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CHAPTER 15

INTEGRAL TRANSFORMS

INTEGRAL TRANSFORMS

Frequently in mathematical physics we encounter pairs of functions related by an expres-
sion of the form

b
s@= [ foK@nar (15.1)

The functiong(«) is called the (integral) transform of (t) by the kernelK (o, 1).
The operation may also be described as mapping a fungtionin 7-space into another
function, g(«), in a-space. This interpretation takes on physical significance in the time-
frequency relation of Fourier transforms, as in Example 15.3.1, and in the real space—
momentum space relations in quantum physics of Section 15.6.

Fourier Transform

One of the most useful of the infinite number of possible transforms is the Fourier trans-
form, given by

1 o0 :
g(w)= —/ f)e“ dt. (15.2)
Ve J-x
Two modifications of this form, developed in Section 15.3, are the Fourier cosine and
Fourier sine transforms:
2 o
gc(w) = ,/—/ f(t) coswt dt, (15.3)
7 Jo

gs(w) =,/ E/oof(t)sinwt dt. (15.4)
7 Jo
931



932

Chapter 15 Integral Transforms

The Fourier transform is based on the kewi#! and its real and imaginary parts taken sep-
arately, cosr and sinwt. Because these kernels are the functions used to describe waves,
Fourier transforms appear frequently in studies of waves and the extraction of information
from waves, particularly when phase information is involved. The output of a stellar in-
terferometer, for instance, involves a Fourier transform of the brightness across a stellar
disk. The electron distribution in an atom may be obtained from a Fourier transform of the
amplitude of scattered X-rays. In quantum mechanics the physical origin of the Fourier
relations of Section 15.6 is the wave nature of matter and our description of matter in terms
of waves.

Example 15.1.1  FOURIER TRANSFORM OF GAUSSIAN

The Fourier transform of a Gaussian functiorf*'*,

g(a)) \/_\/ a lw[dt

can be done analytically by completing the square in the exponent,

29 . 2 iw 2 w?
—a“t“+iwt = —a t——2 -
2a 4a

which we check by evaluating the square. Substituting this identity we obtain

1 2,02 [ 2,2
(W) = ———e~@"/% / e dr,
& A/ 2 —00

upon shifting the integration variable— ¢ —|— . This is justlfled by an application of

Cauchy’s theorem to the rectangle with vertlcef T, T + , =T + % for T —

00, hoting that the integrand has no singularities in this reglon and that the integrals over
the sides fromt+T to £7 + % become negligible fof" — oco. Finally we rescale the
integration variable as = at in the integral (see Egs. (8.6) and (8.8)):

/00 e gt = }/‘00 eiézdé = ﬁ
—0o0 a J_co a

Substituting these results we find

w2
g(w) = a\/—eXp( >

again a Gaussian, butistspace. The biggeris, that is, the narrower the original Gaussian
¢=@** s, the wider is its Fourier transform ¢=©%/%*, [
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Laplace, Mellin, and Hankel Transforms

Three other useful kernels are
—at a—1
e 7, tJy(at), t .

These give rise to the following transforms

o0

g(a):/ (e ®dr, Laplace transform (15.5)
0
o0

g(a):/ f@®td, (ar)dt, Hankel transform (Fourier—-Bessel) (15.6)
0

oo
gla) = / f@)*~tar,  Mellin transform (15.7)
0

Clearly, the possible types are unlimited. These transforms have been useful in mathemati-
cal analysis and in physical applications. We have actually used the Mellin transform with-
out calling it by name; that igg(a) = (o« — 1)! is the Mellin transform off (r) = ¢™'. See

E. C. Titchmarshintroduction to the Theory of Fourier Integralgnd ed., New York: Ox-

ford University Press (1937), for more Mellin transforms. Of course, we could just as well
sayg(a) = n!/a"1 is the Laplace transform of (r) = r". Of the three, the Laplace trans-
form is by far the most used. Itis discussed at length in Sections 15.8 to 15.12. The Hankel
transform, a Fourier transform for a Bessel function expansion, represents a limiting case
of a Fourier—Bessel series. It occurs in potential problems in cylindrical coordinates and
has been applied extensively in acoustics.

Linearity

All these integral transforms are linear; that is,
b
[ lesh0 + coatv]k @y ar
b b
:clf 1K (o, 1) dt+cz/ fo)K (o, 1) dt, (15.8)
a a

b b
/cf(t)K(oe,t)dt:cf f@®K(a,t)dt, (15.9)

wherec; andc, are constants angh (1) and f>(¢) are functions for which the transform
operation is defined.
Representing our linear integral transform by the operétave obtain

gla)=Lf(1). (15.10)
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Relatively easy solution

Solution in
transform space

Problem in
transform space

A
Integral Inverse
transform transform

Y
Original Difficult solution Solution of

problem original problem

FIGURE 15.1 Schematic integral transforms.

We expect an inverse operatfr?! exists such that
f6)=Lg(). (15.11)

For our three Fourier transforngs 1 is given in Section 15.3. In general, the determination
of the inverse transform is the main problem in using integral transforms. The inverse
Laplace transform is discussed in Section 15.12. For details of the inverse Hankel and
inverse Mellin transforms we refer to the Additional Readings at the end of the chapter.
Integral transforms have many special physical applications and interpretations that
are noted in the remainder of this chapter. The most common application is outlined in
Fig. 15.1. Perhaps an original problem can be solved only with difficulty, if at all, in the
original coordinates (space). It often happens that the transform of the problem can be
solved relatively easily. Then the inverse transform returns the solution from the trans-
form coordinates to the original system. Example 15.4.1 and Exercise 15.4.1 illustrate this
technique.

Exercises
15.1.1 The Fourier transforms for a function of two variables are

1 e .
F(u,v)= E/ /f(x7y)el(ux+vy) dxdy,
—0oQ

1 [ .
S, y) = —/ / F(u, v)e @) gy dy,
27 J_o
Using f (x, y) = f([x%2 + y?]%/?), show that the zero-order Hankel transforms

Flp) = /0 rf(r)Jolor) dr,

fr)= fo pF(p)Jo(or)dp,

are a special case of the Fourier transforms.

1Expectation is not proof, and here proof of existence is complicated because we are actualfiimtardimensional Hilbert
space. We shall prove existence in the special cases of interest by actual construction.
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This technique may be generalized to derive the Hankel transforms of order

0, % 1, % ... (compare I. N. Sneddorourier TransformsNew York: McGraw-Hill

(1951)). A more general approach, valid fox —%, is presented in SneddorTéie Use
of Integral TransformgNew York: McGraw-Hill (1972)). It might also be noted that
the Hankel transforms of nonintegral ordet= i% reduce to Fourier sine and cosine
transforms.

Assuming the validity of the Hankel transform—inverse transform pair of equations

g(@) =/ f @) Jp(an)tdt,
0

oo
f= /0 g(@)Jy(at)ada,
show that the Dirac delta function has a Bessel integral representation
oo
s(t—t) = t/ Ja(at) I, (ot do.
0

This expression is useful in developing Green’s functions in cylindrical coordinates,
where the eigenfunctions are Bessel functions.
From the Fourier transforms, Egs. (15.22) and (15.23), show that the transformation
t—Inx
io—>a—y
leads to
0
G(a) =/ F(x)x* Ydx
0

and

1 y+ioo
F(x)=— / Ga)x %da.
Y

2i —ioco
These are the Mellin transforms. A similar change of variables is employed in Sec-
tion 15.12 to derive the inverse Laplace transform.
Verify the following Mellin transforms:

o 1 . T
(@) / x%” Sln(kx)dx:k_“(ot—l)!sm7, -l<a<l1.
0

%} T
b) x*"Lcogkx)dx =k™%(a — 1)! cos—, O<a<l
( 2

0

Hint. You can force the integrals into a tractable form by inserting a convergence factor
e~P* and (after integrating) letting — 0. Also, coskx + i Sinkx = expikx.
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DEVELOPMENT OF THE FOURIER INTEGRAL

In Chapter 14 it was shown that Fourier series are useful in representing certain func-
tions (1) over a limited rangf, 2x], [—L, L], and so on, or (2) for the infinite interval
(—o0, 00), if the function is periodic. We now turn our attention to the problem of rep-
resenting a nonperiodic function over the infinite range. Physically this means resolving a
single pulse or wave packet into sinusoidal waves.

We have seen (Section 14.2) that for the inteljval, L] the coefficientss, and b,
could be written as

1 [t nwt
=— t) cos—dt, 15.12
=7 [ rweos (1512)
1 [t nmt
by =— t) sin—-dt. 15.13
n L/_Lf()smL t ( )
The resulting Fourier series is

= ! - t)dt 1oocosmm - tcosnmdt
f(x)—zf_Lf() +zn§1 Tf_Lf() il

1N . nnx [F . nwt
+ Z;smT/_L fysin=—dr, (15.14)
or
1 [t 1, (L nrw
flx) = Z/_L f@)de+ ZHX_;/_L f(t)cos— (1 —x) . (15.15)

We now let the parametdr approach infinity, transforming the finite interjal L, L] into
the infinite interval(—oo, 00). We set

ni T .
— =w, — = Ao, with L — oo.
L L
Then we have
1S %
f(x)—> = ZAw/ f(t)cosw(t — x)dt, (15.16)
T n=1 -
or
l o0 o
fx)= —/ dw/ f@)cosw(t —x)dt, (15.17)
T Jo —00

replacing the infinite sum by the integral over The first term (corresponding t@) has
vanished, assuming thﬁf"OQ f(t)dt exists.

It must be emphasized that this result (Eq. (15.17)) is purely formal. It is not intended
as a rigorous derivation, but it can be made rigorous (compare I. N. SneEolamer
Transforms Section 3.2). We take Eq. (15.17) as the Fourier integral. It is subject to the
conditions thatf (x) is (1) piecewise continuous, (2) piecewise differentiable, and (3) ab-
solutely integrable — that i#f"oo | f(x)|dx is finite.
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Fourier Integral — Exponential Form
Our Fourier integral (Eq. (15.17)) may be put into exponential form by noting that
1 o0 o0
fx)= —/ da)/ f@)cosw(t — x)dt, (15.18)
2 —00 —00
whereas
1 o o0
—/ dw/ f@®)sinw(t — x)dt =0, (15.19)
2 —00 —00

cosw(t — x) is an even function of and sinw(z — x) is an odd function ofv. Adding
Egs. (15.18) and (15.19) (with a factgr we obtain thd-ourier integral theorem

fx)= 1 /OO emiox dw/oo f)e'® dt. (15.20)
2 oo

—00

The variablew introduced here is an arbitrary mathematical variable. In many physical
problems, however, it corresponds to the angular frequancWe may then interpret
Eq. (15.18) or (15.20) as a representationfof) in terms of a distribution of infinitely
long sinusoidal wave trains of angular frequengyin which this frequency is aontinu-
ousvariable.

Dirac Delta Function Derivation

If the order of integration of Eq. (15.20) is reversed, we may rewrite it as

fx) =/Oo f(r){%/oo eiw“—x)dw}dz. (15.20a)

—0o0

Apparently the quantity in curly brackets behaves as a delta fun&on- x). We might
take Eg. (15.20a) as presenting us with a representation of the Dirac delta function. Alter-
natively, we take it as a clue to a new derivation of the Fourier integral theorem.

From Eqg. (1.171b) (shifting the singularity from=0 toz = x),

fx) =nli_)moo'/Oo f@®)8,( — x)dt, (15.21a)

whereé, (t — x) is a sequence defining the distributi®@ — x). Note that Eq. (15.21a)
assumes that (¢) is continuous at = x. We takes,, (r — x) to be

sinn(r — 1 [ .
5yt —x) = S X) —/ U= gy (15.21b)
Tt —x) 27 J_,

using Eq. (1.174). Substituting into Eq. (15.21a), we have

1 o0 n )
feo= lim o / f@) | € dwdr. (15.21c)
—0 —n
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Interchanging the order of integration and then taking the limitas oo, we have
Eqg. (15.20), the Fourier integral theorem.

With the understanding that it belongs under an integral sign, as in Eq. (15.21a), the
identification

1 [ .
8t —x)= Z/ U= dg (15.21d)
—00

provides a very useful representation of the delta function.

FOURIER TRANSFORMS — INVERSION THEOREM

Let usdefine g(w), the Fourier transform of the functiofi(z), by

oo

g(w) = \/% N f()e' dr. (15.22)

Exponential Transform

Then, from Eq. (15.20), we have the inverse relation,

1 o0 :
)= — w)e " dw. 15.23
== s (15.23)
Note that Eqgs. (15.22) and (15.23) are almost but not quite symmetrical, differing in the

sign ofi.

Here two points deserve comment. First, the/2r symmetry is a matter of choice,
not of necessity. Many authors will attach the entiy@s factor of Eq. (15.20) to one
of the two equations: Eq. (15.22) or Eq. (15.23). Second, although the Fourier integral,
Eq. (15.20), has received much attention in the mathematics literature, we shall be primar-
ily interested in the Fourier transform and its inverse. They are the equations with physical
significance.

When we move the Fourier transform pair to three-dimensional space, it becomes

g(k) = ﬁ f f)e*t @3, (15.23a)
fr)= ﬁ / g(K)e ™* @3k (15.23b)

The integrals are over all space. Verification, if desired, follows immediately by substitut-
ing the left-hand side of one equation into the integrand of the other equation and using the
three-dimensional delta functiGnEquation (15.23b) may be interpreted as an expansion
of a function £ (r) in a continuum of plane wave eigenfunctioggk) then becomes the
amplitude of the wave, exp-ik - r).

28(r1 —rp) =38(x1 —x2)8(y1 — y2)8(z1 — z2) with Fourier integrab(xq — x2) = % ffooo expliky (x1 — x2)]dky, etc.
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Cosine Transform

If f(x) is odd or even, these transforms may be expressed in a somewhat different
form. Consider first an even functiofi with f.(x) = f.(—x). Writing the exponential
of Eq. (15.22) in trigonometric form, we have

ge(w) = \/%_n /C: fe(®)(coswt + i Sinwt) dt

_ \/? [ ™ ) coswr dr. (15.24)
T Jo

the sinwt dependence vanishing on integration over the symmetric intérvab, oo).
Similarly, since cosyt is even, Egs. (15.23) transforms to

Je(x) = \/g/wgc(w) coswx dw. (15.25)
0

Equations (15.24) and (15.25) are known as Fourier cosine transforms.

Sine Transform

The corresponding pair of Fourier sine transforms is obtained by assuming; that=
— fs(—x), odd, and applying the same symmetry arguments. The equations are

gs(a))z\/? / £ () sinwr dt, 3 (15.26)
T Jo

fs () = \/?/OO gs(w) Sinwx dw. (15.27)
7 Jo

From the last equation we may develop the physical interpretationftoagt is being
described by a continuum of sine waves. The amplitude absiis given by/2/7 g;(w),
in which g (w) is the Fourier sine transform gf(x). It will be seen that Eq. (15.27) is the
integral analog of the summation (Eg. (14.24)). Similar interpretations hold for the cosine
and exponential cases.

