to generate
the class of tapering function, which in turn effects the width and the intensity of
the optical rogons through the introduction of Riccati parameter λ. The analytical
results obtained may prove useful for studying optical rogue waves experimentally.

The work presented here has been published in [77, 78, 74].
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Chapter 3

Nonlinear tunneling of optical
similaritons in a tapered
graded-index nonlinear waveguide

3.1 Introduction

In Chapter 2, we have investigated the self similar rogue waves and their man-
agement in a tapered graded-index nonlinear waveguide. Due to the potential ap-
plications of tapered graded-index waveguides it is quite interesting to study the
dynamical properties of the different kinds of self-similar waves as they propa-
gate through it. The present chapter is devoted to studying the nonlinear tunneling
properties of similariton through the tapered graded-index nonlinear waveguide.
We begin this chapter by introducing the concept of nonlinear tunneling. Then,
we describe the similariton pulses and mention their applications in various ar-
eas. Finally, we investigate the nonlinear tunneling of optical similaritons for the
constant background and the exponential background case. By making use of the
results obtained with exponential background case we extend the analysis and dis-
cuss the cascade pulse compression of bright similaritons.

3.2 Nonlinear tunneling

In order to understand the concept of tunneling, one must consider the motion of
the pulse in a field which is characterized by the presence of a region known as
a potential barrier whose potential energy exceeds the total energy of the parti-
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cle. Classically, this potential barrier is impenetrable to the pulse. However, in
quantum mechanics the pulse can pass through the potential barrier as the trans-
mission probability of the wave function is non zero. This is known as tunneling
effect. Later it was proposed that the soliton pulses also show tunneling effects by
treating the localized inhomogeneities in GVD parameter analogous to potential
barriers in quantum mechanical tunneling [1]. The tunneling properties exhibited
by soliton kind of pulses are known as nonlinear tunneling as they originate from
the nonlinear wave equation that leads to a nonlinear dispersion relation in contrast
to linear tunneling which follows from the linear wave equation. The propagation
of the soliton pulse toward a spatially dependent potential barrier was investigated
by Newell, for the first time in 1978 [2]. It was reported that in certain circum-
stances, depending on the ratio of the soliton amplitude and the barrier height, the
soliton can tunnel through a barrier in a lossless manner. The tunneling of sine-
Gordon soliton through the impurity potential has been calculated in [3]. Later,
the nonlinear tunneling properties of optical solitons through a fiber junction [4],
organic thin films and polymeric waveguides [5] have been investigated. The re-
search in this area intensified with the pioneering work of Serkin et al. [6]. Soon
afterwards, the utility of nonlinear tunneling in pulse amplification, splitting, com-
pression and cascade compression through nonlinear barriers have been realized
and analyzed analytically as well as numerically [7, 8, 9]. Barak and collabora-
tors observed the nonlinear spatial soliton tunneling effects of a paraxial Gaussian
beam launched in a potential trap. They found that by increasing the power lev-
els, the dynamics changed from linear tunneling to nonlinear tunneling and then
led to the ejection of the soliton through a potential trap [10]. The nonlinear tun-
neling of nonautonomous solitons through erbium doped fibers [11], birefringent
fibers [12, 13] and in the presence of external harmonic potential [14] has also
been discussed. Additionally, the tunneling properties of self-similar nonautono-
mus solitons, known as similaritons [7] and rogue waves [15] have been exten-
sively investigated. It has been revealed that these nonlinear pulses can travel with
increasing, unchanged or decreasing amplitude depending on the ratio of the am-
plitude of the rogue waves and the barrier height. In this chapter we are interested
in studying the nonlinear tunneling properties of optical similaritons. We begin
with a brief introduction of optical similaritons.
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3.3 Optical similaritons

Similaritons are self-similar waves which maintain their overall shapes but change
their width and amplitudes with the modulation of system parameters. They have
gathered significant attention and have been explored in many fields such as non-
linear optical systems, plasmas, fluid dynamics, Bose-Einstein condensation and
condensed matter physics [16]. In the context of nonlinear optics they are termed
as optical similaritons and appear due to the co-action of nonlinearity, disper-
sion/diffraction and gain in a high-power fiber amplifier [17, 18]. Recently they
have become a subject of intense research due to their remarkable features and
have been investigated in dispersion decreasing fiber [19], nonlinear fibers [20],
optical fiber amplifiers [21], inhomogeneous coupled optical fiber [22], nonlinear
waveguides [17, 7], tapered graded-index nonlinear waveguides [23, 24], etc. The
optical similaritons can be classified into two groups. The first group deals with
the asymptotic optical similaritons, which are described by compact parabolic and
Hermite Gaussian functions in optical fiber amplifiers [25, 26, 27, 28]. The second
group involves exact optical similaritons, which are described by exact soliton so-
lutions [29, 30] and quasi soliton solutions [31]. The exact solitonic similaritons
are more intriguing as they are obtained by a process which involves one-to-one
correspondence of inhomogeneous NLSE and the standard NLSE, thus ensuring
the stability of optical similaritons [21]. We have mentioned in the previous chap-
ter that the self similarity transformation involves the mapping of the inhomoge-
neous NLSE model to the standard NLSE. Here, we use this transformation along
with the Darboux technique to study the nonlinear tunneling properties of the op-
tical similaritons and their pairs for the constant background and the exponential
background case.

3.4 Nonlinear tunneling of optical similaritons

These days, a great deal of research is taking place to study the nonlinear tunnel-
ing of self-similar waves. In addition to nonautonomous solitons and rogue waves,
the nonlinear tunneling properties of optical similaritons have been thoroughly in-
vestigated. In [7], Wang et al. have analyzed the tunneling of optical similaritons
propagating through an inhomogeneous nonlinear waveguide. The spatiotemporal
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self-similar nonlinear tunneling effects in a nonlinear medium in the presence of
linear and nonlinear gain have also been discussed [32]. The propagation of bright
similaritons in a cubic-quintic nonlinear medium with inhomogeneous dispersion
and gain have been studied analytically and their propagation through diffraction
barrier and well in the presence of noise has been examined. The numerical anal-
ysis revealed the stable propagation of bright similaritons over tens of diffraction
lengths [33]. Nonlinear tunneling of similaritons has also been reported in bire-
fringent fibers [13]. Now we study the nonlinear tunneling properties of optical
similaritons in a tapered graded-index nonlinear waveguide whose refractive in-
dex is given by Eq. (2.65). Using the model Eq. (2.67) from the previous chapter
which is used to study the pulse propagation in a tapered graded-index nonlinear
waveguide, for the sake of convenience, we are rewriting it here in the normalized
coordinates as follows

iUZ +
D(Z)

2
UXX + σR(Z)|U |2U − iα(Z)UX +

F (Z)

2
X2U = i

Γ(Z)

2
U. (3.1)

Here all the parameters have the same meaning as in section 2.7. First of all, we
obtain the exact optical similariton solutions for Eq. (3.1) by using self-similarity
transformation and the Darboux technique. After that, we will employ these so-
lutions to investigate the nonlinear tunneling properties through different barriers
and wells.
On substituting Gauge and similarity transformation given in Eq. (2.69) along with
Eq. (2.70) in Eq. (3.1), collecting similar terms and demanding the coefficients of
real and imaginary parts of each term to be separately equal to zero, we obtain the
following relations among the various parameters

A(Z) =

√
D

R

1

w(Z)
, B(Z) = k1,

C(Z) =
wZ

w(Z)D(Z)
, d1(Z) = k22

∫
D(Z)B2

2
dZ, (3.2)

where k1 and k2 are constants.
The pulse center Xc(Z) and the tapering function F (Z) read

Xc(Z) = w(Z)

(
X0 + C02

∫ Z

0

−α(S) +D(S)B(S)

w(S)
dS)

)
, (3.3)
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F (Z) =
wZZ

WD
− wZDZ

WD2
. (3.4)

Eqs.(3.2,3.3,3.4) are self-consistent only if the gain function Γ(Z) satisfies the
following condition

Γ(Z) =
RDZ −DRZ

2RD
− 3wZ

2w
. (3.5)

Using the transformations given in Eqs. (2.69, 2.70), Eq. (3.1) reduces to the
following standard NLSE, for the conditions given in Eqs. (3.2,3.3,3.4,3.5)

i
∂ψ

∂ρ
+

1

2

∂2ψ

∂χ2
+ σ|ψ|2ψ = 0, (3.6)

where the effective propagation distance ρ(Z) is given as

ρ(Z) = ρ0 +

∫ Z

0

D(s)

w2
dS. (3.7)

Now we construct the bright and dark similaritons and their pairs for Eq. (3.1) by
applying Darboux method.