If we take Eqgs. (15.22), (15.24), and (15.26) as the direct integral transforms, de-
scribed byZ in Eq. (15.10) (Section 15.1), the corresponding inverse transfafms,
of Eq. (15.11), are given by Egs. (15.23), (15.25), and (15.27).

Note that the Fourier cosine transforms and the Fourier sine transforms each involve
only positive values (and zero) of the arguments. We use the parjtyxofto establish the
transforms; but once the transforms are established, the behavior of the funttmol
for negative argument is irrelevant. In effect, the transform equations themselves impose
a definite parity: even for the Fourier cosinetransform anddd for the Fourier sine
transform.

3Note that a factor-i has been absorbed into thitw).
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FIGURE 15.2 Finite wave train.

Example 15.3.1  FiNTE WAVE TRAIN

An important application of the Fourier transform is the resolution of a finite pulse into
sinusoidal waves. Imagine that an infinite wave traineginis clipped by Kerr cell or
saturable dye cell shutters so that we have

. Nm
Sinwot, [t] < —,
f(t) = ;V”g (15.28)
o, [t] > —.
o

This corresponds t&/ cycles of our original wave train (Fig. 15.2). Sing¢ér) is odd, we
may use the Fourier sine transform (Eq. (15.26)) to obtain

2 Nm/wo
gs(w) =,/ —f Sinwot Sinwt dt. (15.29)
7 Jo

Integrating, we find our amplitude function:

2 sinl(wo — w) (N /o)l Sinl(wo + ) (N7/ao)]
gs(w) = \/;|: - ]

15.30
2(wo — ) 2(wo + ) ( )

It is of considerable interest to see hgww) depends on frequency. For large and
w = wo, only the first term will be of any importance because of the denominators. It is
plotted in Fig. 15.3. This is the amplitude curve for the single-slit diffraction pattern.
There are zeros at
L@ :ﬂzii,ii, and so on (15.312)
wo wo N N

For largeN, g;(w) may also be interpreted as a Dirac delta distribution, as in Section 1.15.
Since the contributions outside the central maximum are small in this case, we may take

wo
N

as a good measure of the spread in frequency of our wave pulse. Cleavlyisifarge
(along pulse), the frequency spread will be small. On the other hand, if our pulse is clipped

Aw= (15.32)
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FIGURE 15.3 Fourier transform
of finite wave train.

short,N small, the frequency distribution will be wider and the secondary maxima are more
important. [ |

Uncertainty Principle

Here is a classical analog of the famous uncertainty principle of quantum mechanics. If we
are dealing with electromagnetic waves,

hw _
2r
hAw
—— =AE, 15.33
o (15.33)
h being Planck’s constant. HereE represents an uncertainty in the energy of our pulse.
There is also an uncertainty in the time, for our wavé&/afycles requires R /wg seconds
to pass. Taking

E, energy (of our photon

2N
Ar=""7 (15.34)

o
we have the product of these two uncertainties:

hAw 27'[N_h wg 27N

AE - At = = . =h. 15.35
2 wo 27N  wo ( )
The Heisenberg uncertainty principle actually states
h
AE - At > —, (15.36)
47

and this is clearly satisfied in our example.
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Exercises

15.3.1 (a) Show thalg(—w) = g*(w) is a necessary and sufficient condition f¢x) to be
real.
(b) Show thagg(—w) = —g*(w) is a necessary and sufficient condition ft(x) to be
pure imaginary.
Note The condition of part (a) is used in the development of the dispersion relations of
Section 7.2.

15.3.2 Let F(w) be the Fourier (exponential) transform 6fx) andG (w) be the Fourier trans-
form of g(x) = f(x 4+ a). Show that

G(w) = e " F(w).
15.3.3 The function

ro={g hs

, x| >1

is a symmetrical finite step function.

(8) Find theg.(w), Fourier cosine transform gf(x).
(b) Taking the inverse cosine transform, show that

2 /°° Sinw COSwx

fx)=— w.
T Jo @
(c) From part (b) show that

: 0, x| > 1,

°° sinw coswx -
T dw={ 2, |x|=1,

0 & x
5 |x] < 1.

15.3.4 (a) Show that the Fourier sine and cosine transforms 6f are

2 o 2 a
gs(w) = ;m7 gelw) = ;m

Hint. Each of the transforms can be related to the other by integration by parts.
(b) Show that

o
o Sinwx T
/ ——do= e ax. x>0,
0 w +a 2
o0
COSwx T
/ ———do=_¢ ax. x>0.
0 w*+a 2a

These results are also obtained by contour integration (Exercise 7.1.14).
15.3.5 Find the Fourier transform of the triangular pulse (Fig. 15.4).
h(l—a|x|), |x|<%,
1

a’

f(X)={

) x| >

Note This function provides another delta sequence witha anda — oc.
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\flx)

h

I

~1/a l/a

FIGURE 15.4 Triangular pulse.

Define a sequence

n, x| < 55,
Sn(x)={

1
0, |x|>z

(This is Eq. (1.172).) Expresk (x) as a Fourier integral (via the Fourier integral theo-
rem, inverse transform, etc.). Finally, show that we may write

1 [ee) "
— i _ —lkx
S(x) = nll_r)noo Su(x) = [m e dk.
Using the sequence

8, (x) = iﬂ exp(—n?x?),

T

show that

1 [ _.

5(x)=—f ek g,
27 J_ o

Note Remember thad(x) is defined in terms of its behavior as part of an integrand

(Section 1.15), especially Egs. (1.178) and (1.179).

Derive sine and cosine representations(@f- x) that are comparable to the exponential
representation, Eq. (15.21d).

2 [ 2 [
ANS. —/ sinwt sinwx dw, —/ COSwt COSwx dw.
T Jo T Jo

In a resonant cavity an electromagnetic oscillation of frequesnogiies out as
A(1) = Age™ 0200l 150,

(TakeA(r) =0 fort < 0.) The paramete® is a measure of the ratio of stored energy to
energy loss per cycle. Calculate the frequency distribution of the oscillatiea)a (w),
wherea(w) is the Fourier transform o (¢).
Note The largerQ is, the sharper your resonance line will be.
A3 1
ANS. a* =0 :
) = = w0 + (@0/20)2
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15.3.10

15.3.11

15.3.12

15.3.13

15.3.14

Prove that
hope_eae  [ea-Fed-5). >0
2ni J_o Eo—il/2—ho |, /<0
This Fourier integral appears in a variety of problems in quantum mechanics: WKB

barrier penetration, scattering, time-dependent perturbation theory, and so on.
Hint. Try contour integration.

Verify that the following are Fourier integral transforms of one another:

2 1
@) \/;? x| <a, andJo(ay),
vac—x
0. x| > a,
0, x| <a,
b
® x| > a, andNo(aly|),

2 1
T2t a2
T 1
Cc — and Kola .
© N2 S olel)

(d) Can you suggest whip(ay) is not included in this list?

Hint. Jo, No, and Kg may be transformed most easily by using an exponential repre-
sentation, reversing the order of integration, and employing the Dirac delta function
exponential representation (Section 15.2). These cases can be treated equally well as
Fourier cosine transforms.

Note The Ky relation appears as a consequence of a Green'’s function equation in Ex-
ercise 9.7.14.

A calculation of the magnetic field of a circular current loop in circular cylindrical
coordinates leads to the integral

o
/ coskz k K1(ka)dk.
0

Show that this integral is equal to
ma
Hint. Try differentiating Exercise 15.3.11(c).

As an extension of Exercise 15.3.11, show that

v

o o (e.¢]
(61)/O Jo(y)dy=1, (b)/0 No(y)dy =0, (C)'/0 Ko(y)dy = .
The Fourier integral, Eq. (15.18), has been held meaninglesg(for= coswez. Show
that the Fourier integral can be extended to co¥e) = cosur by use of the Dirac delta
function.
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2 —-1/2
/ ) /

o 2_
/ sinka Jo(kp) dk = { (a , p<a,
0 0, o >a.

Herea andp are positive. The equation comes from the determination of the distribution
of charge on an isolated conducting disk, radiufNote that the function on the right
has arinfinite discontinuity ato = a.

Note A Laplace transform approach appears in Exercise 15.10.8.

The functionf (r) has a Fourier exponential transform,

_ 1 ikr 3.1
g(k)_rn)g/z/f(r)e " d = G

Determinef (r).
Hint. Use spherical polar coordinateskirspace.

1
ANS. f(r) = 7.

(@) Calculate the Fourier exponential transformyegf) = e —</!.
(b) Calculate the inverse transform by employing the calculus of residues (Sec-
tion 7.1).

Show that the following are Fourier transforms of each other

2 2 —1/2
i"J,(t)  and \/;Tn(x)(l —x9) 7 <y,
0, x| > 1.

T, (x) is thenth-order Chebyshev polynomial.
Hint. With 7,,(cost) = cosnd, the transform off},(x)(1 — x2)~1/2 leads to an integral
representation af;, (¢).

Show that the Fourier exponential transform of

_ | Pu(), lul <1,

is (2i"/2r) j,(kr). Here P,(u) is a Legendre polynomial ang,(kr) is a spherical
Bessel function.

Show that the three-dimensional Fourier exponential transform of a radially symmetric
function may be rewritten as a Fourier sine transform:

oz | S0 a = e [ Trresinerar
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15.3.21 (a) Show thatf(x) = x~1/2 is aself-reciprocal under both Fourier cosine and sine

15.4

transforms; that is,

2 o0
—/ x Y2cosxtdx =t 2,
7 Jo

2 o
,/—f x Y2sinxtds =t~ Y2.
7 Jo

(b) Use the preceding results to evaluate the Fresnel integ(fﬁlsos(yz) dy and
I’ sin(y?) dy.

FOURIER TRANSFORM OF DERIVATIVES

In Section 15.1, Fig. 15.1 outlines the overall technique of using Fourier transforms and
inverse transforms to solve a problem. Here we take an initial step in solving a differential
equation — obtaining the Fourier transform of a derivative.

Using the exponential form, we determine that the Fourier transforfi(.of is

g() = \/% [ N f(x)e' " dx (15.37)
and fordf (x)/dx
g1(0) == f 4 (x) % dx. (15.38)
Integrating Eq. (15.38) by parts, we obtain
g1(w) = \/— «/_ f(x)e“”x dx. (15.39)
If f(x) vanishe$ asx — +oo, we have
g1(w) = —iwg(w); (15.40)

that is, the transform of the derivative(isi w) times the transform of the original function.
This may readily be generalized to thth derivative to yield

gn(w) = (—iw)"g(w), (15.41)

provided all the integrated parts vanish.as> +oo. This is the power of the Fourier
transform, the reason it is so useful in solving (partial) differential equations. The operation
of differentiation has been replaced by a multiplicatiomispace.

4Apart from cases such as Exercise 15.3.6;) must vanish as — oo in order for the Fourier transform gf(x) to exist.
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Example 15.4.1  Wave EQuATION

This technique may be used to advantage in handling PDEs. To illustrate the technique, let
us derive a familiar expression of elementary physics. An infinitely long string is vibrating
freely. The amplitude of the (small) vibrations satisfies the wave equation

9%y 192y
-2 15.42
ax2 2 9r2 ( )
We shall assume an initial condition
y(x,0) = f(x), (15.43)

where f is localized, that is, approaches zero at large '
Applying our Fourier transform in, which means multiplying by’®* and integrating
overx, we obtain

© 92y(x,1) ; 1 [ 9%y(x,1) ;
/ —gixZ )e"” dx = ) 7}2;(;; )e"” dx (15.44)
—00 —0o0
or
, 1 92Y(a, t)

(—lO{)ZY(O[, [) = ET (1545)

Here we have used

1 © .
Y(a,1) = E/ y(x,)e'*" dx (15.46)
—00

and Eq. (15.41) for the second derivative. Note that the integrated part of Eq. (15.39) van-
ishes: The wave has not yet gonedtoeo because it is propagating forward in time, and
there is no source at infinity becaugé+oo) = 0. Since no derivatives with respect to

«a appear, Eg. (15.45) is actually an ODE —in fact, the linear oscillator equation. This
transformation, from a PDE to an ODE, is a significant achievement. We solve Eq. (15.45)
subject to the appropriate initial conditions. A& 0, applying Eq. (15.43), Eq. (15.46)
reduces to

Y(a,0) = \/% fo; f(x)e' dx = F(a). (15.47)
The general solution of Eq. (15.45) in exponential form is
Y(a,t) = F(a)e™v, (15.48)
Using the inversion formula (Eq. (15.23)), we have
1 00 .
y(x, 1) = T fm Y (e, )e "% da, (15.49)

and, by Eq. (15.48),

1 [® ,
y(x, 1) = —— F(a)e 95T gy (15.50)
«/Z /—oo
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Since f (x) is the Fourier inverse transform éf(«),

y(x, 1) = fxFvr), (15.51)

corresponding to waves advancing in the- and—x-directions, respectively.
The particular linear combinations of waves is given by the boundary condition of
Eq. (15.43) and some other boundary condition, such as a restrictigyy/on. [ |

The accomplishment of the Fourier transform here deserves special emphasis.

e Our Fourier transform converted a PDE into an ODE, where the “degree of transcen-
dence” of the problem was reduced.

In Section 15.9 Laplace transforms are used to convert ODEs (with constant coefficients)
into algebraic equations. Again, the degree of transcendence is reduced. The problem is
simplified —as outlined in Fig. 15.1.

Example 15.4.2  Heat FLow PDE

To illustrate another transformation of a PDE into an ODE, let us Fourier transform the
heat flow partial differential equation

AL

R gk o

at dx2
where the solution (x, t) is the temperature in space as a function of time. By taking the
Fourier transform of both sides of this equation (note that here eny the transform
variable conjugate to because is the time in the heat flow PDE), where

Y(w, 1) = \/%/oo W (x,1)el“ dx,

this yields an ODE for the Fourier transfordnof v in the time variable,

oV (w,t
——égl—zzz—aszW(w,ﬂ.

Integrating we obtain

NV = —a’w’ +InC, or  W=Ce
where the integration constatt may still depend onw and, in general, is determined
by initial conditions. In factC = ¥ (w, 0) is the initial spatial distribution ofl, so it is
given by the transform (im) of the initial distribution ofiyr, namely, (x, 0). Putting this
solution back into our inverse Fourier transform, this yields

; 2.2
C(w)eflwxefa (0] tda).

1 o
o= |
w 27 —00
For simplicity, we here tak& w-independent (assuming a delta-function initial temper-
ature distribution) and integrate by completing the square,iras in Example 15.1.1,
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making appropriate changes of variables and parametérs>(a?t, w — x,t — —w).
This yields the particular solution of the heat flow PDE,

2
Y= Lexp(— a )
a

V2t 4at
which appears as a clever guess in Chapter 8. In effect, we have shownithaie inverse
Fourier transform of” exp(—a2w?t). [

Example 15.4.3  INvERsION OF PDE

Derive a Fourier integral for the Green'’s functiGiy of Poisson’s PDE, which is a solution
of

V2Go(r,r')y=—8(r —r').
OnceGy is known, the general solution of Poisson’s PDE,
V2® = —47p(r)

of electrostatics, is given as
O(r) = / Go(r,r)anp (") d3r .
Applying V2 to ® and using the PDE the Green’s function satisfies, we check that

V2q>(r)=/V200(r,r/)4np(r’)d3 ’=—/5(r —tYArp () d3 = —4mp(r).

Now we use the Fourier transform 6%, which isgg, and of that of thé function, writing
v?2 ip-(r—r") — _/ ip-(r—r’) )
/go(p)e )3 e @3

Because the integrands of equal Fourier integrals must be the same (almost) everywhere,
which follows from the inverse Fourier transform, and with

Veip‘(rfr’) _ ipeip~(r7r/)’

this yields—p?go(p) = —1. Therefore, application of the Laplacian to a Fourier integral
£(r) corresponds to multiplying its Fourier transfogtp) by —p2. Substituting this solu-
tion into the inverse Fourier transform f6ip gives

d3p 1

Go(r,r") = [ &P = :
off. 1) /e @032~ dnlr —1/

We can verify the last part of this result by applyiRg to G again and recalling from
Chapter 1 thav2 1 P =—4rs(r 1),

|r—r’
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The inverse Fourier transform can be evaluated using polar coordinates, exploiting the
spherical symmetry gi. For simplicity, we writeR =r —r’ and calld the angle between

R andp,
/ lde p / dp/ [pRCOS@dCOSQ/ d(p

dp lpRC059 ! 4_”/00 SInde
0

~ iR )4 cosv=—1 R )4 P
47 [ sinpR 272
== d(pR) ==,
0 pR R

where6é andg are the angles gf andfcj"J Sixﬂdx = %, from Example 7.1.4. Dividing by
(27)2, we obtainGo(R) = 1/(47 R), as claimed. An evaluation of this Fourier transform
by contour integration is given in Example 9.7.2. [ |

Exercises

15.4.1 The one-dimensional Fermi age equation for the diffusion of neutrons slowing down in
some medium (such as graphite) is

q(x, 1) _ dq(x.7)
axz 9t
Hereq is the number of neutrons that slow down, falling below some given energy per
second per unit volume. The Fermi agejs a measure of the energy loss.

If g(x,0) = S3(x), corresponding to a plane source of neutrons at0, emitting S
neutrons per unit area per second, derive the solution

efx2/4t
=S .
i 4t
Hint. Replacey (x, ) with
1 .
p(k,n:E/ q(x, 7)™ dx.
—00

This is analogous to the diffusion of heat in an infinite medium.
15.4.2 Equation (15.41) yields

g2(0) = —w?g(w)

for the Fourier transform of the second derivativefagk). The conditionf (x) — 0 for
x — £o0 may be relaxed slightly. Find the least restrictive condition for the preceding
equation forga(w) to hold.

ANS. [df *x)
dx

—io f(x)} fox

e¢]
=0.
—0o0
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15.4.4

15.4.5

15.5
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The one-dimensional neutron diffusion equation with a (plane) source is
dZ
—pLHD L K2pge) = 0s(n),
dx
whereg(x) is the neutron fluxQs(x) is the (plane) source at=0, andD andK 2 are
constants. Apply a Fourier transform. Solve the equation in transform space. Transform
your solution back inta:-space.
o _
ANS. = _— ¢ 1K,
@(x) 5KD¢
For a point source at the origin, the three-dimensional neutron diffusion equation be-
comes
—DV2p(r) + K2Do(r) = Q5(r).
Apply a three-dimensional Fourier transform. Solve the transformed equation. Trans-
form the solution back into-space.
(@) Given thatF (k) is the three-dimensional Fourier transform ffr) and F1 (k) is
the three-dimensional Fourier transformvof (r), show that
F1(K) = (—ik) F (k).
This is a three-dimensional generalization of Eq. (15.40).
(b) Show that the three-dimensional Fourier transforrivefV £ (r) is
Fo(k) = (—ik)2F (K).
Note Vectork is a vector in the transform space. In Section 15.6 we shall have
Ak = p, linear momentum.
CONVOLUTION THEOREM

We shall employ convolutions to solve differential equations, to normalize momentum
wave functions (Section 15.6), and to investigate transfer functions (Section 15.7).

Let us consider two functiong(x) and g(x) with Fourier transforms () and G(z),
respectively. We define the operation

o0

1
- A/ 21 J o0

as theconvolution of the two functionsf andg over the interval—oo, co). This form of

an integral appears in probability theory in the determination of the probability density of
two random, independent variables. Our solution of Poisson’s equation, Eq. (9.148), may
be interpreted as a convolution of a charge distributjiging), and a weighting function,
(4reolr1 — ra))~L. In other works this is sometimes referred to asFh#ung, to use the

fxg g fx—y)dy (15.52)
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-
I
-

FIGURE 15.5

German term for “folding® We now transform the integral in Eq. (15.52) by introducing
the Fourier transforms:

o 1 [ o0 .
f g f(x —y)dy = ﬁ/ g(y)/; F()e "= dr dy

— i /OO F(t) |:/oo g(y)eitydy:|e_”x dt
\/Z —00 —00

= / F()G(t)e ™ dt, (15.53)

—0o0

interchanging the order of integration and transformg{g). This result may be inter-
preted as follows: The Fourier inverse transform @faduct of Fourier transforms is the
convolution of the original functionsf;  g.

For the special case= 0 we have

oo (e.¢]
| rocmar= [ sepsoiay. (15.54)
—00 —0o0

The minus sign in-y suggests that modifications be tried. We now do this witinstead
of g using a different technique.

Parseval’s Relation

Results analogous to Egs. (15.53) and (15.54) may be derived for the Fourier sine and co-
sine transforms (Exercises 15.5.1 and 15.5.3). Equation (15.54) and the corresponding sine
and cosine convolutions are often labeRatseval’s relationdy analogy with Parseval's
theorem for Fourier series (Chapter 14, Exercise 14.4.2).

SFor f(y) =€, f(y) and f(x — y) are plotted in Fig. 15.5. Clearly;(y) and f(x — y) are mirror images of each other in
relation to the vertical ling = x /2, that is, we could generaf®(x — y) by folding over f(y) on the liney = x/2.
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The Parseval relatién’

o0 o
/ F(0)G*(w)dw = / f()g*(r)dt (15.55)
—00 —00
may be derived elegantly using the Dirac delta function representation, Eq. (15.21d). We
have

o o 1 o oot l o0 -
f)g*(t)dt =/ —/ F(w)e '"“dw - —/ G*(x)e"" dx dt,
/-—OO —00 V21 J-0 V21 J o0
(15.56)
with attention to the complex conjugation in t6€ (x) to g*(¢) transform. Integrating over

t first, and using Eg. (15.21d), we obtain

/OO fg @) dt = /‘00 F(a))/oo G*(x)é(x —w)dxdw

o

= f F(0)G*(w)dw, (15.57)
—00

our desired Parseval relation. ff(z) = g(¢), then the integrals in the Parseval relation are

normalization integrals (Section 10.4). Equation (15.57) guarantees that if a furfctipn

is normalized to unity, its transforifi(w) is likewise normalized to unity. This is extremely

important in quantum mechanics as developed in the next section.

It may be shown that the Fourier transform is a unitary operation (in the Hilbert $gace
square integrable functions). The Parseval relation is a reflection of this unitary property —
analogous to Exercise 3.4.26 for matrices.

In Fraunhofer diffraction optics the diffraction pattern (amplitude) appears as the trans-
form of the function describing the aperture (compare Exercise 15.5.5). With intensity
proportional to the square of the amplitude the Parseval relation implies that the energy
passing through the aperture seems to be somewhere in the diffraction pattern—a state-
ment of the conservation of energy. Parseval’s relations may be developed independently
of the inverse Fourier transform and then used rigorously to derive the inverse transform.
Details are given by Morse and Feshb&@®ection 4.8 (see also Exercise 15.5.4).

Exercises
15.5.1  Work out the convolution equation corresponding to Eq. (15.53) for

(@) Fourier sine transforms

e¢]

1 o0
5/0 gM[f(y +x)+f(y—x)]dy=/0 Fy(5)G(s) cossx ds,

where f andg are odd functions.
6Note that all arguments are positive, in contrast to Eq. (15.54).

7Some authors prefer to restrict Parseval’s name to series and refer to Eq|. (1335)eigh’s theorem
8P, M. Morse and H. Feshbadkethods of Theoretical Physigdew York: McGraw-Hill (1953).
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155.2

155.3

1554

1555

15.5.6

(b) Fourier cosine transforms

1 o0 o0

> /0 s fO+x)+ fx—y)]dy= /0 Fe(s)G.(s)cossx ds,
where f andg are even functions.

F(p) and G(p) are the Hankel transforms of (r) and g(r), respectively (Exer-
cise 15.1.1). Derive the Hankel transform Parseval relation:

/0 F*(0)G(p)pdp = /O FOgrdr.

Show that for both Fourier sine and Fourier cosine transforms Parseval’s relation has
the form

/0 FOG () dt = /0 FO)8()dy.

Starting from Parseval's relation (Eq. (15.54)), #&y) = 1, 0< y < «, and zero else-
where. From this derive the Fourier inverse transform (Eq. (15.23)).
Hint. Differentiate with respect ta.

(&) A rectangular pulse is described by

x| <a,
|x| > a.

fo)= {é

Show that the Fourier exponential transform is

2 sinat
Fit)=,/= .
Tt
This is the single-slit diffraction problem of physical optics. The slit is described
by f(x). The diffraction pattermmplitude is given by the Fourier transforii(z).

(b) Use the Parseval relation to evaluate
© sirf ¢
/ —Zdt.
oo
This integral may also be evaluated by using the calculus of residues, Exer-
cise 7.1.12.
ANS. (b) 7.

Solve Poisson’s equatiotV2y (r) = —p(r)/eo, by the following sequence of opera-
tions:

(@) Take the Fourier transform of both sides of this equation. Solve for the Fourier
transform ofy (r).

(b) Carry out the Fourier inverse transform by using a three-dimensional analog of the
convolution theorem, Eq. (15.53).
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155.7 (a) Givenf(x)=1-|x/2|,—2 < x <2, and zero elsewhere, show that the Fourier

transform of f (x) is
2 (sint)2
Fiy=,~=-—).
T\ t

(b) Using the Parseval relation, evaluate
% /sing\*
oo\ 1

15.5.8 With F(¢) andG(¢) the Fourier transforms of (x) andg(x), respectively, show that

2w
ANS. —.
S. (b) 3

o 2 o 2
/ |fx) — g(x)] dx:/ |F(t) — G| dr.
—0o0 —0o0
If g(x) is an approximation tof (x), the preceding relation indicates that the mean
square deviation in-space is equal to the mean square deviatiornt$pace.

15.5.9 Use the Parseval relation to evaluate

o0 dw ©  wldw
a —, b —.
( )/—oo (@2 +a?)? ( )/—oo (@2 +a?)?
Hint. Compare Exercise 15.3.4.

T

ANS. () =,
@53

OFS

15.6 MOMENTUM REPRESENTATION

In advanced dynamics and in quantum mechanics, linear momentum and spatial position
occur on an equal footing. In this section we shall start with the usual space distribution
and derive the corresponding momentum distribution. For the one-dimensional case our
wave functiomy (x) has the following properties:

1. ¢¥*(x)¥(x)dx is the probability density of finding a quantum particle betweemnd
x +dx, and

2. /00 Y)Y (x)dx =1 (15.58)

corresponds to probability unity.
3. Inaddition, we have

(x) = /00 Y (x)xy(x)dx (15.59)

for theaverageposition of the particle along the-axis. This is often called agxpec-
tation value
We want a functiorg (p) that will give the same information about the momentum:
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1. g*(p)g(p)dp is the probability density that our quantum particle has a momentum
betweenp andp + dp.

2. / g (p)g(p)dp=1 (15.60)
3. (p) = [ £ (0pg(p)dp. (15.61)

As subsequently shown, such a function is given by the Fourier transform of our space
functiony (x). Specifically?

1 [ .

g(p)= ok / Y(x)e P dx, (15.62)
1 [ .

g"(p)= o / Y (x)e P M dx. (15.63)

The corresponding three-dimensional momentum function is

1 h .
o1 [ v

To verify Egs. (15.62) and (15.63), let us check on properties 2 and 3.

Property 2, the normalization, is automatically satisfied as a Parseval relation,
Eq. (15.55). If the space functiofi(x) is normalized to unity, the momentum function
g(p) is also normalized to unity.

To check on property 3, we must show that

<p)=f g*(p)pg(p)dp=/ W*(x);EW(X)dx, (15.64)

where (fi/i)(d/dx) is the momentum operator in the space representation. We replace
the momentum functions by Fourier-transformed space functions, and the first integral

becomes
o0
1 —ip(x—x")/h % 1 ’
o pe Y xH)Y(x)dpdx’ dx. (15.65)
—0o0
Now we use the plane-wave identity
. / d ho_; /
petri—n = 4 [_7e1P<H >/h], (15.66)

9The# may be avoided by using the wave numbep = k4 (andp = k), so

1

O @

/ 1//(x)e_ikx dx.

An example of this notation appears in Section 16.1.
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with p a constant, not an operator. Substituting into Eq. (15.65) and integrating by parts,
holdingx’ and p constant, we obtain

_ —ip(x—x")/h Al ¥y /
{p) _[/[—h /7006 dp:| v (x )i —dxlﬂ(x)dx dx. (15.67)

Here we assume (x) vanishes ag — +oo, eliminating the integrated part. Using the
Dirac delta function, Eq. (15.21c), Eq. (15.67) reduces to Eq. (15.64) to verify our mo-
mentum representation.

Alternatively, if the integration ovep is done first in Eq. (15.65), leading to

o0
/ pe PO gy — 2 i 28 (x — 1),
—0Q

and using Exercise 1.15.9, we can do the integration oyetich causes (x) to become
—dy (x")/dx’. The remaining integral over’ is the right-hand side of Eq. (15.64).

Example 15.6.1 HyDROGEN ATOM

The hydrogen atom ground st&tenay be described by the spatial wave function

1 \1/2
Y(r) = (—3> e/, (15.68)
T

a
0
ap being the Bohr radius,rAsohz/mez. We now have a three-dimensional wave function.
The transform corresponding to Eq. (15.62) is

1 _in-
= (2nh)3/2/1/f(r)e P . (15.69)
Substituting Eq. (15.68) into Eq. (15.69) and using
: 8ra
—ar+ib-r ;3
/6 art rd r:m, (1570)

we obtain the hydrogenic momentum wave function,

23/2 ag/2h5/2
P ="
= @
Such momentum functions have been found useful in problems like Compton scattering
from atomic electrons, the wavelength distribution of the scattered radiation, depending on
the momentum distribution of the target electrons.