3.4.1 Bright and Dark similariton solutions

The solution of Eq. (3.1) can be obtained from the solution of Eq. (3.6) by using a
one-to-one correspondence. By employing the transformation given by Eq. (2.69)
and the Darboux transformation (DT) [34], bright multi-similariton solutions of
Eq. (3.1) can be given as:

U(X,Z) =

A(Z)eiΦ

[
U0 + 2

n∑
m=1

(λm + λ∗m)ϕ1,m(λm)ϕ
∗
2,m(λm)

Am

]
,

(3.8)

Φj,m+1(λm+1) = (λm+1 + λ∗m)ϕj,m(λm+1)

−Bm

Am

(λm + λ∗m)ϕj,m(λm).
(3.9)

with
Am = |ϕ1,m(λm)|2 + |ϕ2,m(λm)|2. (3.10)

Bm = ϕ1,m(λm+1)ϕ
∗
1,m(λm) + ϕ2,m(λm+1)ϕ

∗
2,m(λm). (3.11)

where, m = 1, 2.....n and j = 1, 2. The complex spectral parameter reads

λm = αm + iβm. (3.12)
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The parameter λ∗m is the complex conjugate of λm , A(Z) and Φ can be obtained
from Eq. (3.2) and Eq. (2.70), respectively.
On substituting the seed solutionU0 = 0 into Eq. (3.8) one can obtain 1-similariton
solution of Eq. (3.1) and by using 1-similariton solution as a seed solution in Eq.
(3.8) we can derive 2-similariton solution. Thus, by recursion, one can generate
upto n-similariton solutions. Here, we are presenting 1 and 2-bright similariton
solutions of Eq. (3.1) for σ = 1 as follows:

U1B(X,Z) = A(Z)2α1sech(ξ1) exp[−i(2β1χ− 2(α2
1 − β2

1)ρ− Φ)]. (3.13)

with
ξ1 = 2α1χ+ 4α1β1ρ+ ξ10, (3.14)

where, χ, Φ and ρ are determined by Eq. (2.69), Eq. (2.70) and Eq. (3.7), respec-
tively.
2-bright similariton solution in the explicit form can be given as

U2B(X,Z) = 4A(Z)eiΦ
G1(Z,X)

F1(Z,X)
, (3.15)

where

G1(Z,X) = cosh ξ2 exp(−iχ1)[(β2 − β1)
2 + 2iα2(β2 − β1)

tanh ξ2 + α2
1 − α2

2] + α2 cosh ξ1 exp(−iξ2)

[(β2 − β1)
2 − 2iα1(β2 − β1) tanh ξ1 − α2

1 + α2
2].

(3.16)

and

F1(Z,X) = cosh(ξ1 + ξ2)[(β1)
2 + (α2 − α1)

2] + cosh(ξ1 − ξ2)

[(β2 − β1)
2 + (α2 + α1)

2]− 4α1α2 cos(χ2 − χ1).
(3.17)

The arguments and the phases are

ξj(χ, ρ) = 2αjχ+ 4αjβjρ+ ξj0, (3.18)

χj(χ, ρ) = 2βjχ+ 2(β2
j − α2

j )ρ+ χj0, (3.19)

where αj and βj are the spectral parameters. The functions χ, Φ and ρ are deter-
mined by Eq. (2.69), Eq. (2.70) and Eq. (3.7), respectively.
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Due to the one-to-one correspondence between the model equation (3.1) and
the standard NLSE, one can derive gray (dark) multi-similariton solutions of Eq.
(3.1). The exact 1- dark similariton solution for σ = −1 is given as:

U1D(X,Z) = 2A(Z)β1[
√
1− a2 + ia tanh

(2aβ1χ+ 4aβ2
1

√
1− a2ρ)] exp[−4iβ2

1ρ],
(3.20)

where the parameter 0 < a < 1 defines the depth of modulation which means the
blackness of gray similariton. It becomes black for a = 1.
The 2-dark similariton solution is given as:

U2D(X,Z) = A(Z)µei(Φ+ζ(ρ,χ))(1 +
G2

F2

), (3.21)

where

G2 = 4µ(ω1 + ω2 − 2µ)− 4i
λ1 + λ2
(β1 + β2)

η (3.22)

F2 = 4µ2(
λ1 + λ2
β1 + β2

)2η, η = (ω1 − µ)(ω2 − µ),

ωj =
(αj − iβj)(αj + iβj tanh(δj))

µ
,

δj = βj[χ− χj0 − (Ω + αj)ρ],

ζ = −(µ2 +
Ω2

2
)ρ− Ωχ− ζ0, µ = |λj|.

From the expressions of ξj and δj for bright and dark similaritons pairs, one can
clearly see that their velocities are determined by βj

∫ Z

0
D(s)
w2 ds and (Ω+αj)

D(s)
w2 ds,

which are associated with the parameters αj , βj and D(Z). Therefore, by assign-
ing appropriate system parameters, we can control the interactions of similariton
pairs by managing their velocities. The initial position and initial phase are related
to the parameters ξj0 and χj0 for bright similariton pairs and the parameters χj0

and ζ0 for dark similariton pairs. The evolutionary behaviour of similaritons can
be controlled by the spectral parameters αj and βj . To demonstrate this we are
studying the nonlinear tunneling of similaritons in the coming section.

3.4.2 Nonlinear tunneling of optical similaritons with constant
background

In order to study the optical similaritons behaviour through diffraction and non-
linear barriers with constant background we consider the following two examples.
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The first one is diffraction barrier(DB) or diffraction well (DW). For this we are
choosing the parameters as [6]

D(Z) = 1 + hsech2[ϵ(Z − Z0)], R(Z) = R0, (3.23)

The second one is nonlinearity barrier (NB) or nonlinearity well (NW). For
this we are choosing the parameters as [7]

R(Z) = 1 + hsech2[ϵ(Z − Z0)], D(Z) = D0, (3.24)

where h denotes the barrier’s height, ϵ represents the barrier (well) width and Z0

signifies the location of the barrier (well). If h = 0 it represents the similari-
ton propagation through a homogeneous waveguide, h > 0 represents barrier and
−1 < h < 0 indicates well. The parameters R0, D0 > 0 are associated with the
nonlinearity and diffraction parameters of the system.

Case(i) The nonlinear tunneling of similaritons through DB (DW) has been inves-
tigated by choosing pulse width w(Z) = sech(0.1Z). The corresponding tapering
function F (Z) and the gain function Γ(Z) comes out to

F (Z) =
p

(1 + hsech2[ϵ(Z − Z0)])2
, (3.25)

where

p = (0.01sech(0.1Z)2(−1.5 + 0.5 cosh(0.2Z) +

hsech2[ϵ(Z − Z0)])
2(−1 + sinh2(0.1Z)

−10ϵ sinh(0.2Z) tanh[ϵ(Z − Z0)]))).

The gain function Γ(Z) is as follows:

Γ(Z) = 0.15 tanh(0.1Z)− 4ϵh tanh[ϵ(Z − Z0]

1 + 2h+ cosh[2ϵ(Z − Z0)]
. (3.26)

The tapering and gain profile is plotted in Fig. 3.1. It is clear from Eq. (3.23)
that the diffraction barrier/well is formed at Z = Z0, resulting in the behavioural
change of F (Z) and Γ(Z) at Z0, which is evident in Fig. 3.1. The tapering func-
tion F (Z) changes its sign from positive to negative for DB case implying that
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Figure 3.1: (a) The tapering profile F (Z) given by Eq. (3.25) (b) The gain profile
Γ(Z) given by Eq. (3.26) solid line (for DW) and dashed (for DB). The chosen
parameters are ϵ = 1, R0 = 1, h = 5 for DB and h = −0.5 for DW, Z0 = 8.

Figure 3.2: Intensity plots of (a) bright similariton For DB (b) DW with α1 =
−0.8, β1 = 0.2 (c) Intensity plot for 2-bright similariton for DB with β2 = −0.1
(d) For DW with Z0 = 8, β2 = −1.5. The other parameters are β1 = 0.1, α1 =
−1.1, α2 = 1. The remaining parameters are same as in Fig. 3.1
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the inhomogeneity of the waveguide should change from defocusing to focusing
type. The gain function Γ(Z) forms a convex part and then undergoes a change at
the barrier location, forming a concave part after crossing the barrier. The reverse
occurs for the well case. This kind of gain distribution can be realized in erbium
doped waveguide by suitably adjusting the density of the dopants [35].

Fig. 3.2 and Fig. 3.3 depict the dynamical evolutional scenarios of the nonlinear
tunneling of the bright similariton (3.2(a),3.2(b)), 2-bright similariton (3.2(c),3.2(d)),
dark similariton (3.3(a),3.3(b)) and 2-dark similariton (3.3(c),3.3(d)) as they pass
through the diffraction barrier (DB) and diffraction well (DW) given by Eq. (3.23).
When the similaritons pass through the DB, the pulses are amplified and form the
peaks in the vicinity of the barrier and then get attenuated. In the case of DW, the
pulses form dips at well location, then propagate in accordance with the system pa-
rameters. It is worth mentioning here that we can control the interactions between
the similariton pairs by controlling their velocities through the proper assignment
of the system and spectral parameters. This is depicted for 2-bright similariton case
in Fig. 3.2(c) and 3.2(d) where the separating or interacting evolutional behaviour
of similaritons have been obtained by suitably choosing spectral parameters αj and
βj .
We have also investigated the nonlinear tunneling properties of rogue waves for the
form of dispersion barrier given by Eq. (3.23) as they propagate through an erbium
doped optical fiber. We have found that as the rogue waves reaches in the vicinity
of the barrier they get amplified and after crossing the barrier they restore their
original shape. Moreover, we have predicted that the presence of erbium atoms
causes the phase shifting of the rogue waves in the vicinity of the barrier [36].

Case(ii) The evolution of optical similaritons through nonlinearity barrier (NB)
and well (NW) has been studied by choosing pulse width w(Z) = cosh(0.1Z).
The corresponding tapering function F (Z) comes out to be

F (Z) =
0.01

D0

, (3.27)

The gain function Γ(Z) reads

Γ(Z) = −0.15 tanh(0.1Z) +
2ϵh tanh[ϵ(Z − Z0]

1 + h+ cosh[2ϵ(Z − Z0)]
. (3.28)
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Figure 3.3: Intensity plots of (a) dark similariton for DB with α1 = β1 = 0.6 (b)
DW with α1 = 0.8, β1 = 0.2, (c) Intensity plot for 2-dark similariton for DB (d)
For DW χ10 = −χ20 = 20, β1 = 0.45, β2 = 0.35, α1 = −.01, α2 = 0.6. The
remaining parameters are same as in Fig. 3.1

Fig. 3.4 shows the dynamical behaviour of 1-and 2-bright similaritons as they
propagate through NB and NW. Unlike DB the amplitude of the bright similaritons
decreases as they propagate through NB and forms a dip (Figs. 3.4(a),3.4(c)).
The optical similaritons form peaks through NW (Figs. 3.4(b),3.4(d)). Similar
dynamical behaviour is observed for 1 and 2-dark similaritons which is depicted
in Fig. 3.5.
It should be noted that the tapering becomes constant as can be seen from Eq.
(3.27). By choosing different values of tapering parameter F (Z) (through the
choice of D0) we can control the amplitude of similaritons to such an extent that
they can even be annihilated. This is in general true for both bright and dark
similaritons and their pairs. We have depicted this behaviour for bright similaritons
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pairs with different D0 in Fig. 3.6.

Figure 3.4: Intensity plots of (a) bright similariton for NB (b) NW with α1 = 1,
β1 = 0.2 (c) Intensity plot for 2-bright similariton for NB with D0 = 0.5 (d)
For NW D0 = 1. The other parameters are β1 = −0.9, β2 = −0.5, α1 = 2,
α2 = −2.1, Z0 = 5. The remaining parameters are same as in Fig. 3.1.

3.4.3 Nonlinear tunneling of optical similaritons with exponen-
tial background

We choose the following diffraction and nonlinearity parameters to study the opti-
cal similaritons propagation behaviour [14, 11, 33]

D(Z) = D0 exp(−r0Z) + hsech2[ϵ(Z − Z0)],

R(Z) = R0 exp[−r0Z]. (3.29)
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Figure 3.5: Intensity plots of (a) dark similariton for NB (b) NW with with ϵ =
β1 = 1, α1 = 0.8 (c) Intensity plot for 2-dark similariton for DB (d) For DW
χ10 = −χ20 = 10, β1 = −0.5, β2 = −0.4,α1 = −0.58, α2 = 0.38, Z0 = 5. The
remaining parameters are same as in Fig. 3.1.

where the parameter r0 is decaying (r0 > 0 ) or increasing (r0 < 0). We are
choosing the pulse width w(Z) = sech(0.1Z) and the corresponding tapering and
gain functions come out to be

F (Z) =
p1

(D0 + exp(r0Z)hsech
2[ϵ(Z − Z0)])2

, (3.30)

where

p1 =exp(r0Z)sech
2(0.1Z)(D0(−0.015− 0.015r0+

(0.005 + 0.05r0) cosh(0.2Z) + exp(r0Z)hsech
2[ϵ(Z − Z0)]

(−0.01− 0.02ϵ tanh[ϵ(Z − Z0)]+

sinh2[0.1Z](0.01 + 0.02ϵ tanh[ϵ(Z − Z0)]))).
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Figure 3.6: Intensity profile of 2-bright similariton (a) for nonlinearity barrier case
(b) for nonlinearity well case for D0 = 1 (Blue), D0 = 0.3 (Green), D0 = 0.1
(Red). The other parameters are the same as depicted in Fig. 3.4

Γ(Z) =
p2

D0 + exp[r0Z]hsech
2[ϵ(Z − Z0)]

, (3.31)

where

p2 = 0.1D0 tanh(0.1Z) + exp(r0Z)hsech
2[ϵ(Z − Z0)]

(0.5r0 + 0.1 tanh(0.1Z)− ϵ tanh[ϵ(Z − Z0)]).

Figure 3.7: (a) The tapering profile F (Z) given by Eq. (3.30) (b) The gain profile
Γ(Z) given by Eq. (3.31) solid line (for DW) and dashed (for DB). The chosen
parameters are ϵ = 1, R0 = 1, h = 5 for DB and h = −0.1 for DW, Z0 = 8.

The tapering and gain profile is plotted in Fig. 3.7. Now we are concentrating
on the dynamics of bright similaritons and ignoring dark similaritons. Fig. 3.8
shows the evolution of the 1 and 2-bright similaritons as they pass through the
diffraction barrier and well with decaying r0. We have found that for the chosen
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Figure 3.8: Intensity plots of 1-bright similariton (a) DB with h = 5 (b) DW
with h = −0.5, α1 = 0.5, β1 = 0.2 .Intensity plots of 2-bright similaritons with
(c)DB (d) DW with α1 = 1.21,α2 = 1.19, β1 = −0.2,β2 = −0.3. The remaining
parameters are r0 = 0.08, ϵ = 2, Z0 = 8.

value of r0, the amplitude and the width of similaritons remain invariant before
they cross the DB/DW and their amplitude is changed at barrier or well location
due to the exchange of energy between the similariton and the barrier/well. In
case of DB, their amplitude is increased as they gain energy from barrier while in
case of DW their amplitude is decreased as they lose their energy to the well and
after crossing the barrier/well they get compressed. This energy exchange feature
between the pulse and the barrier/well is very useful in an optical communication
system to improve the channel capacity. Additionally, by suitably choosing the
value of r0 we can control the propagation of similaritons. We have depicted this
behaviour for 1-bright similariton case in Fig. 3.9 as they propagate through DB.
For increasing parameter r0, after crossing the barrier pulse width is compressed
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and it gets amplified (Fig. 3.9(a)), while for decaying parameter the pulse width is
compressed and amplitude is reduced as depicted in Fig. 3.9(b). Similar behaviour
has been observed for the DW case. Thus, by the proper management of barrier
or well height, location and r0 we can change the amplitude of the pulse to an
extent so that it vanishes. Hence, the transmission will not take place after the
barrier/well. This concept can be applied in constructing logic gate devices to
achieve ultrafast switches.

Figure 3.9: Intensity plots of 1-bright similariton through DB (a)r0 = −0.014 (b)
r0 = 0.164. The evolution of the pulse before (red) at Z = 7 and after crossing
(blue) the barrier at Z = 20. The other parameters are the same as depicted in Fig.
3.8.

3.4.4 Cascade compression

We have observed that the bright similariton pairs get compressed after undergo-
ing tunneling in the presence of exponential background. This property can be
extended to successive compressions by allowing the similaritons to pass through
successive potential barriers or wells. This process is termed as cascade compres-
sion. To investigate the behaviour of similaritons the diffraction and nonlinearity
parameters are chosen as [9]

D(Z) = Do exp(−r0Z) + h

n∑
j=1

sech2[ϵ(Z − jZ0)],

R(Z) = R0 exp(−r0Z), (3.32)

where n is a natural number and Z0 denotes the spacing between two consecutive
barriers. The corresponding form of tapering function F (Z) and gain Γ(Z) can
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be worked out by using Eqs.(3.4) and (3.5). In Fig. 3.10 we have plotted the pro-
file of 2-bright similaritons crossing two successive diffraction barriers and wells.
On closely observing the plots we infer that at barrier (well) location similaritons
amplitude is increased (decreased) and after crossing the first barrier (well) it get
compressed. When it reaches the second barrier (well) their amplitude is increased
(decreased) even further and after crossing the second barrier the pulses are even
more compressed. Thus, we can conclude that by allowing the similaritons to
pass through number of barriers we can get the similaritons of desired width and
intensity.

Figure 3.10: (a) Intensity plot 2-bright similariton profile through DB (b) The
corresponding contour plot with h = 3. (c) Intensity plot 2-bright similariton
profile through DW (d) The corresponding contour plot with h = −1. The other
parameters are α1 = 1.21, β1 = −0.2, α2 = 1.19, β2 = −0.3, ϵ = 2 r0 = 0.08.
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3.5 Conclusion

We have obtained 1 and 2-bright and dark similariton solutions for inhomoge-
neous generalized NLSE, which governs the propagation of optical similaritons
through a tapered graded-index nonlinear waveguide. The exact analytical optical
similariton solutions have been worked out by using gauge-similarity transforma-
tion and Darboux technique. Upon obtaining the similariton solutions, we have
investigated the nonlinear tunneling for two cases (i) constant background (ii) ex-
ponential background. For the former, we have found that the amplitude of the
similaritons is increased or decreased at barrier location, depending upon whether
they are propagating through DB (DW) or NB (NW). For the latter case, pulse
compression is achieved. This feature is extended to cascade pulse compression
by allowing the pulse to propagate through multiple barriers. As a result of cas-
cade compression, we can get similaritons of desired amplitudes and widths at the
desired propagation distance. We expect our results to find applications in nonlin-
ear optical devices based on optical similaritons.