The relation between the ordinary space representation and the momentum representa-
tion may be clarified by considering the basic commutation relations of quantum mechan-
ics. We go from a classical Hamiltonian to the Schrédinger wave equation by requiring that
momentump and positiont not commute. Instead, we require that

[p,x]=px —xp=—ih. (15.72)

(15.71)

10see E. V. Ivash, A momentum representation treatment of the hydrogen atom praéiolerd. Phys40: 1095 (1972) for
a momentum representation treatment of the hydrogen Atef states.
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For the multidimensional case, Eq. (15.72) is replaced by
[pi,xj']z—ihtsl‘j. (15.73)
The Schrodinger (space) representation is obtained by using
xX—>x: pi—>—ih—,
Bxi
replacing the momentum by a partial space derivative. We see that
[P, x]Y (x) = —ihy (x). (15.74)
However, Eq. (15.72) can equally well be satisfied by using
p—>p: Xx;j—>ih—.
J 8]7]'
This is the momentum representation. Then
[p,x1g(p) = —ihg(p). (15.75)

Hence the representati@n) is not uniquej p) is an alternate possibility.

In general, the Schrédinger representationleading to the Schrddinger wave equation
is more convenient because the potential endrgis generally given as a function of
positionV (x, y, z). The momentum representatigm usually leads to an integral equation
(compare Chapter 16 for the pros and cons of the integral equations). For an exception,
consider the harmonic oscillator. |

Example 15.6.2  HARMONIC OSCILLATOR

The classical Hamiltonian (kinetic energypotential energy- total energy) is

P 1,

H(p,x)=—+ zkx“=E, 15.76
(p.x) = 5+ Skx (15.76)

wherek is the Hooke’s law constant.

In the Schrédinger representation we obtain

72 d2y (x) N 1
2m  dx? 2
For total energye equal to/(k/m)# /2 there is an unnormalized solution (Section 13.1),

kx?y (x) = Evr (x). (15.77)

¥ (x) = e~ (mk/2h)x® (15.78)
The momentum representation leads to

2m 2  dp?

=Eg(p). (15.79)

Again, for

k h
-z (15.80)
m2
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the momentum wave equation (15.79) is satisfied by the unnormalized

g(p) = ™ /@mE), (15.81)

Either representation, space or momentum (and an infinite number of other possibilities),
may be used, depending on which is more convenient for the particular problem under
attack.

The demonstration thag(p) is the momentum wave function corresponding to
Eq. (15.78)—that it is the Fourier inverse transform of Eq. (15.78)—is left as Exer-
cise 15.6.3. [ |

Exercises

15.6.1

15.6.2

15.6.3

15.6.4

15.6.5

The functione’®* " describes a plane wave of momentya= ik normalized to unit
density. (Time dependence of'*’ is assumed.) Show that these plane-wave functions
satisfy an orthogonality relation

/ (™) e Tdx dydz = (27)38 (k — K)).
An infinite plane wave in quantum mechanics may be represented by the function
Y =P,

Find the corresponding momentum distribution function. Note that it has an infinity and
thaty (x) is not normalized.

A linear quantum oscillator in its ground state has a wave function
¥ (x) =a71/2n71/4efx2/2a2.
Show that the corresponding momentum function is
g(p) = al/27_[—l/4h—l/26—a2p2/2h2.
Thenth excited state of the linear quantum oscillator is described by
Y () = a—l/22—n/2n,—1/4(n!)—1/26—x2/2a2Hn(x/a)’

where H, (x/a) is thenth Hermite polynomial, Section 13.1. As an extension of Exer-
cise 15.6.3, find the momentum function corresponding,16x).

Hint. ¥, (x) may be represented biﬁ*)"wo(x), wherea' is the raising operator, Exer-
cise 13.1.14t0 13.1.16.

A free particle in quantum mechanics is described by a plane wave

Yr(x, 1) = ei[kx—(hkz/Zm)t].

Combining waves of adjacent momentum with an amplitude weighting factor we
form a wave packet

o0
W(x,1) = / @ (k)e!kx—(k2/2m] g

—00
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15.6.6

15.6.7

15.6.8

15.6.9

15.6.10

(@) Solve forp(k) given that
W(x,0) = e /27,
(b) Using the known value af(k), integrate to get the explicit form oF (x, ¢). Note
that this wave packet diffuses or spreads out with time.
o—1x%/2laP+(ih /m)1}
[1+ (iht/ma?)|V/2"

Note An interesting discussion of this problem from the evolution operator point of
view is given by S. M. Blinder, Evolution of a Gaussian wave packet, J. Phys36:
525 (1968).

ANS. W(x, 1) =

Find the time-dependent momentum wave funcgdéh, ) corresponding ta (x, ¢) of
Exercise 15.6.5. Show that the momentum wave pagket, 1) g (k, r) is independent
of time.

The deuteron, Example 10.1.2, may be described reasonably well with a Hulthén wave
function

Y(r)=Ale™ — e Pry/r,

with A, a, andg constants. Fing (p), the corresponding momentum function.
Note The Fourier transform may be rewritten as Fourier sine and cosine transforms or
as a Laplace transform, Section 15.8.

The nuclear form facto# (k) and the charge distribution(r) are three-dimensional
Fourier transforms of each other:

1 ,
Fk) = W / ,o(r)e’k'r d3r.

If the measured form factor is
K2\t
F(k) = (2n>—3/2<1+ —2> :
a

find the corresponding charge distribution.

2 ,—ar

a- e
ANS. p(r) = ;- —

Check the normalization of the hydrogen momentum wave function
© 23/2 ag/2h5/2
8P)= T (agp2+h2)2
by direct evaluation of the integral

/ g (Pegp) dp.

With v (r) a wave function in ordinary space apdp) the corresponding momentum
function, show that
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15.6.12
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1 —ir-p/h ;3 .
(a) (27Th)3/2 “ﬁ(r)e d r= lh Vp@(p)7

(b) / r2y (e P % = i1V )% (p).

(2w h)3/2
Note V, is the gradient in momentum space:

+y i +2 i
Opx apy apz'

These results may be extended to any positive integer poweané therefore to any
(analytic) function that may be expanded as a Maclaurin series in

A

X

The ordinary space wave functioi(r,r) satisfies the time-dependent Schrédinger
equation

(.t h?

a  2m
Show that the corresponding time-dependent momentum wave function satisfies the
analogous equation,

ih V2 + V().

_dp(p,1) _ p? .
lhTzﬁq)—i—V(thp)(p.

Note Assume thatV(r) may be expressed by a Maclaurin series and use Exer-
cise 15.6.10V (ih V) is the same function of the variabié V , that V(r) is of the
variabler.

The one-dimensional time-independent Schrédinger wave equation is

12 d?y (x)
B e o + V()Y (x) = Ey(x).

For the special case df (x) an analytic function ofc, show that the corresponding
momentum wave equation is

1% 'hi +p—2( =Eg(p)
(l dp>g(p) o 8 p)=Eg(p).

Derive this momentum wave equation from the Fourier transform, Eq. (15.62), and its
inverse. Do not use the substitution— ifi(d/dp) directly.

15.7 TRANSFER FUNCTIONS

A time-dependent electrical pulse may be regarded as built-up as a superposition of plane
waves of many frequencies. For angular frequenaye have a contribution

F(w)e'.

Then the complete pulse may be written as

Ft) = % / - F(w)e'” dow. (15.82)
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i 8®
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Input Output

FIGURE 15.6 Servomechanism or a stereo amplifier.

Because the angular frequeneys related to the linear frequeneyby

w
21’
it is customary to associate the entir&x factor with this integral.

But if w is a frequency, what about the negative frequencies? The negativay be
looked on as a mathematical device to avoid dealing with two functionsoscasd sinwt)
separately (compare Section 14.1).

Because Eq. (15.82) has the form of a Fourier transform, we may solvé(tor by
writing the inverse transform,

V=

o0

F(w) = / f()e " ds. (15.83)
—00

Equation (15.83) representsesolution of the pulse f (¢) into its angular frequency com-

ponents. Equation (15.82) issginthesis of the pulsdrom its components.

Consider some device, such as a servomechanism or a stereo amplifier (Fig. 15.6), with
an input £ (¢) and an outpug(r). For an input of a single frequeney, f,,(r) = ¢/, the
amplifier will alter the amplitude and may also change the phase. The changes will proba-
bly depend on the frequency. Hence

8o (1) = (@) fu (). (15.84)

This amplitudes- and phase-modifying functig(w) is called atransfer function. It usu-
ally will be complex:

p(w) =u(w) +iv(w), (15.85)

where the functions (w) andv(w) are real.

In Eq. (15.84) we assume that the transfer funcidn) is independent of input ampli-
tude and of the presence or absence of any other frequency components. That is, we are
assuming a linear mapping g¢f(¢) onto g(¢z). Then the total output may be obtained by
integrating over the entire input, as modified by the amplifier

1 [ :
g(t) = —/ p()F(w)e'“ dw. (15.86)
2 J_oo
The transfer function is characteristic of the amplifier. Once the transfer function is
known (measured or calculated), the outgqt) can be calculated for any inpuyt(z).
Let us considep(w) as the Fourier (inverse) transform of some functiof):

o(w) = / - O (r)e @ dr. (15.87)
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Then Eq. (15.86) is the Fourier transform of two inverse transforms. From Section 15.5 we
obtain the convolution

g(t) = /oo ()@@ —1)dr. (15.88)

Interpreting Eq. (15.88), we have an input— a “cause’f<=), modified by® (t — 1),
producing an output—an “effect”—{(¢). Adopting the concept ofausality— that the
cause precedes the effect—we must requirer. We do this by requiring

ot —1)=0, T >t (15.89)
Then Eg. (15.88) becomes

t
= fmec-nd (15.90)

—00
The adoption of Eq. (15.89) has profound consequences here and equivalently in disper-
sion theory, Section 7.2.

Significance of ® (¢)

To see the significance df, let f () be a sudden impulse startingmat 0,
f(r)=48(7),

whered(t) is a Dirac delta distribution on the positive side of the origin. Then Eq. (15.90)
becomes

t
g(t) = / S()D(t — 1) dr,

o (15.91)
[}
gm:{o(t)’ o

This identifies®d (¢) as the output function corresponding to a unit impulse-a0. Equa-
tion (15.91) also serves to establish tk&t) is real. Our original transfer function gives
the steady-state output corresponding to a unit-amplitude single-frequencydripuand
¢(w) are Fourier transforms of each other.

From Eq. (15.87) we now have

p() = / h d(t)e " dt, (15.92)
0

with the lower limit set equal to zero by causality (Eq. (15.89)). Wiil¥) real from
Eqg. (15.91) we separate real and imaginary parts and write

u(w) = /OO & (1) coswt dt,
° (15.93)
v(w) = —/ ® (1) sinwt dt, w>0.
0
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From this we see that the real partgfw), u(w), is even, whereas the imaginary part of
¢(w), v(w), is odd:

u(—w) =u(w), v(—w) = —v(w).

Compare this result with Exercise 15.3.1.
Interpreting Eq. (15.93) as Fourier cosine and sine transforms, we have

o(t) = ;/Omu(w) coswt dw

2 o0
= ——/ v(w) Sinwtdw, t>0. (15.94)
7 Jo

Combining Egs. (15.93) and (15.94), we obtain

o0 2 o0
v(w) = —/0 Sina)t{ ;[0 u(@) cosdtda)/} dt, (15.95)
showing that if our transfer function has a real part, it will also have an imaginary part (and
vice versa). Of course, this assumes that the Fourier transforms exist, thus excluding cases
such asb(r) =1.

The imposition of causality has led to a mutual interdependence of the real and imagi-
nary parts of the transfer function. The reader should compare this with the results of the
dispersion theory of Section 7.2, also involving causality.

It may be helpful to show that the parity propertiesugfr) andv(w) require ®(¢) to
vanish for negative. Inverting Eq. (15.87), we have

() = %/ [u(®) + iv(w)][coswt + i sinwt | dw. (15.96)
—00
With u(w) even andv(w) odd, Eq. (15.96) becomes
1 [ 1 [
D)= —/ u(w) coswt dw — —/ v(w)Sinwtdw. (15.97)
T Jo T Jo
From Eq. (15.94),
o0 o0
/ u(w) coswt dw = —/ v(w)Sinwtdw, t>0. (15.98)
0 0

If we reverse the sign of sinwt reverses sign and, from Eq. (15.97),
d(r) =0, t<0

(demonstrating the internal consistency of our analysis).

Exercise

15.7.1 Derive the convolution

g(f)=f f(@)®( —1)dr.
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15.8 LAPLACE TRANSFORMS

Definition

The Laplace transfornf (s) or £ of a functionF (¢) is defined byt

f&)=L{F®)} = lim fae_”F(t)dt=/Ooe_”F(t)dt. (15.99)
a— o0 0

0

A few comments on the existence of the integral are in order. The infinite integfal pf

/Oo F(t)dt,
0

need not exist For instanceF (1) may diverge exponentially for large However, if there
is some constang such that

le ™" F(t)| <M, (15.100)

a positive constant for sufficiently larger > 1o, the Laplace transform (Eq. (15.99)) will
exist fors > sg; F(¢) is said to be obxponential orderAs a counterexampley () = et
does not satisfy the condition given by Eq. (15.100) antbisof exponential ordelﬁ{e’z}
doesnot exist.

The Laplace transform may also fail to exist because of a sufficiently strong singularity
in the functionF (¢) ast — 0; that is,

o
f e S dt
0

diverges at the origin fot < —1. The Laplace transformi{s"} does not exist fon < —1.
Since, for two functiong (r) andG(r), for which the integrals exist

L{aF @) +bG1)} =aL{F@®)} +bL{G 1)}, (15.101)

the operation denoted by is linear.

Elementary Functions

To introduce the Laplace transform, let us apply the operation to some of the elementary
functions. In all cases we assume tldgt) =0 for¢ < 0. If

F(it)=1, t>0,

11This is sometimes calledane-sided Laplace transform the integral from—oo to o0 is referred to as two-sided Laplace
transform. Some authors introduce an additional factos of his extras appears to have little advantage and continually gets

in the way (compare Jeffreys and Jeffreys, Section 14.13 — see the Additional Readings — for additional comments). Generally,
we takes to be real and positive. It is possible to haveomplex, providedi(s) > 0.
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then
o0 1
L£{1} :/ e dt ==, fors > 0. (15.102)
0 N
Again, let
Fiy=e", >0
The Laplace transform becomes
©0 1
£{et} =f e SeMdt=——"—  fors>k. (15.103)
0 s—k
Using this relation, we obtain the Laplace transform of certain other functions. Since
1 . 1
coshkt = E(ekl + ek, sinhkt = E(e’“ — M), (15.104)

we have

E{coshkt}:%( ! + ! ): 5

s—k s+k §s2 — k2’
(15.105)
1 1 1 k
L{sinhkt} = = — = ,
{ } 2<s—k s+k> §2 — k2
both valid fors > k. We have the relations
coskt = coshikt, sinkt = —i sinhikzt. (15.106)

Using Eqs. (15.105) withk replaced by k, we find that the Laplace transforms are

L'{COSkt} = ﬁ,
N
(15.107)
k
L{sinkt} = 5——,
{ b= + k2

both valid fors > 0. Another derivation of this last transform is given in the next sec-
tion. Note that lim_, o £{sinkt} = 1/ k. The Laplace transform assigns a value pk 1o
Jo. sinkt dt.

Finally, for F(z) = t", we have

oo
L{z”}:/ e S dt,
0
which is just the factorial function. Hence

n!