The work presented here has been published in [37].
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Chapter 4

Controlling self-similar matter
waves in Bose-Einstein condensates

4.1 Introduction

So far we have discussed self-similar waves including rogue waves and optical
similaritons in the context of nonlinear fiber optics. Now we study these waves
in the context of Bose-Einstein condensates (BECs) by using similar mathemat-
ical tools. This can be done as the generalized nonlinear Schrödinger equation
(GNLSE) which is the model equation governing the pulse dynamics in two dif-
ferent nonlinear media is the same. Firstly, we give a brief introduction of BECs
and then obtain the rogue wave solutions for the cigar shaped BEC in the presence
of space and time dependent trap. We shall then exemplify their management for
different choices of the parameters and reveal their interesting features. Later, we
shall study self-similar waves solutions including bright solitons and their pairs,
dark solitons, Akhmediev breathers (ABs) and rogue waves, for the special case of
GNLSE with time dependent parabolic trap and scattering length, by using simi-
larity transformation. Then we shall generate the class of nonlinearity parameter
by invoking isospectral Hamiltonian procedure and introduce a free parameter λ,
known as the Riccati parameter. After generating the class of the Feshbach nonlin-
earity parameter for a given trapping potential, we investigate the role of parameter
λ on the intensity profiles of the self-similar matter waves.

97
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4.2 Bose-Einstein condensate (BEC)

We are aware that even though matter pervades the entire universe, it is found in
just a few admissible forms such as solid, liquid and gas. It is possible to make a
transition between different states of matter by changing the temperature or pres-
sure. When a gas composed of bosonic atoms is cooled below a certain critical
temperature at which the de Broglie wavelength becomes comparable to the in-
teratomic spacing, the atomic wave packets overlap and the gas starts to become
a quantum soup of indistinguishable particles. It means that a large fraction of
the atoms occupy the lowest quantum state of the external potential and this state
of matter is known as Bose-Einstein condensate (BEC). The concept of BEC was
first predicted in 1925 by Albert Einstein, but was experimentally realized only in
1995. Anderson and his co-workers created the first pure BEC by cooling a dilute
vapor consisting of approximately two thousand 87Rb atoms to 170 nK by using
a process of laser cooling and magnetic evaporative cooling [1]. Subsequently,
BEC has also been realized in 23Na and 7Li [2, 3]. The experimental realization
of quasi-one-dimensional BECs in a parabolic trap provides an ideal laboratory
for studying solitons in a controlled environment. The dynamics of BECs can be
described by the effective mean field equation, known as Gross-Pitaevskii (GP)
equation which satisfies both the theoretical stand point as well as experimentally
relevant conditions [4]. This is a generalized form of NLSE and is given as

ih̄
∂

∂t
Ψ(r, t) = − h̄2

2m
∇2Ψ(r, t) + U0|Ψ(r, t)|2Ψ(r, t) + Vext(r)Ψ(r, t), (4.1)

where Ψ(r, t), r = (x, y, z) is the macroscopic wave function of condensate,
Vext(r) is the external trapping potential and U0 describes the strength of inter-
atomic two body interactions. The (3+1)-dimensional GP equation is non-integrable
and possesses the solitary wave solutions under specific conditions. For cigar
shaped BEC of relatively low density, which corresponds to the case when the
kinetic energy in the transverse direction is much greater than the energy of the
two body interactions, the three-dimensional GP equation reduces to quasi-one-
dimensional GP equation. This implies that for understanding the dynamics of
BECs, one should work out the analytical solutions of GP equation and then study
their behaviour for the different choices of nonlinearity parameter and trapping
potential. Recently, a great deal of research took place in this regard and several
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works have been reported that involve study of GP equation with space and/or time
modulated potentials [5, 6, 7, 8, 9, 10].

4.3 Controlling matter rogue waves in BEC

Here we are focusing on cigar shaped BEC of relatively low density which cor-
responds to the case when the kinetic energy in the transverse direction is much
greater than the energy of the two body interactions i.e N |as| << a⊥ where N
represents the total number of atoms, as is the time dependent s-wave scattering
length and a⊥ =

√
h̄

mω⊥
[11]. The evolution of the condensate is governed by the

quasi one-dimensional GP equation [11, 12]

ih̄
∂Q

∂t
+D1(t)

h̄2

2m

∂2Q

∂x2
+ σR1(t)|Q|2Q+ V (x, t)Q = 0, (4.2)

where Q(x, t) represents the macroscopic condensate density, m is the atomic
mass, D1(t) denote the dispersion coefficient, R1(t) is a measure of nonlinear
two body interactions and is associated with the scattering length as that can be
modulated by Feshbach resonance and V (x, t) is the space and time dependent
potential.
Upon normalizing the density |Q|2, length, time and energy in Eq. (4.2) in units of
2as, a⊥ =

√
h̄

mω⊥
, ω−1

⊥ , and h̄ω⊥ where ω⊥ is the transverse trapping frequency;
we get the following effective one-dimensional GP equation with time dependent
dispersion (D(t)) and nonlinearity (R(t)) and time and space dependent potential
(v(x, t))

i
∂Q

∂t
+
D(t)

2

∂2Q

∂x2
+ σR(t)|Q|2Q+ v(x, t)Q = 0. (4.3)

The nonlinearity parameter R(t) can be tuned experimentally through the Fesh-
bach resonance [13, 14, 15]. We will obtain the rogue wave solutions for Eq. (4.3)
and then we exemplify their management for the different choices of the param-
eters. This analysis reveals the interesting properties of rogue waves and shows
how to get the desired rogue waves at a desired location.
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4.3.1 Methodology and rogue wave solutions

In order to obtain the rogue wave solution for Eq. (4.3) we are substituting the
following ansatz

Q(x, t) = [S(x, t) + iG(x, t)] exp iϕ(x, t), (4.4)

into Eq. (4.3) and on separating the real and imaginary parts we get the set of
coupled equations with variable coefficients as

−Gt − Sϕt +
D(t)

2
[Sxx − 2ϕxGx − ϕxxG− ϕ2

xS]

+R(t)(S2 +G2)S + vS = 0.
(4.5)

St −Gϕt +
D(t)

2
[Gxx + 2ϕxSx + Sϕxx − ϕx

2G]+

R(t)(S2 +G2)G+ vG = 0.
(4.6)

Here functions S(x, t), G(x, t) and ϕ(x, t) are real.
We introduce new variables η(x, t), χ(x, t) and τ(t) and employ the similarity
transformation for the real functions S, G and ϕ as

S(x, t) =M(t)[1 + nP (η, τ)]. (4.7)

G(x, t) = lM(t)Q(η, τ). (4.8)

ϕ(x, t) = χ(x, t) + µ(τ). (4.9)

Here n and l are constants. Substituting these transformations in Eq. (4.5) and Eq.
(4.6), we deduce the following conditions

ηxx = 0. (4.10)

ηt +Dχxηx = 0. (4.11)

−χt −
χx

2

2
D + v = 0. (4.12)

2Mt +DχxxM = 0. (4.13)

−lMQττt −M(1 + nP )µττt + n
D

2
ηx

2MPηη

+R(t)[(1 + nP )2 + l2Q2]M3(1 + nP ) = 0.
(4.14)
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nMPττt − lMQµττt + l
D

2
ηx

2MQηη

+R(t)[(1 + nP )2 + l2Q2]lM3Q = 0,
(4.15)

where the functions η(x, t), χ(x, t), M(t), P (η, τ), Q(η, τ) need to be determined.
Solving Eqs.(4.10-4.13) we obtain

η = k1(t)x+ k2(t). (4.16)

χ = − k1t
2Dk1

x2 − k2t
Dk1

x+ χ0(t). (4.17)

v = χt +
χx

2

2
D. (4.18)

M(t) = k10
√
k1, (4.19)

where k10 is a constant, k1(t) can be associated with the inverse of pulse width,
k2(t) represents the position of its center of mass and χ0(t) is a free function of t.
Eq. (4.18) in the explicit form can be written as

v = v2(t)x
2 + v1(t)x+ v0(t), (4.20)

where v2, v1 and v0 are real functions of time and are given as

v2 = − k1tt
2Dk1

+
k21t
Dk21

+
k1tDt

2D2k1
,

v1 = − k2tt
Dk1

+ 2
k2tk1t
Dk21

+
k2tDt

D2k1
, v0 =

k22t
2Dk21

. (4.21)

Eq. (4.14) and Eq. (4.15) reduce to a set of constant coefficient coupled partial
differential equations which are given as:

nPτ − lQµ0 + lQηη +GlQ[l2Q2 + (1 + nP )2] = 0. (4.22)

−lQτ + nPηη − (1 + nP )µ0 +G(1 + nP )[l2Q2 + (1 + nP )2] = 0. (4.23)

under the following constraints on τ(t), R(t) and µ

τ(t) =

∫
D

2
k21dt, R(t) =

R0k1D

2k10
2 , (4.24)

µ = µ0

∫
D

2
k21dt, (4.25)
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where µ0 and R0 are constants.
Following the approach given in [16, 17] we obtain the simultaneous rational so-
lution of Eq. (4.22) and Eq. (4.23) for R0 = 1 and µ0 = 1 as

P (η, τ) = − 4

n(1 + 2η2 + 4τ 2)
,

Q(η, τ) = − 8τ

l(1 + 2η2 + 4τ 2)
.

(4.26)

Using Eq. (4.26) in Eqs. (4.7-4.9), the exact rogue wave solution of Eq. (4.3)
following Eq. (4.4), can be given as

Q = k10
√
k1[1−

4 + 8iτ

1 + 2η2 + 4τ 2
] exp[i(χ+ µ)], (4.27)

where η, χ, τ and µ are given by Eqs.(4.16), (4.17), (4.24) and (4.25), respectively.

4.3.2 Management of matter rogue waves

The dynamics of rogue waves can be controlled by suitably managing the parame-
ters k1 and k2. This can be understood by considering the following three examples

(A) If we choose k1 = 1.1 , k2 = sin2 t and D(t) = 3 cos t, it represents the
propagation of rogue waves on a constant background. The periodic choice of
dispersion parameter D(t) results in periodic nonlinearity R(t) and is given as

R(t) = 3
R0k1 cos t

2k210
. (4.28)

The corresponding potential can be worked out by using Eq. (4.18)

v(x, t) = −2x cos t

3k1
+

2 cos t sin2 t

3k1
. (4.29)

The profile of potential is shown in Fig. 4.1(a), which reveals the quasiperiodic
nature of potential. Fig. 4.1(b) reveals that the rogue waves evolve periodically in
the presence of linear (in space) potential whose amplitude is sinusoidally mod-
ulated in time. Clearly, rogue waves reoccur periodically and propagate without
changing their width. The recurrence of rogue waves is due to the periodic func-
tional form of the parameters R,D and k2. The rogue wave maintains the constant
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Figure 4.1: (a) The profile of potential for Eq. (4.29) (b) Intensity profile of first-
order rogue wave for the parameters D = 3 cos t, k1 = 1.1, k2 = sin2 t, µ0 =
k10 = 1, χ0 = 0.

width and amplitude during propagation because of the absence of atomic feeding
from the thermal cloud. It is evident that the nonlinearity R(t) is periodic in nature
and this variation can be achieved experimentally by using a periodic magnetic or
optical field near Feshbach resonance [18, 19, 13]. To be specific, nonlinearity can
be positive or negative corresponding to attractive interactions (as in 7Li [20], 85Rb
[21] in the BECs) or repulsive interactions (as in 87Rb, 23Na in the BECs) [11, 22]
between the atoms.

(B) If we choose k1 to be periodic and both the parameters k2 and β as constants,
then it represents the propagation of rogue waves on a periodic background. For
k1 = 1.1 + cos t, k2 = D = 1, the nonlinearity parameter R(t) and potential v
read

R(t) =
R0(1.1 + cos t)

2k210
. (4.30)

v(x, t) = v2(t)x
2, (4.31)

with

v2(t) =
0.5(1.1 cos t+ cos2 t+ 2 sin2 t)

(1.1 + cos t)2
.

For the chosen parameters the intensity profile of rogue wave is plotted in Fig.
4.2. Here, like the previous case, the nonlinearity parameter R(t) is periodic in
nature and possesses only the positive value which leads to attractive interactions
as in 7Li or 85Rb case. The potential given by Eq. (4.31) is also time periodic and
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Figure 4.2: Intensity profile of rogue waves with a periodic background (a) shows
the periodic background and the rogue wave (b) Detailed local profile of rogue
wave. The parameters are k1 = 1.1 + cos t, k2 = 1, D = 1 µ0 = k10 = 1, χ0 = 0.

can either be confining (v2 < 0) or expulsive (v2 > 0).

(C) If we choose k1 = 0.5
2+h sin2(ϵ(t−t0))

and k2 = sin t, then they lead to the
following form of dispersion and nonlinearity parameters

D = 2 + h sin2(ϵ(t− t0)), R = R0, (4.32)

where R0 =
0.25
k210

.

This specific choice of dispersion and nonlinearity represents the case of non-
linear tunneling through periodic dispersion barrier with h as the barrier height
(h > −2) and ϵ as the barrier width. It should be noted that the condensate is sub-
ject to linear potential (in x) for (A) and quadratic potential (in x) for (B) while (C)
deals with the scenario when the condensate is subject to the combination of linear
and quadratic trapping potential. The exact form of the potential can be worked
out by using Eq. (4.20) with

v2 = ϵ2h
1− 2 sin2[ϵ(t− t0)]

(2 + h sin2[ϵ(t− t0)])2
− ϵ2h2

sin2[2ϵ(t− t0)]

(2 + h sin2[ϵ(t− t0)])3

+
1

2
ϵ2h2(2 + h sin2[ϵ(t− t0)])

sin2[2ϵ(t− t0)]

(2 + h sin2[ϵ(t− t0)])4
,
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Figure 4.3: (a) The profile of periodic potential (b) Intensity plot of rogue wave
for the parameters k2 = sin t, µ0 = k10 = 1, χ0 = 0.

v1 = 2 sin t− 2(2 + h sin2[ϵ(t− t0)])
ϵh cos t sin[2ϵ(t− t0)]

(2 + h sin2[ϵ(t− t0)])2
, (4.33)

v0 = 2 cos2 t(2 + h sin2[ϵ(t− t0)]).

Its profile is plotted in Fig. 4.3(a). For the choice of parameters R, D and k1,
the condensate is subject to an external quadratic potential which is periodic in na-
ture and gains maximum amplitude whenever it encounters the barrier. With these
modulations, the system acquires maximum energy at all the barrier locations and
the rogue waves exchanges the energy with the barriers and get amplified when-
ever it passes through the barrier. This behaviour is depicted in Fig. 4.3(b). The
propagation of rogue waves in the presence of quadratic potential is governed by
the parameter v1 which contributes the effect of frequency shift and central po-
sitioning term, i.e. through k1 and k2. The choice of k1 is fixed in order to get
the specific dispersion barrier while the rogue waves behaviour will be different
for different choices of k2, resulting in different functional form of v1. Thus, by
appropriately managing the location and the height of the barrier, we can get the
desired amplitude of the rogue waves at the desired location. Moreover, their prop-
agation can be controlled by suitably choosing the parameter k2.
Additionally, we have also investigated the propagation of the rogue waves through
the conventional hyperbolic nonlinearity and dispersion barrier through the appro-



106 Chapter 4

priate choices of k1 and k2. In case of nonlinearity barrier, the rogue waves are
localized while the propagating rogue waves have been predicted for the disper-
sion barrier case. Moreover, their amplitude management at the barrier location
has also been discussed in [23].

4.4 Controlling matter waves by tailoring nonlinear-
ity parameter

In the above section, we have discussed the rogue waves for the NLSE with time
varying dispersion and nonlinearity in the presence of space and time dependent
trap. Now we consider the case which involves the study of NLSE with time vary-
ing scattering length and harmonic trap as it provides the manipulation of matter
rogue waves and nonlinear excitations via Feshbach resonance management [24].
In 2005 the dynamics of bright solitons in BECs with time dependent scattering
length in an expulsive parabolic trap was studied [25]. If we substitute D(t) = 1

and v(x, t) = Ω2(t)x2 in Eq. (4.3), it reduces to NLSE with a time varying scatter-
ing length and a parabolic trap governing the dynamics of one-dimensional BEC
confined by a harmonic potential and given as:

i
∂Q

∂t
+

1

2

∂2Q

∂x2
+ σR(t)|Q|2Q− 1

2
Ω2(t)x2Q = 0, (4.34)

where the last term Ω2(t) is the real valued time dependent parabolic trapping
potential. The σ = ±1 corresponds to the attractive or repulsive nonlinear inter-
action. Eq. (4.34) has been explored by Serkin et al. to study the matter wave
solitons in a one-dimensional BEC confined by harmonic trap [7, 8].
In general, it is more difficult to deal with the nonlinear equations with variable
coefficients than with the constant coefficients nonlinear equations. To make the
analysis simpler, the next step is to reduce the variable coefficient NLSE to the
standard NLSE. To do so, we use the following transformation [26]

Q(x, t) = A(t)u(X,T ) exp(iϕ(X)), (4.35)

It reduces Eq. (4.34) to the following standard NLSE

i
∂u

∂T
+

1

2

∂2u

∂X2
+ |u|2u = 0, (4.36)
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with the identifications of

A(t) =
√
R(t), X = R(t)x,

T (t) =

∫ t

0

R2(τ)dτ , ϕ = − R′(t)

2R3(t)
X2. (4.37)

Here the nonlinearity control parameter and trapping potential can not be chosen
independently. They are related to each other by the relation

Ω2(t) =
R′′(t)

R(t)
− 2

R′2(t)

R2(t)
, (4.38)

where R′(t) and R′′(t) represent the first and second-order time derivative of R(t),
respectively. Eq. (4.38) is the integrability condition for Eq. (4.34) [7]. The
functions R(t) and Ω2(t) are real valued and can take positive as well as negative
values. The positive (negative) value of R(t) and Ω2(t) characterise the attractive
(repulsive) nature of the bosonic interactions and the harmonic trap, respectively.
Eq. (4.38) is equivalent to defining Ω2(t) and R(t) as [7]

R(t) = exp

∫ t

0

Γ(t′)dt′, (4.39)

Ω2(t) =
∂Γ(t)

∂t
− Γ2(t), (4.40)

where Γ(t) is an arbitrary function of time.