£{t”}=sn+1,

s>0,n>-1 (15.108)

Note that in all these transforms we have the variakile the denominator— negative
powers ofs. In particular, lim_, o, f(s) = 0. The significance of this point is that ff(s)
involves positive powers of (lim;_, o, f(s) — 00), then no inverse transform exists.
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Inverse Transform

There is little importance to these operations unless we can carry out the inverse transform,
as in Fourier transforms. That is, with

E{F(I)} = f(s),
then

LHf©))=F@. (15.109)

This inverse transform isot unique. Two functiong?1(¢) and F>(¢r) may have the same
transform, f (s). However, in this case

Fi(1) — F2(1) = N (1),
whereN (¢) is a null function (Fig. 15.7), indicating that

10
/ N(t)dt =0,
0

for all positive rg. This result is known aterch’s theorem. Therefore to the physicist
and engineeN (1) may almost always be taken as zero and the inverse operation becomes
unique.

The inverse transform can be determined in various ways. (1) A table of transforms can
be built up and used to carry out the inverse transformation, exactly as a table of logarithms
can be used to look up antilogarithms. The preceding transforms constitute the beginnings
of such a table. For a more complete set of Laplace transforms see upcoming Table 15.2
or AMS-55, Chapter 29 (see footnote 4 in Chapter 5 for the reference). Employing partial
fraction expansions and various operational theorems, which are considered in succeeding
sections, facilitates use of the tables.

e There is some justification for suspecting that these tables are probably of more value
in solving textbook exercises than in solving real-world problems.

e (2) A general technique faf~! will be developed in Section 15.12 by using the cal-
culus of residues.

N

® (single point)

FIGURE 15.7 A possible null
function.
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e (3) For the difficulties and the possibilities of a numerical approach — numerical inver-
sion—we refer to the Additional Readings.

Partial Fraction Expansion

Utilization of a table of transforms (or inverse transforms) is facilitated by expangiing
in partial fractions .

Frequentlyf (s), our transform, occurs in the forg(s)/h(s), whereg(s) andh(s) are
polynomials with no common factorg(s) being of lower degree thain(s). If the factors
of h(s) are all linear and distinct, then by the method of partial fractions we may write

fls)=

a2 e (15.110)
s —aj s —dar § —dap

where ther; are independent af Theq; are the roots of(s). If any one of the roots, say,

a1, is multiple (occurringn times), thenf (s) has the form

n
Clm Clm—-1 c1,1 Cj
= : : . . 15.111
F® (s —ap)™ +(s—a1)m_1+ +s—a1+;s—ai ( )

Finally, if one of the factors is quadrati¢s® + ps + ¢), then the numerator, instead of
being a simple constant, will have the form
as+b
s2+ps+q’

There are various ways of determining the constants introduced. For instance, in
Eqg. (15.110) we may multiply through ky — a;) and obtain

i = sILnJ;-(S —a;) f(s). (15.112)

In elementary cases a direct solution is often the easiest.

Example 15.8.1  PARTIAL FRACTION EXPANSION

Let
k2 c as+b
fls)= m =3 + eyl
Putting the right side of the equation over a common denominator and equating like powers
of s in the numerator, we obtain
k2 c(s?2 4+ k%) + s(as + b)
s(s2+k?) - s(s2 +k?)

c+a=0, s2; b=0, sl; ck2=k2, s0.

(15.113)

, (15.114)

Solving thesds # 0), we have
c=1, b=0, a=-1,
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giving
=223 (15.115)
VeSS T2 + k2’ '
and
L7 f(s)} =1 coskt (15.116)
by Egs. (15.102) and (15.106). [ |
Example 15.8.2 A step FuncTioN
As one application of Laplace transforms, consider the evaluation of
o i
F(t) = / SIVEX . (15.117)
0 X
Suppose we take the Laplace transform of this definite (and improper) integral:
% sin¢ o  sint
L‘,{/ xdx} =/ e*s’/ Y dxdr. (15.118)
0 X 0 0 X
Now, interchanging the order of integration (which is justifié8ljye get
/ - / e~ sintx dt | dx =/ e (15.119)
o xLJo 0o s%4x2
since the factor in square brackets is just the Laplace transformof.dtinom the integral
tables,
o dx 1 1(x\|* =
- =—tan | - =—= . 15.120
[ 25=3 ()0 T (15.120)

By Eq. (15.102) we carry out the inverse transformation to obtain
F() = % >0, (15.121)

in agreement with an evaluation by the calculus of residues (Section 7.1). It has been as-
sumed that > 0 in F(¢). For F(—t) we need note only that sirtx) = — sintx, giving
F(—t)=—F (). Finally, if r =0, F(0) is clearly zero. Therefore

% sinzx T 7 >0
/ dx="[au-1]=10 (=0 (15.122)
0 X 2 T
5> t <O.

Note that[o"o(sintx/x)dx, taken as a function af, describes a step function (Fig. 15.8),
a step of heightr atz = 0. This is consistent with Eq. (1.174). [ |

The technique in the preceding example was to (1) introduce a second integration —
the Laplace transform, (2) reverse the order of integration and integrate, and (3) take the

125ee —in the Additional Readings — Jeffreys and Jeffreys (1966), Chapter 1 (uniform convergence of integrals).
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FIGURE 15.8  F(1) = [5° S";de,
a step function.

inverse Laplace transform. There are many opportunities where this technique of reversing
the order of integration can be applied and proved useful. Exercise 15.8.6 is a variation of
this.

Exercises

15.8.1 Prove that
lim sf(s)= lim F(t).
§—00 t—+40

Hint. Assume tha# (1) can be expressed &) = Y .- jant".

15.8.2 Show that
1
— lim L{cosxt} =§(x).

T s—0

15.8.3  Verify that

a® # b2

r cosat —Cosbr | s
b2 — a? C (s24ad)(s2+ b2’
15.8.4  Using partial fraction expansions, show that

1 1 _e—at_e—bt
@ £ {(s+a)(s+b)}_ b—a ° a#b.

1 s _ae™" —pe
(b)‘c{(s+a><s+b>}_ ap 7P

15.8.5 Using partial fraction expansions, show that 8rs b2,
1 1 sinat  sinbt
a) £t =— - ,
@ {(sz—}—az)(sz—i-bz)} az—bz{ a b }
2

1 . .
(b) El{ o +a2§(s2 e } = {asinar — bsinbt}.
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The electrostatic potential of a charged conducting disk is known to have the general
form (circular cylindrical coordinates)

d(p,z2) = fo e M Jo(kp) £ (k) dk,

with f(k) unknown. At large distance& — oo) the potential must approach the
Coulomb potential /47 e9z. Show that

: _q
i@of(k)_

dreg’

Hint. You may setp = 0 and assume a Maclaurin expansionfdk) or, usinge %z,
construct a delta sequence.

Show that
° coss b4
ds = .0 1,
(@) /o s = 20 “Dicosvr/2) <vs
* sing T
b ds = . , 0 2,
() /0 s T 20— Dsinvr/2) =v=

Why is v restricted to (0, 1) for (a), t€0, 2) for (b)? These integrals may be interpreted
as Fourier transforms of ¥ and as Mellin transforms of sinand cos.

Hint. Replaces™" by a Laplace transform integraf{r’~1}/(v — 1)!. Then integrate
with respect ta. The resulting integral can be treated as a beta function (Section 8.4).

A function F(¢) can be expanded in a power series (Maclaurin); that is,

o
F(t) = Zant".
n=0

Then
o0 S S o)
L{F(t)}:/ e‘”Zant"dt=Zan/ e Sidr.
0 n=0 n=0 0
Show thatf (s), the Laplace transform aof (¢), contains no powers of greater than
s~L. Check your result by calculating{s ()}, and comment on this fiasco.

Show that the Laplace transform &f(a, ¢, x) is

.C{M(a, c,x)} = %2F1<a, 1; c, %)

LAPLACE TRANSFORM OF DERIVATIVES

Perhaps the main application of Laplace transforms is in converting differential equations
into simpler forms that may be solved more easily. It will be seen, for instance, that coupled
differential equations with constant coefficients transform to simultaneous linear algebraic
equations.
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Let us transform the first derivative &f(z):

o [T —adF @)
E{F(t)}_/ e - dr.

0

Integrating by parts, we obtain

L{F ()} = e—”F(r)];o +sfooe—”F(t)d;
0
=sL{F(1)} — F(0). (15.123)

Strictly speakingF (0) = F(+0)'3andd F/dt is required to be at least piecewise contin-
uous for 0< ¢ < oo. Naturally, bothF (¢) and its derivative must be such that the integrals
do not diverge. Incidentally, Eq. (15.123) provides another proof of Exercise 15.8.8. An
extension gives

L{FP @)} = s2L{F ()} — sF(+0) — F'(+0), (15.124)
LIFP 0} =s"L{F(O)} —s" T F+0) — - = F"D(4+0).  (15.125)

The Laplace transform, like the Fourier transform, replaces differentiation with multi-
plication. In the following examples ODEs become algebraic equations. Here is the power
and the utility of the Laplace transform. But see Example 15.10.3 for what may happen if
the coefficients are not constant.

Note how the initial conditionsF(+0), F’(+0), and so on, are incorporated into the
transform. Equation (15.124) may be used to deflygink:}. We use the identity

dZ
—k?sinkt = T Sinke. (15.126)

Then applying the Laplace transform operation, we have

d2

—k?L{sinkt} = £{ — sinkt
dr?
PP . d .
= s°L{sinkt} — s sin(0) — — sinkt| . (15.127)
dt =0

Since sif0) = 0 andd /dr sinkt|,—g = k,

L{sinkt} = (15.128)

2+ k2

verifying Eq. (15.107).

137ero is approached from the positive side.
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Example 15.9.1  SimpLE HARMONIC OSCILLATOR
As a physical example, consider a massscillating under the influence of an ideal spring,

spring constant. As usual, friction is neglected. Then Newton’s second law becomes

d?X (1)
dr?
also, we take as initial conditions

X(0)=Xo,  X(0)=0.

+kX(t)=0; (15.129)

Applying the Laplace transform, we obtain

d’Xx
mL e +kL{X (1)} =0, (15.130)
and by use of Eq. (15.124) this becomes
mszx(s) —msXo+kx(s) =0, (15.131)
. k
x(5)=Xo5—p.  Withwd= . (15.132)
R O m
From Eq. (15.107) this is seen to be the transform okgpswhich gives
X (1) = Xo CoSwof, (15.133)
as expected. [ |

Example 15.9.2  EARTH’S NUTATION

A somewhat more involved example is the nutation of the earth’s poles (force-free pre-
cession). If we treat the Earth as a rigid (oblate) spheroid, the Euler equations of motion
reduce to

dX dy
= ay, yr =+aX, (15.134)
where a = [(I; — I)/Ilw;, X = wx, Y = oy, with angular velocity vectore =
(wyx, wy, w;) (Fig. 15.9),1; = moment of inertia about the-axis and/, = I, moment
of inertia about thec- (or y-)axis. Thez-axis coincides with the axis of symmetry of the
Earth. It differs from the axis for the Earth’s daily rotatian,by some 15 meters, measured
at the poles. Transformation of these coupled differential equations yields

sx(s) — X(0) = —ay(s), sy(s) — Y (0) = ax(s). (15.135)
Combining to eliminatey (s), we have
s%x (s) —sX(0)+aY (0 = —a’x (s),

or

— Y(O)SL. (15.136)

x(s)=X(0) T a2

K
sz—i—az
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/ (a);: wy)

FIGURE 15.9
Hence
X(t) = X(0)cosat — Y (0) sinat. (15.137)
Similarly,
Y (t) = X (0)sinar + Y (0) cosat. (15.138)

This is seen to be a rotation of the vectdf, Y) counterclockwise (for > 0) about the
z-axis with angle = ar and angular velocity.
A direct interpretation may be found by choosing the time axis soXi@t—= 0. Then

X () = X (0) cosat, Y () = X(0)sinat, (15.139)

which are the parametric equations for rotatior{f Y) in a circular orbit of radius< (0),
with angular velocity: in the counterclockwise sense.
In the case of the Earth’s angular velocity, vecio¢0) is about 15 meters, whereas
a, as defined here, corresponds to a peKidd/a) of some 300 days. Actually because
of departures from the idealized rigid body assumed in setting up Euler’s equations, the
period is about 427 day$.1f in Eq. (15.134) we set

X(t) =L, Y1) =Ly,

whereL, andL, are thex- andy-components of the angular momentlunu = —g; B.,

g1 is the gyromagnetic ratio, an®, is the magnetic field (along the-axis), then

Eq. (15.134) describes the Larmor precession of charged bodies in a uniform magnetic
field B. [ |

14p. Menzel, ed.Fundamental Formulas of PhysicEnglewood Cliffs, NJ: Prentice-Hall (1955), reprinted, 2nd ed., Dover
(1960), p. 695.
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Dirac Delta Function

For use with differential equations one further transform is helpful —the Dirac delta func-

tion:1°
o0
L{s@ —10)} = / e 8@t — to)dt = 7570, for tg > 0, (15.140)
0
and forrg=0
£{sm}=1, (15.141)
where it is assumed that we are using a representation of the delta function such that
o0
/ S(t)ydr =1, §() =0, forr > 0. (15.142)
0
As an alternate method(r) may be considered the limit as— 0 of F(¢), where
0, t <0,
F)y={e1 O<r<e, (15.143)
0, t>e.
By direct calculation
1—e 8
L{F@)=—5 (15.144)
ES

Taking the limit of the integral (instead of the integral of the limit), we have
li Fi)l=1
8@05{ (t)} ’
or Eq. (15.141),
c{sn}=1

This delta function is frequently called thmpulse function because it is so useful in
describing impulsive forces, that is, forces lasting only a short time.

Example 15.9.3  IMPULSIVE FORCE

Newton'’s second law for impulsive force acting on a particle of nrmaggecomes

d?x

whereP is a constant. Transforming, we obtain

ms?x(s) —msX(0) —mX'(0) = P. (15.146)

15strictly speaking, the Dirac delta function is undefined. However, the integral over it is well defined. This approach is developed
in Section 1.16 using delta sequences.
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For a particle starting from resk’(0) = 0.16 We shall also takél (0) = 0. Then

P
x(s) = —s, (15.147)
ms
and
P
X(t) = —t, (15.148)
m
dX P
) =, a constant (15.149)
dt m

The effect of the impuls@§(¢) is to transfer (instantaneousl®)units of linear momentum

to the particle.
A similar analysis applies to the ballistic galvanometer. The torque on the galvanometer

is given initially by k¢, in which is a pulse of current ankis a proportionality constant.
Sinceu is of short duration, we set

ki=kq (1), (15.150)

whereg is the total charge carried by the currenthen, with/ the moment of inertia,

d%o
11— =kq 6(1), 15.151
72 = kq 8@ ( )
and, transforming as before, we find that the effect of the current pulse is a trangter of
units ofangular momentum to the galvanometer. |

Exercises

15.9.1  Use the expression for the transform of a second derivative to obtain the transform of
coskt.

15.9.2 A masgsn is attached to one end of an unstretched spring, spring corstiaigt. 15.10).
Attime ¢t = 0 the free end of the spring experiences a constant accelesat@ray from
the mass. Using Laplace transforms,

m RO — 0 ——x;

FIGURE 15.10 Spring.

16This should bex’(+0). To include the effect of the impulse, consider that the impulse will occusat and lete — 0.
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(@) Find the positionr of m as a function of time.
(b) Determine the limiting form of (z) for small:.

1 k
ANS. (@) x = —at? — iz(l— coswt), w’=—,
2 ) w m
b x=224 o<l
4!
15.9.3 Radioactive nuclei decay according to the law
dN
— =—AN,
dt

N being the concentration of a given nuclide anbleing the particular decay constant.
This equation may be interpreted as stating that the rate of decay is proportional to the
number of these radioactive nuclei present. They all decay independently.

In a radioactive series af different nuclides, starting wittvy,

dN1 N
d[ - l 17
dN>
5 = AN1 — A2No, and so on
dN,
dt" = Ap—1Np_1, stable.

Find N1(t), No(t), Na(t), n = 3, with N1(0) = No, N2(0) = N3(0) = O.

A
ANS.N1(1) = Noe ™!, Na(t) = No——— (e 11! — ¢7*2'),
Ao — A1

A2 Ly Al
Na(t) = No( 1— vy T k),
3(1) o( )»2—)»16 + kz—kle

Find an approximate expression fip and N3, valid for small wheniq ~ Ao.

N
ANS. N> ~ NgA1t, N3~ 70)»1)»2t2.
Find approximate expressions fp and N3, valid for larger, when
(@) A1 A2,

(b) A1 < A2
ANS. (a) Na ~ Nge 2!,

N3~ No(l—e2"), aar>1.
(b) N2~ Noi—;e_“’,
N3~ No(1—e ™), Jat>> 1.
15.9.4 The formation of an isotope in a nuclear reactor is given by

dN>
T =nvo1N19— A2N2(t) — nvoaNo(t).
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Here the productv is the neutron flux, neutrons per cubic centimeter, times centimeters
per second mean velocity; ando, (cn?) are measures of the probability of neutron
absorption by the original isotope, concentratigyy, which is assumed constant and
the newly formed isotope, concentratidf, respectively. The radioactive decay con-
stant for the isotope i5;.

(@) Find the concentratioN> of the new isotope as a function of time.

(b) If the original element is B3, o1 = 400 barns= 400 x 10~2* cn?, oo =
1000 barns= 1000x 10724 cm?, andi, = 1.4 x 107 9s7L. If Nyjo=10°° and
(nv) = 10° cm2s71, find N, the concentration of EG* after one year of con-
tinuous irradiation. Is the assumption thét is constant justified?

15.9.5 Inanuclear reactor Xé®is formed as both a direct fission product and a decay product
of 1135 half-life, 6.7 hours. The half-life of X% is 9.2 hours. Because X& strongly
absorbs thermal neutrons thereby “poisoning” the nuclear reactor, its concentration is a
matter of great interest. The relevant equations are

Ny Ny — 2N
L o _ ’
dr YI9ofiNy IINT
dNx
T ANr+yxporNy —AxNx —poxNx.

Here N; = concentration of13° (Xe!35, U23%), Assume

Ny = constant
y1 = yield of 1'% per fission= 0.060,
yx = yield of Xe!3® direct from fission= 0.003
In2  0.693

ar = 113° (Xe'%9) decay constant — = :
1172 1172

o s = thermal neutron fission cross section foig)
ox = thermal neutron absorption cross section folRe
= 3.5 x 10° barns=3.5 x 1078 cn?.
(o7 the absorption cross section 8f%, is negligible)

@ = neutron flux= neutrongcm® x mean velocity (crys).

(@) FindNx(z) in terms of neutron fluy and the product s Ny .

(b) FiNdNx(t — 00).

(c) After Nx has reached equilibrium, the reactor is shut daw, 0. Find Nx (¢) fol-
lowing shutdown. Notice the increase ¥y, which may for a few hours interfere
with starting the reactor up again.
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15.10 OTHER PROPERTIES

Substitution

If we replace the parameter by s — a in the definition of the Laplace transform
(Eq. (15.99)), we have

o0

f(s—a):/ooe_(s_“)’F(t)dtzf e S F (1) dt
0 0

= L{e"F(1)}. (15.152)

Hence the replacement efwith s — a corresponds to multiplying (¢) by ¢*, and con-
versely. This result can be used to good advantage in extending our table of transforms.
From Eq. (15.107) we find immediately that

k

L{esinkt} = v 12

(15.153)

also,

' _ s —a
E{ea COSkI} = m, s >a.

Example 15.10.1  DampeD OsciLLATOR
These expressions are useful when we consider an oscillating mass with damping propor-
tional to the velocity. Equation (15.129), with such damping added, becomes
mX"(t) +bX'(t) +kX () =0, (15.154)

in which b is a proportionality constant. Let us assume that the particle starts from rest at
X (0) = Xo, X'(0) = 0. The transformed equation is

m[szx(s) — on] + b[sx(s) - Xo] +kx(s) =0, (15.155)
and
ms+b
=Xp—s5——. 15.156
x(s) 0 T by 1k ( )
This may be handled by completing the square of the denominator:
bk b\> [k b2
2
s+ —= — ——— . 15.157
S+ms+m (S+2m> +<m 4m2) ( )
If the damping is smallb? < 4 km, the last term is positive and will be denotedcbfl.
s+b/m
x(s) = Xo /2 5
(s +b/2m)* + w7
s+b/2m (b/2mw1)wy

(15.158)

CsHb2zmZtw? O t+b/2m2 R
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By Eg. (15.153),

b .
X (1) = Xoe(b/2m1 (COSa)lt + Slnw1t>
2mw1
= Xo R~ /2 cogwyt — g), (15.159)
w1
where
tan b 2_ k
= , wy=—.
¢ 2mwq 0" m

Of course, a® — 0, this solution goes over to the undamped solution (Section 15H).

RLC Analog

It is worth noting the similarity between this damped simple harmonic oscillation of a mass
on a spring and aRLC circuit (resistance, inductance, and capacitance) (Fig. 15.11). At
any instant the sum of the potential differences around the loop must be zero (Kirchhoff’s
law, conservation of energy). This gives

dl 1 /!
L—+RI+— | Idt=0. 15.160
dt + + C f ( )

Differentiating the current with respect to time (to eliminate the integral), we have

27 I 1
d +Rd—+—I=O. (15.161)

L_
dt? dt C

If we replacel (r) with X (r), L with m, R with b, andC~1 with k, then Eq. (15.161) is
identical with the mechanical problem. It is but one example of the unification of diverse
branches of physics by mathematics. A more complete discussion will be found in Olson’s
book1”

XS
L

FIGURE 15.11 RLCcircuit.

4. F. OlsonDynamical AnalogiesNew York: Van Nostrand (1943).
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F()
A

>t

t=b

FIGURE 15.12 Translation.

Translation

This time letf (s) be multiplied bye =", b > 0:

o0

e—bs‘f(s) — e—bs/ e—StF(t) dt
0

o0
= / e S F (1) ds. (15.162)
0

Now lets 4+ b = 7. Equation (15.162) becomes

e f(s) = /oo e TF(r —b)dt
b

=/Ooe_STF(r—b)u(r—b)dt, (15.163)
0

whereu(t — b) is the unit step function. This relation is often called Heaviside shifting
theorem (Fig. 15.12).

Since F(t) is assumed to be equal to zero fok 0, F(r —b) =0 for 0< t < b.
Therefore we can extend the lower limit to zero without changing the value of the integral.
Then, noting that is only a variable of integration, we obtain

e f(s) = L{F(t — b)) (15.164)

Example 15.10.2  ELECTROMAGNETIC WAVES

The electromagnetic wave equation with= E, or E;, a transverse wave propagating
along thex-axis, is

PE(x,1) 10°E(x,1)

— 0. 15.165
dx2 v2 9t ( )
Transforming this equation with respectrtove get
92 52 s 10E(x,1)
Wﬁ{E(x,t)} —EL{E(x,r)}JrﬁE(x,O)Jrﬁ 5 ,=o:O’ (15.166)
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If we have the initial conditior (x, 0) = 0 and

0E
ol _g
at  |,_o
then
92 52
The solution (of thiODE) is
L{E(x, )} = c1e6IVX 4 pets/0x (15.168)

The “constants”c; and ¢, are obtained by additional boundary conditions. They are
constant with respect t@ but may depend on. If our wave remains finite as —

oo, L{E(x, t)} will also remain finite. Hencez = 0. If E(0, ¢) is denoted byF(¢), then
c1= f(s)and

L{E(x,0)} = e /% £(s). (15.169)
From the translation property (Eg. (15.164)) we find immediately that

Fe=35).  1=z3
E(x,1) = (15.170)
0, t < %

Differentiation and substitution into Eq. (15.165) verifies Eq. (15.170). Our solution rep-
resents a wave (or pulse) moving in the positivdirection with velocityv. Note that for

x > vt the region remains undisturbed; the pulse has not had time to get there. If we had
wanted a signal propagated along the negatiaxis, c; would have been set equal to 0
and we would have obtained

F(t+%), 1>=-

)

(15.171)

A

E(x,t)= {

e = 2=

0, t

)

a wave along the negatiweaxis. [ |

Derivative of a Transform

When F(t), which is at least piecewise continuous, andre chosen so that™' F(r)
converges exponentially for largethe integral

o
/ e STF(t)dt
0

is uniformly convergent and may be differentiated (under the integral sign) with respect
tos. Then

fls) = /OO(—t)e_”F(t) dt = L{—1F(1)}. (15.172)
0

Continuing this process, we obtain
FPs) = L{(="F®)}. (15.173)
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All the integrals so obtained will be uniformly convergent because of the decreasing expo-
nential behavior 0= F ().
This same technique may be applied to generate more transforms. For example,

o0 1
Ll =/ et dr = ——, s > k. (15.174)
0 s—k
Differentiating with respect te (or with respect ta), we obtain
1
ki) _
E{te ’}_ Tt s> k. (15.175)

Example 15.10.3  Bessel’s EQUATION

An interesting application of a differentiated Laplace transform appears in the solution of
Bessel's equation with = 0. From Chapter 11 we have

x2y"(x) 4+ xy' (x) + x2y(x) =0. (15.176)

Dividing by x and substituting = x and F (1) = y(x) to agree with the present notation,
we see that the Bessel equation becomes

tF'(t)+ F'(t) +tF(t) =0. (15.177)

We need a regular solution, in particular(0) = 1. From Eq. (15.177) withr = 0O,
F’(+0) = 0. Also, we assume that our unknowi{¢) has a transform. Transforming and
using Egs. (15.123), (15.124), and (15.172), we have

d ., d _
—a[s fls)—s]+sf(s) —1— af(s) =0. (15.178)
Rearranging Eq. (15.178), we obtain
(s2+1) f'(s) +sf(s) =0, (15.179)
or
df  sds
St (15.180)

a first-order ODE. By integration,
Inf(s)=-3In(s?+1) +InC, (15.181)
which may be rewritten as

fls) =

. (15.182)
s24+1

To make use of Eq. (15.108), we expafi¢h) in a series of negative powers gfconver-

gent fors > 1:
C 1\ 12
N N

C[l 1 1.3 (=D (2n)! :|

-4 - .4 =7 15.183
252 + 22. 2154 (2nn!)252n ( )
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Inverting, term by term, we obtain

0 (_1)nt2n
F(1) =CZW. (15.184)
n=0
WhenC is set equal to 1, as required by the initial conditi®) = 1, F(¢) is just Jo(¢),

our familiar Bessel function of order zero. Hence

1

R e
Note that we assumed> 1. The proof fors > 0 is left as a problem.

It is worth noting that this application was successful and relatively easy because we
took n = 0 in Bessel's equation. This made it possible to divide out a factar (@fr 7).
If this had not been done, the terms of the farfi () would have introduced a second
derivative of f(s). The resulting equation would have been no easier to solve than the
original one.

When we go beyond linear ODEs with constant coefficients, the Laplace transform may
still be applied, but there is no guarantee that it will be helpful.

The application to Bessel's equation# 0, will be found in the references. Alterna-
tively, we can show that

(15.185)

a " (Vs +aZ —s)"

LiJy(at)} = 15.186
{ntan) N (15.186)
by expressing/,, (t) as an infinite series and transforming term by term. [ |

Integration of Transforms

Again, with F(¢) at least piecewise continuous andarge enough so that™*' F(¢) de-
creases exponentially (as— 00), the integral

fx) = f T Ry dr (15.187)
0

is uniformly convergent with respect ta This justifies reversing the order of integration
in the following equation:

b b [e'e)
/ f(x)dx =/ dx/ dte M F(1)
K s 0

_ / %’)(e—st — Y ar, (15.188)
0

on integrating with respect to. The lower limits is chosen large enough so théts) is
within the region of uniform convergence. Now lettihg~> oo, we have

/OO fx)dx = foo @f”dr - L{@} (15.189)
K 0

provided thatF (r) /1 is finite atr = 0 or diverges less strongly than® (so thatZ{F (r)/1}
will exist).
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Limits of Integration — Unit Step Function

The actual limits of integration for the Laplace transform may be specified with the (Heav-
iside) unit step function

0, t<k
u(t_k):{l, t>k.
For instance,
© 1
Llu(t —k)} =/ e Sdt ==e.
k

N

A rectangular pulse of widtlk and unit height is described by (r) = u(t) — u(t — k).
Taking the Laplace transform, we obtain

k 1
Llu@t) —ut —k)} = / edt==(1—eF).
S

0

The unit step function is also used in Eq. (15.163) and could be invoked in Exer-
cise 15.10.13.

Exercises

15.10.1 Solve Eq. (15.154), which describes a damped simple harmonic oscillat&n(@r=
Xo, X'(0) =0, and

(@) b®=4km (critically damped),
(b) 52> 4 km (overdamped).

b
ANS. (a) X (t) = Xgeb/2m! <1 + %t).

15.10.2 Solve Eq. (15.154), which describes a damped simple harmonic oscillaté(@e= 0,
X'(0) = vg, and

(@) b2 < 4km (underdamped),
(b) b2 =4 km (critically damped),
(c) b?> 4 km (overdamped).
ANS. (2) X (1) = ~2 = /21 gjng, 1,
w1
(b) X (1) = vore~b/2m1,

15.10.3 The motion of a body falling in a resisting medium may be described by

d?X (1) dX (1)
m =mg—b——
dr? dt




986

Chapter 15 Integral Transforms

15.10.4

15.10.5

15.10.6

15.10.7

|

\
Al
=
[\4

T

FIGURE 15.13 Ringing circuit.

when the retarding force is proportional to the velocity. F¥d) andd X (¢) /dt for the
initial conditions

ax|
dt,o_

Ringing circuit In certain electronic circuits, resistance, inductance, and capacitance
are placed in the plate circuit in parallel (Fig. 15.13). A constant voltage is maintained
across the parallel elements, keeping the capacitor charged. At tirr@ the circuit
is disconnected from the voltage source. Find the voltages across the parallel elements
R, L, andC as a function of time. Assumg to be large.