4.4.1 Analytical solutions

Since Eq. (4.34) is reduced to the standard NLSE given by Eq. (4.36) whose
1-soliton, 2-soliton, ABs and rogue wave solutions solutions are well known (dis-
cussed in Section 1.1), hence the exact analytical solutions of Eq. (4.34) can be
obtained by making use of the transformation given in Eq. (4.35) along with the
conditions given in Eqs. (4.37) and (4.38):
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1-soliton solutions

For σ = +1 (σ = −1), Eq. (4.34) posses the bright (dark) soliton of the form
(i) Bright soliton

Q1b(x, t) = 2
√
R(t)f0sech[2f0R(t)x+ 4v0f0

∫ t

0

R2(τ)dτ ]

exp[−i(2v0R(t)x+ 2(v20 − f 2
0 )

∫ t

0

R2(τ)dτ)− i
R′(t)

2R(t)
x2],

(4.41)

where v0 and f0 are constants.
(ii) Dark soliton

Q1d(x, t) = 2
√
R(t)η0(

√
1− a2 + ia tanh[2aη0R(t)x+

4aη20
√
1− a2

∫ t

0

R2(τ)dτ ]) exp[−4iη20

∫ t

0

R2(τ)dτ − i
R′(t)

2R(t)
x2],

(4.42)

where the parameter 0 < a < 1 defines the depth of modulation i.e the blackness
of gray soliton and its velocity against the background. When a = 1 , it becomes
black.

2-soliton solution

Q2b(x, t) = 4
√
R(t)

N(x, t)

D(x, t)
exp[−i R

′(t)

2R(t)
x2]. (4.43)

with

N(x, t) = cosh ξ2 exp(−iχ1)[(κ2 − κ1)
2 + 2iη2(κ2 − κ1) tanh ξ2 + η21 − η22]

+η2 cosh ξ1 exp(−iξ2)[(κ2 − κ1)
2 − 2iη1(κ2 − κ1) tanh ξ1 − η21 + η22]

.

(4.44)

and

D(x, t) = cosh(ξ1 + ξ2)[(κ2 − κ1)
2 + (η2 − η1)

2] + cosh(ξ1 − ξ2)[(κ2 − κ1)
2

+(η2 + η1)
2]− 4η1η2 cos(χ2 − χ1)

.

(4.45)

The arguments and the phases are

ξi(x, t) = 2ηiR(t)x+ 4ηiκi

∫ t

0

R2(τ)dτ ,

χi(x, t) = 2κiR(t)x+ 2(κ2i − η2i )

∫ t

0

R2(τ)dτ ,

(4.46)
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where ηi and κi define the amplitude and the velocity of the ith soliton (i = 1, 2),
respectively.

Akhmediev Breathers

QAB(x, t) =
√
R(t)

(
cos

√
2R(t)x+ i

√
2 sinh

∫ t

0
R2(τ)dτ

cos
√
2R(t)x−

√
2 cosh

∫ t

0
R2(τ)dτ

)

exp

[
i(−R′(t)

x2

2R(t)
+

∫ t

0

R2(τ)dτ)

]
. (4.47)

Rogue waves

Qr(x, t) =
√
R(t)

(
1− 4

1 + 2i(
∫ t

0
R2(τ)dτ)

1 + 4(
∫ t

0
R2(τ)dτ)2 + 4(R(t)x)2

)

exp

[
i(−R′(t)

x2

2R(t)
+

∫ t

0

R2(τ)dτ)

]
. (4.48)

4.4.2 Construction of a family of R(t) (R̂(t)) through Riccati
parameterization

Identifying Eq. (4.40) as a Riccati equation enables us to generate the class for
R(t). To construct the family, we choose

Γ̂(t) = Γ(t) + ν(t). (4.49)

Demanding that Γ̂(t) gives rise to the same trapping potential, substituting Eq.
(4.49) in Eq. (4.40) yields

ν ′(t)− ν2 − 2Γν = 0. (4.50)

In order to work out the solution for ν, we introduce the function y(t) = 1
ν

which
results in the following equation

y′ + 2Γy + 1 = 0, (4.51)

whose solution is given as [27]

y(t) = (exp

∫
−2Γ(t)dt

[
−1

∫ (
exp

∫
2Γ(t)dt

)
dt+ λ

]
). (4.52)
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The resulting expression for ν(t) is given as follows

ν(t) = (exp

∫
−2Γ(t)dt

[
−1

∫ (
exp

∫
2Γ(t)dt

)
dt+ λ

]
)−1. (4.53)

where λ is a constant of integration, also known as the Riccati parameter, has to be
chosen in such a way so as to avoid singularities.
It should be noted that for Γ̂(t) a class of the nonlinearity parameter R̂(t) can
be generated by using Eq. (4.39). The integrability condition Eq. (4.38) is still
satisfied, hence the analytical solutions of Eq. (4.34) for R̂(t) is given by Eqs.
(4.41-4.48) by replacingR(t) with R̂(t). The introduction of the Riccati parameter
λ allows us to tune the intensity profiles of matter waves. We demonstrate this in
the next section.

4.4.3 Riccati parameterized self-similar matter waves in BEC

We demonstrate the role of Riccati parameter λ by considering the following ex-
ample

Γ = −nγ3 tanh γ3t, (4.54)

where γ3 is a constant. We shall illustrate for the cases n = 1, 2.

Case I For n = 1, Eqs. (4.39) and (4.40) yield nonlinearity control parameter and
the corresponding trapping potential as

R(t) = sechγt, (4.55)

Ω2(t) = −γ2. (4.56)

Eq. (4.56) implies that the condensate is subjected to constant expulsive har-
monic potential which has been used to study the dynamics of bright solitons and
matter rogue waves in BEC [25, 28]. Following Eqs. (4.49)-(4.53), the Γ̂(t) and
R̂(t) can be given as

Γ̂(t) = −γ tanh(γt− tanh−1 1

λγ
), (4.57)

R̂(t) = sech(γt− tanh−1 1

λγ
). (4.58)
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Figure 4.4: Profile of nonlinearity control parameter: Curve A is for R(t) given by
Eq. (4.55). Curve B is for R̂(t) given by Eq. (4.58) and λ = 0.37. γ = 3 for both
the curves.

Clearly R̂(t) is translated, which is demonstrated in Fig. 4.4. Similar corrobo-
rations have been inferred, even from the stability analysis of sine-Gordon model
[29]. We have plotted the intensity profiles of all the solutions in Fig. 4.5 corre-
sponding to R(t). In this case, R̂(t) is the translated form of R(t) so the presence
of λ is not lending any change in the intensity profiles of solitons, ABs and rogue
waves. Consequently, the intensity plots corresponding to R̂(t) will be similar to
the ones as shown in Fig. 4.5.

Case II For n = 2, Eqs. (4.39) and (4.40) yield the nonlinearity control parameter
and the corresponding trapping potential as

R(t) = sech2γt, (4.59)

Ω2(t) = −2γ2(2− sech2γt). (4.60)

Eq. (4.60) refers to the time dependent expulsive nature of the harmonic trap and
such a trap has been realized in [30].
The class for Γ̂(t) by using Eq. (4.49) and Eq. (4.53) is given as

Γ̂(t) = −2γ tanh γt+
γsech4γt

λγ − tanh γt+ tanh3 γt
3

. (4.61)
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Figure 4.5: Intensity plots corresponding to R(t) for (a) bright soliton (b) dark
soliton (c) 2-soliton (d) AB (e) rogue waves. The parameter γ = 3 for all of these
plots.

Hence, R̂(t) is defined as

R̂(t) =
k sech2γt

λγ − tanh γt+ tanh3 γt
3

, (4.62)

where k =
− tanh(γt0)+

tanh3(γt0)
3

+λγ

sechγt0
and λγ /∈ [−0.67, 0.67].

The effect of λ on the varying in time nonlinearity is incorporated in Fig. 4.6(a)
and the parabolic potential is shown in Fig. 4.6(b).