Hint. By Kirchhoff’s laws

X0 =

Ir+1Ic+1,=0 and Er=Ec=Ep,

where
dly,

Er = IRrR, E; =L—
dt

=—+—/ Ic dt,

go = initial charge of capacitor.
With the DC impedance of =0, let I, (0) = Iy, E;(0) = 0. This meangg =0

With Jo(r) expressed as a contour integral, apply the Laplace transform operation, re-
verse the order of integration, and thus show that

L{lon})=(>+1)"Y%  fors>o0.

Develop the Laplace transform of,(¢) from L{Jo(t)} by using the Bessel function
recurrence relations.
Hint. Here is a chance to use mathematical induction.

A calculation of the magnetic field of a circular current loop in circular cylindrical
coordinates leads to the integral

o
/ e Xk Ji(ka) dk, N(z) = 0.
0

Show that this integral is equal &g/ (z2 + a?)%/2.
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15.10.8 The electrostatic potential of a point chakgeat the origin in circular cylindrical coor-
dinates is

00 1
q f e Jotkp)y dk = —2 % (z) > 0.

4reg Jo drey (p2+ 7)Y
From this relation show that the Fourier cosine and sine transformgké) are

= o0 2 2\—1/2
(@) \/;Fc{Jo(kp)}=/0 Jo(kp>coskcdk={((f RN

o>,

T o 0,
b —Fs{Jok = Jok ink¢ dk = _
(b) > {Jotkp)} /0 o(kp) sink¢ {(pz—gz) vz

Hint. Replace; by z + i¢ and take the limit ag — 0.
15.10.9 Show that
E{Io(at)} = (s2 - az)_l/z, s> a.
15.10.10 Verify the following Laplace transforms:
(8) L{jotan}= L{ sinat } - Ecot—1(5>,

at a a

{
(b) L{no(ar)} does not exist,
{

© Lliotan) = c{ S'”h“’} = Lpite_ lcothl(i>,
a a

at 2a s—a

(d) L{ko(ar)} does not exist.

15.10.11 Develop a Laplace transform solution of Laguerre’s equation
tF't)+A—-0)F'(t)+nF(t)=0.

Note that you need a derivative of a transform and a transform of derivatives. Go as far
as you can withe; then (and only then) sat=0.

15.10.12 Show that the Laplace transform of the Laguerre polynoihjdl) is given by

(s —a)"

st s > 0.

E{Ln (at)} =
15.10.13 Show that

QEmﬂzim@+D, s >0,

o e—f o0 e—xl
Eq1(t) = —dt = dx.
t T 1 X

E1(t) is the exponential-integral function.

where
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15.10.14 (a) From Eg. (15.189) show that

oo oo F()
/ f(x)dx:/ —=dt,
0 0 t

provided the integrals exist.
(b) From the preceding result show that

/OO Simdr T
0 t 2’

in agreement with Egs. (15.122) and (7.56).

15.10.15 (a) Show that
ink
L{w} =cot‘1<£>.
t k
(b) Using this result (witkk = 1), prove that

L{si(t)} :—%tan‘ls,

where
. °° sin o
si(t) = —/ —xdx, the sine integral
t X

15.10.16 If F(r) is periodic (Fig. 15.14) with a period so thatF (r + a) = F(¢) for all t > 0,
show that

e SUF(t)dt
cfpo) =L IO

with the integration now over only tHest period of F(r).
15.10.17 Find the Laplace transform of the square wave (pesipdefined by

)

1, O<t<35
F(t) = B
0, 5 <t<a.
1 1—e®/2
ANS. == .
1) s l—eas
20
A
>t
a 2a 3a

FIGURE 15.14 Periodic function.
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15.10.18 Show that

53 as® — 2a°
(@) L{coshatcosat} = ey () L{sinhatcosat} = W
24 2,48 202
(b) L{coshatsinat} = %, (d) L{sinhatsinat} = s4+—:a4-

15.10.19 Show that
@ £7H(s? +a2)_2} = % sinar — 222tcosm,
(b) Eil{s(s2 + az)iz} = %t sinat,
(c) E‘l{s2(32+a2)_2} = isinat+ }tcosm
2a 2 '

d) £7Hs3(s2+ az)—Z} = cosar — %tsinat.

15.10.20 Show that
£{ (> = k3" YPu — b)) = Ko(ks).

Hint. Try transforming an integral representation&af(ks) into the Laplace transform
integral.

15.10.21 The Laplace transform

o0 S
—X§
/0 e xJo(x)dx = 7@2 1372

S
_ -y J d
/ ¢ y°< ) Y 23R

which is in Gauss—Laguerre quadrature form. Evaluate this integrakdt.0, 0.9, 0.8,

, decreasing in steps of 0.1 until the relative error rises to 10 percent. (The effect
of decreasing is to make the integrand oscillate more rapidly per unit length, éius
decreasing the accuracy of the numerical quadrature.)

15.10.22 (a) Evaluate

may be rewritten as

o0
/ e *k Jy(ka) dk
0

by the Gauss—Laguerre quadrature. Take1l andz = 0.1(0.1)1.0.
(b) From the analytic form, Exercise 15.10.7, calculate the absolute error and the rel-
ative error.
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15.11 CONVOLUTION (FALTUNGS) THEOREM

One of the most important properties of the Laplace transform is that given by the convo-
lution, or Faltungs, theoreA¥ We take two transforms,

A =L{F®) and  fols) = L] 0], (15.190)

and multiply them together. To avoid complications when changing variables, we hold the
upper limits finite:

a—x

f1(s) fa(s) = lim /“ e F1(x) dxf e Y Fa(y)dy. (15.191)
a— o0 0 0

The upper limits are chosen so that the area of integration, shown in Fig. 15.15a, is the
shaded triangle, not the square. If we integrate over a square inytpdane, we have

a parallelogram in thez-plane, which simply adds complications. This modification is
permissible because the two integrands are assumed to decrease exponentially. In the limit
a — o0, the integral over the unshaded triangle will give zero contribution. Substituting

x =t —2z,y =z, the region of integration is mapped into the triangle shown in Fig. 15.15b.

To verify the mapping, map the vertices= x + y, z = y. Using Jacobians to transform

the element of area, we have

ax dy
dxdy = 88; g; dtdzz‘_ll g‘dtdz (15.192)
9z 9z

or dx dy = dt dz. With this substitution Eq. (15.191) becomes

a t
f1(5) fa(s) = lim / e‘”/ Fi1(t — 2)Fo(z)dz dt
a—> o0 0 O

t
- c{/ Fi(t — 2) F2(2) dz}. (15.193)
0
y z
A A (a, a)
1 3
. 2 g
a Ll b (G,O} ™
FIGURE 15.15

Change of variables,
(a) xy-plane (b)zz-plane.

18An alternate derivation employs the Bromwich integral (Section 15.12). This is Exercise 15.12.3.
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For convenience this integral is represented by the symbol
t
/ Fi(t —2)F2(2)dz=F1 % F» (15.194)
0
and referred to as theonvolution, closely analogous to the Fourier convolution (Sec-
tion 15.5). If we substitutev = ¢ — z, we find
F1x Fo = Fo x Fq, (15.195)

showing that the relation is symmetric.
Carrying out the inverse transform, we also find

t
L7H f1(5) f2(9)} =/0 Fi(t —2)F2(2)dz. (15.196)

This can be useful in the development of new transforms or as an alternative to a partial
fraction expansion. One immediate application is in the solution of integral equations (Sec-
tion 16.2). Since the upper limit, is variable, this Laplace convolution is useful in treating
\olterra integral equations. The Fourier convolution with fixed (infinite) limits would apply

to Fredholm integral equations.

Example 15.11.1  DRIVEN OSCILLATOR WITH DAMPING

As one illustration of the use of the convolution theorem, let us return to the mass
a spring, with damping and a driving fordé(r). The equation of motion ((15.129) or
(15.154)) now becomes

mX"(t) +bX'(t) + kX (t) = F (). (15.197)

Initial conditionsX (0) = 0, X’(0) = 0 are used to simplify this illustration, and the trans-
formed equation is

ms°x () +bsx(s) + kx(s) = f(s), (15.198)

or

f(s) 1

, 15.199
m (s+b/2m)2+a)% ( )

x(s) =

wherew? = k/m — b?/4m?, as before.
By the convolution theorem (Eg. (15.193) or (15.196)),

1 ! .
X(1)=—— / F(t —z)e” P2 singyz dz. (15.200)
maw1 Jo
If the force is impulsive F (r) = P58 (t),1°
P .
X(t) = ——e ®/2M singys. (15.201)
mwy

19Note thats (¢) liesinside the interval[0, ].
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P represents the momentum transferred by the impulse, and the coRgtartakes the
place of an initial velocityX’(0).

If F(¢r) = Fpsinwt, EQ. (15.200) may be used, but a partial fraction expansion is perhaps
more convenient. With

Fow
f(s)= s2+—a)2
Eq. (15.199) becomes
Fow 1 1
x(s) = m 24w (s +b/2m)2+a)%
Fow[a's +b cs+d
= |:s2+cu2 + (s+b/2m)2+w%:|' (15.202)

The coefficients:’, b, ¢/, andd’ are independent of. Direct calculation shows

Sincec’ andd’ will lead to exponentially decreasing terms (transients), they will be dis-
carded here. Carrying out the inverse operation, we find for the steady-state solution

Fo

X)) = sin(wt — @), 15.203
@) [b2w2+m2(a)§ — 222 (wf — @) ( )
where
tanp = — ¢
Y= m(a)(z) — w?) '

Differentiating the denominator, we find that the amplitude has a maximum when

2 2
W2 =2 — b — w2 b
U0 o2 T L g2

This is the resonance conditiéPAt resonance the amplitude becom@gbw1, showing
that the mass: goes into infinite oscillation at resonance if damping is negleg@ied 0).
It is worth noting that we have had three different characteristic frequencies:

(15.204)

2
2_ 2 b
©2=®0 " 5,2
resonance for forced oscillations, with damping;
2
I
1770 g2

20The amplitude (squared) has the typical resonance denominator, the Lorentz line shape, Exercise 15.3.9.
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free oscillation frequency, with damping; and
k

2
wyg=—,
O m

free oscillation frequency, no damping. They coincide only if the damping is zero

Returning to Egs. (15.197) and (15.199), Eq. (15.197) is our ODE for the response of
a dynamical system to an arbitrary driving force. The final response clearly depends on both
the driving force and the characteristics of our system. This dual dependence is separated
in the transform space. In Eq. (15.199) the transform of the response (output) appears as
the product of two factors, one describing the driving force (input) and the other describing
the dynamical system. This latter part, which modifies the input and yields the output, is
often called dransfer function. Specifically, (s +b/2m)2+w%]_1 is the transfer function
corresponding to this damped oscillator. The concept of a transfer function is of great use in
the field of servomechanisms. Often the characteristics of a particular servomechanism are
described by giving its transfer function. The convolution theorem then yields the output
signal for a particular input signal.

Exercises

15.11.1 From the convolution theorem show that
1 t
—f(S)=£{/ F(x)dx},
s 0
where f(s) = L{F(¢)}.

15.11.2 If F(t) =t andG(t) =t*, a > -1, b > —1:
(@) Show that the convolution
1
FxG = ta+b+1/(; ya(l _ y)b dy

(b) By using the convolution theorem, show that
1
/0 Y(A=-yrdy=

a'b!
(@a+b+1

This is the Euler formula for the beta function (Eg. (8.59a)).
15.11.3 Using the convolution integral, calculate

N
£t , 2 £ b2
{ 2+ ad) (2 + b?) } a#

15.11.4 Anundamped oscillator is driven by a forég sinwt. Find the displacement as a func-
tion of time. Notice that it is a linear combination of two simple harmonic motions,
one with the frequency of the driving force and one with the frequencygf the free
oscillator. (AssumeX (0) = X'(0) =0.)

F
ANS. X () = o/m <2 Sinwot — Siﬂa)t).

2_ .2
w C()O o
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Other exercises involving the Laplace convolution appear in Section 16.2.

15.12 INVERSE LAPLACE TRANSFORM

Bromwich Integral

We now develop an expression for the inverse Laplace transforfappearing in the
equation

Fy=L"Yf} (15.205)

One approach lies in the Fourier transform, for which we know the inverse relation. There
is a difficulty, however. Our Fourier transformable function had to satisfy the Dirichlet
conditions. In particular, we required that

im G(w)=0 (15.206)
w—> 00

so that the infinite integral would be well defingNow we wish to treat function# (1)
that may diverge exponentially. To surmount this difficulty, we extract an exponential fac-
tor, e”?, from our (possibly) divergent Laplace function and write

F(t)=e""G(). (15.207)

If F(r) diverges ag®’, we requirey to be greater tham sothat G(¢) will be convergent
Now, with G (r) = 0 fort < 0 and otherwise suitably restricted so that it may be represented
by a Fourier integral (Eq. (15.20)),

1 oo . o0 )
G(t) = —/ e du/ G()e "V dv. (15.208)
27 J - 0

Using Eq. (15.207), we may rewrite (15.208) as
eVt 0o 0 .
F(t) = —/ e du/ F(v)e 7Pe " dv. (15.209)
2r —00 0

Now, with the change of variable,
s=y+iu, (15.210)

the integral ovew is thrown into the form of a Laplace transform,

/OO fe"dv= f(s); (15.211)
0

21if delta functions are included; (w) may be a cosine. Although this does not satisfy Eq. (15.206)) is still bounded.
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A

it

/ s-plz:ne

®

Possible singularities
of e fis)

FIGURE 15.16 Singularities
of &% f(s).

s is now a complex variable, ani(s) > y to guarantee convergence. Notice that the
Laplace transform has mapped a function specified on the positive real axis onto the com-
plex planedi(s) > y .22

With y as a constantls = i du. Substituting Eq. (15.211) into Eq. (15.209), we obtain

1 y+ioco

F(it)= —f e’ f(s)ds. (15.212)
2mi y—ioco

Here is ourinverse transform. We have rotated the line of integration througt® By

usingds =i du). The path has become an infinite vertical line in the complex plane, the

constanty having been chosen so that all the singularitieg @f) are on the left-hand side

(Fig. 15.16).

Equation (15.212), our inverse transformation, is usually known a8tbewich in-
tegral, although sometimes it is referred to as faurier—Mellin theorem or Fourier—
Mellin integral . This integral may now be evaluated by the regular methods of contour
integration (Chapter 7). f > 0, the contour may be closed by an infinite semicircle in the
left half-plane. Then by the residue theorem (Section 7.1)

F(r) = X (residues included fdR(s) < y). (15.213)

Possibly this means of evaluation witl(s) ranging through negative values seems para-
doxical in view of our previous requirement thafs) > y. The paradox disappears when
we recall that the requiremefit(s) > y was imposed to guarantee convergence of the
Laplace transform integral that defingds). Once f(s) is obtained, we may then pro-
ceed to exploit its properties as an analytical function in the complex plane wherever we
choose?? In effect we are employing analytic continuation to gét(r)} in the left half-
plane, exactly as the recurrence relation for the factorial function was used to extend the
Euler integral definition (Eq. (8.5)) to the left half-plane.

Perhaps a pair of examples may clarify the evaluation of Eq. (15.212).