Unlike the first case, the amplitude of R(t) can be controlled through λ here.
To understand its role we have plotted the Figs. 4.7 and 4.8 which depict the in-
tensity profiles of solitons, ABs and rogue waves corresponding to R(t) as well as
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Figure 4.6: (a) Variation of nonlinearity control parameter: Curve A shows R(t)
given by Eq. (4.59), Curve B and C are the plots for R̂(t) given by Eq. (4.62) with
λ = 0.8 and λ = 2, respectively (b) plot of trapping potential, given by Eq. (4.60),
of both the plots, γ = 2.

R̂(t). Figs. 4.7 and 4.8 infer that the amplitude of the solitons and rogue waves
can be tuned through λ while in the case of breathers, presence of λ enables us
to control their frequency with a slight variation in their amplitude. To understand
the reason beyond it one needs to consider the analytical expressions of the various
solutions given in Eqs. (4.41)-(4.48). The analytical treatment of the solutions of
solitons and rogue waves corresponding to R̂(t) reveals that the amplitude tuning
is taking place due to the presence of R̂(t) and

∫ t

0
R̂2(τ)dτ that in turn depend on

λγ. The magnitude of R̂(t) and
∫ t

0
R̂2(τ)dτ will be larger at a finite positive value

of t for the smaller value of the product λγ, and vice-versa. So the small value
of the product λγ leads to the large amplitude of the intensity profile of the pulse
in comparison to the case without Riccati generalization. On the other hand the
in case of ABs, we consider the expression given in Eq. (4.47) by replacing R(t)
with R̂(t) which shows that the intensity |QAB|2 is comprised of two terms, one
containing the trigonometric part and the other one containing the hyperbolic part.
The argument in the cosine term is dependent on R̂(t) which in turn depends on
λ and γ that are responsible for the frequency/number of peaks appearing in the
finite range of x. The remaining hyperbolic part and the nonlinearity parameter,
appearing explicitly in the expression of intensity of breathers Eq. (4.47), are re-
sponsible for their slight amplitude variation. Clearly Eq. (4.62) reveals that the
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Figure 4.7: Intensity profiles corresponding to R(t) are shown in (a),(c),(e) for
bright soliton, dark soliton, 2-solitons, respectively. Profiles corresponding to R̂(t)
for bright ((b) with λ = 0.9 ), dark ((d) with λ = 0.7), 2-soliton ((f)with λ = 0.7,
η1 = 2, η2 = 1.8, κ1 = 1, κ1 = 0.5). The parameter γ = 1 in all these plots.

higher the value of λγ, the smaller will be R̂(t) at a fixed finite positive t and vice-
versa. This in turn implies that for large value of λγ the magnitude of the intensity
profile and the argument of cosine term will be smaller for a finite positive value
of t because of the small value of R̂(t) as compared to the small value of λγ which
results in a lesser number of peaks with slightly less amplitude. Moreover, if we
kept on increasing the value of λγ, the R̂(t) will tend to approach to R(t) and the
intensity profiles corresponding to R̂(t) case will tend to become as if there is no
Riccati generalization.
It is worthy to mention that the similar results as discussed for n = 2 case has been
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Figure 4.8: Intensity profiles corresponding toR(t) are shown in (a),(c) (i) for ABs
and rogue wave. Profiles corresponding to R̂(t) for AB ((b) with λ = 1), rogue
waves ((d)with λ = 0.7)). The parameter γ = 1 in all these plots.

obtained for n = 3 case. The detailed analysis for n = 3 case has been shown in
[10].

4.5 Conclusion

The whole chapter has been divided into two parts. In the first part we have
obtained the matter rogue wave solution for quasi-one-dimensional GP equation
which describes the evolution of cigar shaped BECs. The solution has been ob-
tained by using a direct ansatz and similarity transformation. Here, we have
demonstrated through three examples that the matter rogue waves can be con-
trolled by suitably choosing the parameters k1 and k2. For the first one BECs have
been studied in the presence of linear in space potential whose amplitude is mod-
ulated in time, while for the second example the potential is quadratic in space
and can either be confining or expulsive. The rogue waves evolve periodically on
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a constant background for the former and the localized rogue waves on the peri-
odic background has been obtained for the later. The third example comprises of
the study of BECs in the presence of linear and quadratic external potential. The
choice of the parameter k1 made in this scenario corresponds to the nonlinear tun-
neling of rogue waves through the periodic dispersion barrier. We have shown that
by suitably choosing the location and the height of the barrier, the rogue waves
of desired amplitude at the desired location can be obtained. The second half
of the chapter dealt with the special case of quasi-one-dimensional GP equation
(D(t) = 1, v(x, t) = Ω2(t)x2). Here, we have obtained the class of Riccati gen-
eralized self-similar matter wave solutions by using self-similarity transformation
and isospectral Hamiltonian technique. The class of analytical solutions have been
obtained by generating the class of nonlinearity parameter within the integrability
framework for the same trapping potential, by introducing Riccati parameter λ.
We have demonstrated that presence of λ allows us to control the intensity pro-
files of the self-similar matter waves. Since, the control on the intensity profiles
has been obtained by creating the class of nonlinearity parameter, which in turn
associated with the interatomic interactions in BEC and can be easily manipulated
experimentally through Feshbach resonance. Hence, our results can be amenable
to experimentalists too.

The work presented here has been published in [23, 10].
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Chapter 5

Summary and conclusions

This thesis comprises of the study of the family of soliton solutions such as bright
and dark solitons, similaritons and their pairs, Akhmediev breathers, Peregrine
solitons (rogue waves) and their generalization in two different areas, namely non-
linear fiber optics and Bose-Einstein condensates (BECs). These systems are mod-
elled by the nonlinear Schrödinger equation (NLSE) and its variants, irrespective
of the origin of the nonlinear and the dispersive terms. In general, the various
nonlinear systems governed by the constant-coefficient NLSE and its variants are
highly idealized. In realistic conditions, there are several factors like density fluc-
tuations, manufacturing defects, environmental fluctuations, interatomic interac-
tions, etc. which causes the deviation from the actual system. Therefore, the
variable-coefficient NLSE, termed as generalized NLSE (GNLSE) are more real-
istic than their constant-coefficient counterparts in understanding the dynamics of a
nonlinear physical system. Here, we have studied the possible localized nonlinear
excitations for the variants of GNLSE which correspond to different nonlinear sys-
tems. In the field of nonlinear optics, the coefficients are Z (propagation distance)
dependent and in BECs they are t (time) dependent. All the systems modelled
by GNLSE may not be integrable but a few cases have been reported in literature
where the integrability conditions for the variable coefficient NLSE or GNLSE
have been mentioned. For instance, it has been shown that the relation between
the trapping potential and the nonlinearity parameter represents the integrability
condition for the nonautonomous NLSE [Serkin et al., Phys. Rev. A 81 (2010)
023610].
Chapter 2 involves the study of rogue waves in the context of nonlinear optics

121



122 Chapter 5

and has been divided into two parts. The first part deals with various nonlinear
optical fibers and the second part deals with the tapered graded-index nonlinear
waveguide. The rogue wave solutions for the different GNLSE models have been
obtained by using similarity transformation. We have revealed that these waves
can appear with constant, increasing, or decreasing amplitude depending upon the
choices of the system parameters corresponding to periodically distributed fiber,
dispersion increasing and dispersion decreasing fiber, respectively. However, in all
these cases, the rogue waves preserve their width. As the nonlinear pulses propa-
gate through optical fibers, they suffer losses due to absorption and scattering. For
the effective signal transmission these losses need to be compensated. It was pre-
dicted that these losses can be surmounted by doping the fiber core with erbium
atoms. This system is modelled by the coupled nonlinear Schrödinger equation
and Maxwell-Bloch equations (NLS-MB). We have studied the rogue waves for
the variable-coefficient NLS-MB model and predicted a mechanism that enables
us to get the recurrence and annihilation characteristics of rogue waves at the de-
sired propagation distance for the periodic choices of the system parameters. After
that, we have exploited the analogy between “dispersion in time” (for fibers) and
“diffraction in space” (for waveguides) and worked out the optical rogons for the
tapered graded-index nonlinear waveguide. Upon obtaining the analytical solu-
tions, we have depicted the various management regimes of optical rogons for
the periodic and the hyperbolic tapering and revealed their interesting properties.
While studying the nonlinearity management case, we have found that the tapering
and the width function relation resembles with the Schrödinger equation of quan-
tum mechanics. This observation allows us to identify a large manifold of allowed
tapering profiles by invoking the isospectral Hamiltonian technique. These taper-
ing profiles are governed by a free Riccati parameter λ which enables us to tune
the amplitude and the width of optical rogons. It is realized that the modulation of
the tapering profile through Riccati parametrization imposes a significant effect on
the intensity profile of rogue waves which paves the way for the experimental real-
ization of highly energetic pulses for various practical applications. The analytical
studies of rogue waves made in this chapter through different nonlinear systems
helps in enhancing the experimental investigation of rogue waves.
In Chapter 3 we have further extended the study of tapered graded-index nonlinear
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waveguides for optical similaritons. We have investigated their nonlinear tunnel-
ing properties for two cases (i) constant background (ii) exponential background.
For the former, we have found that the amplitude of the similaritons is increased
or decreased at barrier location, depending upon whether they are propagating
through dispersion barrier (well) or nonlinearity barrier (well). For the latter case,
we have shown that the optical similariton pulses get compressed after crossing
the barrier. This pulse compression feature of optical similaritons have been ex-
tended to cascade pulse compression by letting the pulses to propagate through
multiple barriers. We have noticed that at the barrier (well) location, the amplitude
of similaritons is increased (decreased) and after crossing the first barrier (well)
they get compressed. When they reach the second barrier (well), their amplitude is
increased (decreased) even further and after crossing the second barrier the pulses
are even more compressed. Thus, by allowing the similaritons to pass through a
number of barriers we can get the similaritons of desired width and intensity. This
can find applications in optical devices based on optical similaritons.

In Chapter 4, we have investigated the propagation of self-similar matter waves
for nonautonomous quasi-one-dimensional Gross-Pitaevskii (GP) equation with
space and time dependent external potential, governing the dynamics of waves in
a cigar shaped BEC. We have demonstrated the interesting features of controllable
rogue waves for three cases. For the first case, the condensate is subjected to a lin-
ear trapping potential with periodic nonlinearity that can be positive or negative,
characterizing the attractive interactions in 7Li or repulsive interactions in 87Rb,
resulting in the periodic evolution of rogue waves on the constant background.
For the second case, the condensate is subjected to a quadratic trapping potential
with positive periodic nonlinearity which leads to attractive interactions and re-
sults in the localized rogue waves on a periodic background. For the third case, the
condensate is considered to be under the combined effect of linear and quadratic
potential. It corresponds to the case of nonlinear tunneling through periodic bar-
rier and upon appropriately choosing the location and the height of the barrier we
can get the desired amplitude of rogue waves at the desired location. We have then
dealt with the special case of quasi-one-dimensional GP equation which describes
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the scenario in which the condensate is trapped in an expulsive harmonic trap. By
using similarity transformation within the integrability framework, we have ob-
tained the self-similar matter wave solutions involving bright and dark solitons,
2-solitons, Akhmediev breathers (ABs) and rogue waves. In the process of solving
the equation analytically, we have found that the structure of expulsive parabolic
trap equation is of Riccati type, which allows us to invoke the issospectral Hamil-
tonian approach to generate a class of nonlinearity parameter for a given trapping
potential. This Riccati generalization enables us to control the intensity profiles
of various self-similar matter waves by tuning the Riccati parameter. A direct ap-
plication of this is in the generation of highly energetic self-similar waves in BEC
by tuning the interatomic interactions which are experimentally feasible through
Feshbach resonance.

Apart from the above mentioned works, we have also studied the soliton prop-
agations in negative index materials (NIMs). These materials have been designed
to possess unique properties that are not present in naturally occurring materials,
thus offering entirely new prospects in manipulating light. Recently, a great deal
of research has took place to study the propagation of electromagnetic waves in
NIMs because of the realization of NIMs in infrared and optical frequency regime.
We have presented the bright soliton and 2-soliton solutions for NLSE by includ-
ing self-steepening effect with dispersive permittivity and permeability in NIMs.
The exact solutions have been worked out by using Lax pair and Darboux transfor-
mation technique and have been explicitly investigated the role of self-steepening
parameter on the intensity profile of solitons [Loomba et al., Eur. Phys. J. D 68
(2014) 1-6]. Being artificially constructed materials, NIMs give us the flexibility to
control the pulse propagation through them. The analytical solutions obtained here
will be advantageous in experimentally studying the soliton propagation through
NIMs.

To conclude, this thesis presents the analytical study of the localized solutions
and their management for the variable coefficient GNLSE and its variants which
finds applications in studying the pulse dynamics through different nonlinear sys-
tems. In general, the rogue waves, obtained for constant coefficient NLSE, are
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high intensity waves which are localized in space and time and have been associ-
ated with supercontinuum generation. Here, we have demonstrated that by suitably
controlling the system parameters we can get the controllable rogue waves which
can be localized in one co-ordinate and reoccur in the other co-ordinate. In the
context of nonlinear fiber optics, we have found that the rogue waves are local-
ized in time and appear periodically with propagation distance Z along the fiber or
waveguide, while, in the context of BECs, these waves are localized in space and
appear periodically with time. Thus, the analytical results discussed in this thesis
for rogue waves in different nonlinear optical fibers and tapered graded-index non-
linear waveguide may be implemented to investigate these waves experimentally.
The study presented on optical similaritons which are self-similar waves may find
applications in nonlinear devices where communication is based on these kind
of pulses. We have also discussed the propagation and the management of self-
similar waves in the context of BEC and expect that these results can be realized
experimentally with the advancement in experimental techniques that enable us to
control the effective interaction in BEC via Feshbach resonance.





127

List of publications

Papers in refereed journals

1. S. Loomba, M. Rajan, R. Gupta, H. Kaur and C. N. Kumar, Nonlinear tun-
neling of optical similaritons in a tapered graded-index nonlinear waveguide,
Optics Communications 324 (2014) 286.

2. S. Loomba, R. Gupta, H. Kaur and M. S. M. Rajan, Self-similar rogue waves
in an inhomogeneous generalized nonlinear Schrödinger equation, Physics
Letters A 378 (2014) 2137.

3. S. Loomba, M. S. M. Rajan, R. Gupta and A. Mahalingam, Soliton propaga-
tion in negative-index materials with self-steepening effect, The European
Physical Journal D 68 (2014)1.

4. S. Loomba, H. Kaur, R. Gupta, C. N. Kumar and T. S. Raju, Controlling
rogue waves in inhomogeneous Bose-Einstein condensates, Physical Re-
view E 89 (2014) 052915.

5. S. Loomba and H. Kaur, Optical rogue waves for the inhomogeneous gener-
alized nonlinear Schrödinger equation, Physical Review E 88 (2013) 062903.

6. S. Loomba, R. Gupta, C. N. Kumar and D. Milovic, Optical rogons for
inhomogeneous nonlinear Schrödinger equation with inter modal dispersion,
Applied Mathematics and Computation 225 (2013)318.

7. R. Gupta, S. Loomba and C. N. Kumar, Class of nonlinearity control param-
eter for bright solitons of non-autonomous NLSE with trapping potential,
IEEE Journal of Quantum Electronics 48 (2012) 847.

8. A. Goyal, R. Gupta, S. Loomba and C. N. Kumar, Riccati parameterized
self-similar waves in tapered graded-index waveguides, Physics Letters A
376 (2012) 3454.

9. C. N. Kumar, R. Gupta, A. Goyal, S. Loomba, T. S. Raju and P. K. Pani-
grahi, Controlled giant rogue waves in nonlinear fiber optics, Physical Re-
view A 86 (2012) 025802.



128 Chapter 5

10. S. Loomba, H. Kaur, R. Gupta and C. N. Kumar, Chirped bright and dark
solitons for NLSE with localized dissipation, Journal of Mathematics and
System Science 4 (2014) 491.

11. S. Loomba, R. Gupta, K. De, C. N. Kumar and T.S.Raju, Controllable bright
and dark rogue waves in inhomogeneous erbium doped fibers, Optical Fiber
Technology (2014), DOI: 10.1016/j.yofte.2014.07.006.

12. S. Loomba, R. Gupta, C. N. Kumar, T. S. Raju and P. K. Panigrahi, Com-
bined control of Akhmediev breather frequency and rogue wave amplitude:
an analytical approach, Manuscript submitted to Chaos, Solitons and Frac-
tals, 2014.

Papers in conferences and workshops

1. S. Loomba, H. Kaur and R. Gupta, Bright and Dark solitons for NLSE
with self steepening and localized dissipation, 8th conference on nonlinear
systems and dynamics, Indian Institute of Technology, Indore, December
11-14, 2013.

2. S. Loomba, R. Gupta and C. N. Kumar, Solitons and periodic solutions of
nonlinear Schrödinger equation for negative-index materials 37th National
Symposium of Optical Society of India, Pondicherry University, Puducherry,
January 23-25, 2013.

3. R. Gupta, S. Loomba and C. N. Kumar, Analytical solutions of Nonlinear
Schrödinger Equation for Negative Index Metamaterials, 6th Chandigarh
Science Congress, Panjab University, Chandigarh, February 26-28, 2012.

4. R. Gupta, S. Loomba and C. N. Kumar, Controlling nonautonomous 1-and
2-soliton solutions in Bose-Einstein Condensates, DAE-BRNS Symposium
on Atomic, Molecular and Optical Physics, IISER, Kolkata, December 14-
17, 2012.



129

5. R. Gupta, S. Loomba and C. N. Kumar, Solitary wave solutions of nonlin-
ear reaction-diffusion equations with variable coefficients, 5th Chandigarh
Science Congress, Panjab University, Chandigarh, February 26-28, 2011.

6. A. Goyal, S. Loomba and C. N. Kumar, Solutions of sine-Gordon-type
equations using algebraic method, 4th Chandigarh Science Congress, Pan-
jab University, March 19-20, 2010.





131

Selected Reprints