22For a derivation of the inverse Laplace transform using only real variables, see C. L. Bohn and R. W. Flynn, Real variable
inversion of Laplace transforms: An application in plasma phy#ios. J. Phys46: 1250 (1978).

23|n numerical work £ (s) may well be available only for discrete real, positive values.ofhen numerical procedures are
indicated. See Krylov and Skoblya in the Additional Reading.
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Example 15.12.1  INVERSION VIA CALCULUS OF RESIDUES

If £(s)=a/(s2—a?),then

aeSI st

st _ — .
e )= s2—a? (s+a)(s—a)
The residues may be found by using Exercise 6.6.1 or various other means. The first step is
to identify the singularities, the poles. Here we have one simple pale-at and another
simple pole ak = —a. By Exercise 6.6.1, the residuesat a is (%)e‘” and the residue at
s=—alis (—%)e"”. Then

ae

(15.214)

Residues= (3)(e” — e™%") = sinhat = F (1), (15.215)
in agreement with Eq. (15.105). |
Example 15.12.2
If
1_ e 4s
flo)="—"—,
S

thene*“~® grows exponentially for < a on the semicircle in the left-handplane, so
contour integration and the residue theorem are not applicable. However, we can evaluate
the integral explicitly as follows. We lgt — 0 and substitute =iy, so

1 y+ioco 1 © ) d
F(t) = =— / el f(s)= —/ [ — e’y(’—“)]—y. (15.216)
271 Jy_ico 2 J_oo y
Using the Euler identity, only the sines survive that are odgd &md we obtain
1 [%°[sint in(t —
F(t) = _/ [S'” y _ sinC “)y]. (15.217)
T J-c0o y y

If k >0, then f;° Sinky 7y gives /2, and it gives—x /2 if k < 0. As a consequence,
F&)=0ift>a> 6 and ifr <0. If 0 <t < a, then F(r) = 1. This can be written
compactly in terms of the Heaviside unit step functign) as follows:

0, t <0,
FO)=u(@)—ult—a)=11, O<t<a, (15.218)
0, t>a,
a step function of unit height and lengih(Fig. 15.17). |

Two general comments may be in order. First, these two examples hardly begin to show
the usefulness and power of the Bromwich integral. It is always available for inverting a
complicated transform when the tables prove inadequate.

Second, this derivation is not presented as a rigorous one. Rather, it is given more as
a plausibility argument, although it can be made rigorous. The determination of the in-
verse transform is somewhat similar to the solution of a differential equation. It makes
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126)
3

FIGURE 15.17
Finite-length step function
u(t) —u(t —a.

little difference how you get the solution. Guess at it if you want. The solution can al-
ways be checked by substitution back into the original differential equation. Similarly,
F(¢) can (and, to check on careless errors, should) be checked by determining whether, by
Eq. (15.99),

LIF@®)} = f(s).

Two alternate derivations of the Bromwich integral are the subjects of Exercises 15.12.1
and 15.12.2.

As a final illustration of the use of the Laplace inverse transform, we have some results
from the work of Brillouin and Sommerfeld (1914) in electromagnetic theory.

Example 15.12.3  VELOCITY OF ELECTROMAGNETIC WAVES IN A DISPERSIVE MEDIUM

The group velocity: of traveling waves is related to the phase velooityy the equation

u:v—)»@. (15.219)
da
Here is the wavelength. In the vicinity of an absorption line (resonante)d . may be
sufficiently negative so that > ¢ (Fig. 15.18). The question immediately arises whether
a signal can be transmitted faster tharthe velocity of light in vacuum. This question,
which assumes that such a group velocity is meaningful, is of fundamental importance to
the theory of special relativity.
We need a solution to the wave equation

2y 1 9%y

ax2 w2 912’
corresponding to a harmonic vibration starting at the origin at time zero. Since our medium
is dispersiveyp is a function of the angular frequency. Imagine, for instance, a plane wave,
angular frequencw, incident on a shutter at the origin. At= 0 the shutter is (instanta-
neously) opened, and the wave is permitted to advance along the pasitkis.

(15.220)
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A
Anomalous region
c
n(e) =3
(@ V(®) %i negative
1
«—Increasing wavelength, A Increasing frequency, v = é’% —

@,

FIGURE 15.18 Optical dispersion.

Let us then build up a solution starting at= 0. It is convenient to use the Cauchy
integral formula, Eq. (6.43),

1 —izt .
V0, 1) = Ef ¢ et

Z—20
(for a contour encircling; = zo in the positive sense). Using= —iz andzp = o, we
obtain
0 1 [yHico st 0 t<0 22
1) = — ds=1 ", ’ 15.221
v Q.0 27ri/)/ioo stio {e et t>0. ( )

To be complete, the loop integral is along the vertical lihe) = y and an infinite semi-
circle, as shown in Fig. 15.19. The location of the infinite semicircle is chosen so that the
integral over it vanishes. This means a semicircle in the left half-plane$0® and the
residue is enclosed. For< 0 we pick the right half-plane and no singularity is enclosed.
The fact that this is just the Bromwich integral may be verified by noting that

0, t <0,

F(t)= {e_,.w, =0 (15.222)

t<0 t>0

FIGURE 15.19 Possible closed contours.
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and applying the Laplace transform. The transformed funcfion becomes

fls) =

—. (15.223)
s+iw

Our Cauchy-Bromwich integral provides us with the time dependence of a signal leav-
ing the origin at = 0. To include the space dependence, we note that

es(t—x/v)

satisfies the wave equation. With this as a clue, we replage — x /v and write a solution:

1 y+ioco es(t—x/v)
Y= / s, (15.224)
2ni Jy_ico Stiw

It was seen in the derivation of the Bromwich integral that our varialkplaces the
of the Fourier transformation. Hence the wave veloeitpay become a function of that
is, v(s). Its particular form need not concern us here. We need only the prapertyand

lim v(s) =constant c. (15.225)

|s|]—00

This is suggested by the asymptotic behavior of the curve on the right side of Fig.2$5.18.
Evaluating Eq. (15.225) by the calculus of residues, we may close the path of integration
by a semicircle in the right half-plane, provided

X
t——<0.
c

Hence

Y(x,)=0, —=<0, (15.226)

C

which means that the velocity of our signal cannot exceed the velocity of light in the vac-
uum,c. This simple but very significant result was extended by Sommerfeld and Brillouin
to show just how the wave advanced in the dispersive medium. |

Summary — Inversion of Laplace Transform

e Direct use of tables, Table 15.2, and references; use of partial fractions (Section 15.8)
and the operational theorems of Table 15.1.

e Bromwich integral, Eq. (15.212), and the calculus of residues.

e Numerical inversion, see the Additional Readings.

24 quation (15.225) follows rigorously from the theory of anomalous dispersion. See also the Kronig—Kramers optical disper-
sion relations of Section 7.2.
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Table 15.1 Laplace Transform Operations

Operations Equation
o0
1. Laplace transform f(s)=L{F 1)} :/ e SUF(r)dt (15.99)
0
2. Transform of derivative sf(s) — F(+0) = L{F'(1)} (15.123)
s2f(s) —sF(+0) — F'(+0) = L{F" (1)} (15.124)
t
3. Transform of integral }f(s) = IL{/ F(x)dx} (Exercise 15.11.1)
s 0
4. Substitution f(s—a)=L{"F@1)) (15.152)
5. Translation e DS f(s) = L{F(t — b)} (15.164)
6. Derivative of transform FM(s) = L{=)"F (1)} (15.173)
o0 F(1)
7. Integral of transform / fx)dx=L - (15.189)
s
t
8. Convolution f1(8) fa(s) = L{/ F1(t — 2) F2(2) dz} (15.193)
0
1 y+ioco
9. Inverse transform, Bromwich integral —/ S f(s)ds = F(1) (15.212)
2mi y—ioco
Exercises

15.12.1 Derive the Bromwich integral from Cauchy’s integral formula.
Hint. Apply the inverse transformi—* to

+ia
f(s)=% lim /y_ f(Z)dz,

where f (z) is analytic forfi(z) > y.
15.12.2 Starting with

1 y+ioco

st

E'/ ) e f(S)dS,
y—ioo

show that by introducing

o0
f(s)= / e *F(z)dz,
0
we can convert one integral into the Fourier representation of a Dirac delta function.
From this derive the inverse Laplace transform.

15.12.3 Derive the Laplace transformation convolution theorem by use of the Bromwich inte-
gral.

15.12.4 Find

(@) by a partial fraction expansion.
(b) Repeat, using the Bromwich integral.
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Table 15.2 Laplace Transforms

f(s) F(t) Limitation Equation
. 8(t) ingularity at4 .
1.1 Si lari 0 15.141
2.1 1 s>0 (15.102)
N
!
3. " §>0 (15.108)
N
n>-1
1
4. ekt s>k (15.103)
s—k
1
5 —— tekt s>k (15.175)
(s — k)2
N
6. R coshkt s>k (15.105)
k .
7. R sinhkt s>k (15.105)
N
8. . coskt s>0 (15.107)
k .
9. i sinkt s>0 (15.107)
10. (S_sa;ﬁ 4! coskt s>a (15.153)
k
11. a2 e sinkt s>a (15.153)
S —a
s2 k2 .
12. m t coskt s>0 (Exercise 15.10.19)
S
2ks . .
13. m £ sinkt s>0 (Exercise 15.10.19)
)
14.(s2 + a%)~1/2 Jo(at) s>0 (15.185)
15. (s2 — q2)~1/2 Io(at) s>a (Exercise 15.10.9)
1
16. cor1<§) jolat) §>0 (Exercise 15.10.10)
i In sta
17, 24 s—a io(at) s>a (Exercise 15.10.10)
} cothi 1 2
a a
_ A\
18. 8 - fl) Ln(at) s>0 (Exercise 15.10.12)
N
1 .
19. 5 In(s +1) Eq(x) =—FEi(—x) s>0 (Exercise 15.10.13)
Ins .
— — -y s > 2.
20 Int 0 (Exercise 15.12.9)

N

A more extensive table of Laplace transforms appears in Chapter 29 of AMS-55 (see footnote 4 in Chapter 5 for the reference).

15.12.5 Find

kZ
-1
. {s(s2 +k2)}
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15.12.6

15.12.7

15.12.8

(a) by using a partial fraction expansion.
(b) Repeat using the convolution theorem.
(c) Repeat using the Bromwich integral.
ANS. F(t) = 1 — coskt.

Use the Bromwich integral to find the function whose transforryi(s) = s—/2. Note
that f (s) has a branch point at= 0. The negativer-axis may be taken as a cut line.

ANS. F(t) = (1)~ V2.
Show that
L7H(s2+ 1) = Jo(n)

by evaluation of the Bromwich integral.
Hint. Convert your Bromwich integral into an integral representation/gif). Fig-
ure 15.20 shows a possible contour.

Evaluate the inverse Laplace transform
E_l{(sz _ a2)—1/2}
by each of the following methods:
(@) Expansion in a series and term-by-term inversion.

(b) Direct evaluation of the Bromwich integral.
(c) Change of variable in the Bromwich integrak= (a/2)(z +z~1).

ey
K

FIGURE 15.20 A possible
contour for the inversion of

Jo(1).
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15.12.9 Show that

I
5_1{E}=—Int—y,

N
wherey =0.5772.. ., the Euler—Mascheroni constant.

15.12.10 Evaluate the Bromwich integral for

S
(S2+£12)2.

15.12.11 Heaviside expansion theoreni the transformf (s) may be written as a ratio

fls) =

_ s
fe)= ©)
whereg(s) andh(s) are analytic functiond;(s) having simple, isolated zerossat s;,

show that

_r-1 & — 8(si) it
Fo=£ {h(s)}_th%s,»)e |

Hint. See Exercise 6.6.2.

15.12.12 Using the Bromwich integral, inverf(s) = s—2e~*S. ExpressF(r) = L7 f(s)} in
terms of the (shifted) unit step functiostr — k).

ANS. F(t) = (t — ku(t — k).

15.12.13 You have a Laplace transform:

= b.
1) TG0 a#
Invert this transform by each of three methods:
(a) Partial fractions and use of tables.
(b) Convolution theorem.
(c) Bromwich integral.
—bt _ ,—at
ANS. F(h=S—"°%  a+b.
a—>b

Additional Readings

Champeney, D. CFourier Transforms and Their Physical Applicatioridew York: Academic Press (1973).
Fourier transforms are developed in a careful, easy-to-follow manner. Approximately 60% of the book is
devoted to applications of interest in physics and engineering.

Erdelyi, A.,W. Magnus, F. Oberhettinger, and F. G. Tricofables of Integral Transform® vols. New York:
McGraw-Hill (1954). This text contains extensive tables of Fourier sine, cosine, and exponential transforms,
Laplace and inverse Laplace transforms, Mellin and inverse Mellin transforms, Hankel transforms, and other,
more specialized integral transforms.
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Hanna, J. R.Fourier Series and Integrals of Boundary Value Proble®smerset, NJ: Wiley (1990). This book
is a broad treatment of the Fourier solution of boundary value problems. The concepts of convergence and
completeness are given careful attention.

Jeffreys, H., and B. S. Jeffreyiethods of Mathematical Physjc&rd ed. Cambridge, UK: Cambridge University
Press (1972).

Krylov, V. I., and N. S. SkoblyaHandbook of Numerical Inversion of Lapladeansform. Jerusalem: Israel
Program for Scientific Translations (1969).

Lepage, W. R.Complex Variables and the Laplace Transform for EngineNiesv York: McGraw-Hill (1961);
New York: Dover (1980). A complex variable analysis that is carefully developed and then applied to Fourier
and Laplace transforms. It is written to be read by students, but intended for the serious student.

McCollum, P. A., and B. F. Brownl.aplace Transform Tables and Theorerhew York: Holt, Rinehart and
Winston (1965).

Miles, J. W.,Integral Transforms in Applied MathematicS8ambridge, UK: Cambridge University Press (1971).
This is a brief but interesting and useful treatment for the advanced undergraduate. It emphasizes applications
rather than abstract mathematical theory.

Papoulis, A.,The Fourier Integral and Its ApplicationdNew York: McGraw-Hill (1962). This is a rigorous
development of Fourier and Laplace transforms and has extensive applications in science and engineering.

Roberts, G. E., and H. Kaufmahable of Laplace Transform®hiladelphia: Saunders (1966).

Sneddon, I. N.Fourier TransformsNew York: McGraw-Hill (1951), reprinted, Dover (1995). A detailed com-
prehensive treatment, this book is loaded with applications to a wide variety of fields of modern and classical
physics.

Sneddon, I. H.The Use of Integral TransformBlew York: McGraw-Hill (1972). Written for students in science
and engineering in terms they can understand, this book covers all the integral transforms mentioned in this
chapter as well as in several others. Many applications are included.

Van der Pol, B., and H. BremmeBperational Calculus Based on the Two-sided Laplace Inte@ral ed. Cam-
bridge, UK: Cambridge University Press (1987). Here is a development based on the integral sange
+o00, rather than the useful O tso. Chapter V contains a detailed study of the Dirac delta function (impulse
function).

Wolf, K. B., Integral Transforms in Science and Engineerihgw York: Plenum Press (1979). This book is a
very comprehensive treatment of integral transforms and their applications.



