
CHAPTER 15

INTEGRAL TRANSFORMS

15.1 INTEGRAL TRANSFORMS

Frequently in mathematical physics we encounter pairs of functions related by an expres-
sion of the form

g(α)=
∫ b

a

f (t)K(α, t) dt. (15.1)

The functiong(α) is called the (integral) transform off (t) by the kernelK(α, t).
The operation may also be described as mapping a functionf (t) in t-space into another
function,g(α), in α-space. This interpretation takes on physical significance in the time-
frequency relation of Fourier transforms, as in Example 15.3.1, and in the real space–
momentum space relations in quantum physics of Section 15.6.

Fourier Transform

One of the most useful of the infinite number of possible transforms is the Fourier trans-
form, given by

g(ω)= 1√
2π

∫ ∞

−∞
f (t)eiωt dt. (15.2)

Two modifications of this form, developed in Section 15.3, are the Fourier cosine and
Fourier sine transforms:

gc(ω) =
√

2

π

∫ ∞

0
f (t)cosωt dt, (15.3)

gs(ω) =
√

2

π

∫ ∞

0
f (t)sinωt dt. (15.4)
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932 Chapter 15 Integral Transforms

The Fourier transform is based on the kerneleiωt and its real and imaginary parts taken sep-
arately, cosωt and sinωt . Because these kernels are the functions used to describe waves,
Fourier transforms appear frequently in studies of waves and the extraction of information
from waves, particularly when phase information is involved. The output of a stellar in-
terferometer, for instance, involves a Fourier transform of the brightness across a stellar
disk. The electron distribution in an atom may be obtained from a Fourier transform of the
amplitude of scattered X-rays. In quantum mechanics the physical origin of the Fourier
relations of Section 15.6 is the wave nature of matter and our description of matter in terms
of waves.

Example 15.1.1 FOURIER TRANSFORM OF GAUSSIAN

The Fourier transform of a Gaussian functione−a2t2
,

g(ω)= 1√
2π

∫ ∞

−∞
e−a2t2

eiωt dt,

can be done analytically by completing the square in the exponent,

−a2t2+ iωt =−a2
(

t − iω

2a2

)2

− ω2

4a2
,

which we check by evaluating the square. Substituting this identity we obtain

g(ω)= 1√
2π

e−ω2/4a2
∫ ∞

−∞
e−a2t2

dt,

upon shifting the integration variablet → t + iω

2a2 . This is justified by an application of

Cauchy’s theorem to the rectangle with vertices−T , T , T + iω

2a2 , −T + iω

2a2 for T →
∞, noting that the integrand has no singularities in this region and that the integrals over
the sides from±T to ±T + iω

2a2 become negligible forT →∞. Finally we rescale the
integration variable asξ = at in the integral (see Eqs. (8.6) and (8.8)):

∫ ∞

−∞
e−a2t2

dt = 1

a

∫ ∞

−∞
e−ξ2

dξ =
√

π

a
.

Substituting these results we find

g(ω)= 1

a
√

2
exp

(

− ω2

4a2

)

,

again a Gaussian, but inω-space. The biggera is, that is, the narrower the original Gaussian
e−a2t2

is, the wider is its Fourier transform∼ e−ω2/4a2
. �
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Laplace, Mellin, and Hankel Transforms

Three other useful kernels are

e−αt , tJn(αt), tα−1.

These give rise to the following transforms

g(α) =
∫ ∞

0
f (t)e−αtdt, Laplace transform (15.5)

g(α) =
∫ ∞

0
f (t)tJn(αt) dt, Hankel transform (Fourier–Bessel) (15.6)

g(α) =
∫ ∞

0
f (t)tα−1dt, Mellin transform. (15.7)

Clearly, the possible types are unlimited. These transforms have been useful in mathemati-
cal analysis and in physical applications. We have actually used the Mellin transform with-
out calling it by name; that is,g(α)= (α − 1)! is the Mellin transform off (t)= e−t . See
E. C. Titchmarsh,Introduction to the Theory of Fourier Integrals, 2nd ed., New York: Ox-
ford University Press (1937), for more Mellin transforms. Of course, we could just as well
sayg(α)= n!/αn+1 is the Laplace transform off (t)= tn. Of the three, the Laplace trans-
form is by far the most used. It is discussed at length in Sections 15.8 to 15.12. The Hankel
transform, a Fourier transform for a Bessel function expansion, represents a limiting case
of a Fourier–Bessel series. It occurs in potential problems in cylindrical coordinates and
has been applied extensively in acoustics.

Linearity

All these integral transforms are linear; that is,

∫ b

a

[

c1f1(t)+ c2f2(t)
]

K(α, t) dt

= c1

∫ b

a

f1(t)K(α, t) dt + c2

∫ b

a

f2(t)K(α, t) dt, (15.8)

∫ b

a

cf (t)K(α, t) dt = c

∫ b

a

f (t)K(α, t) dt, (15.9)

wherec1 andc2 are constants andf1(t) andf2(t) are functions for which the transform
operation is defined.

Representing our linear integral transform by the operatorL, we obtain

g(α)= Lf (t). (15.10)
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FIGURE 15.1 Schematic integral transforms.

We expect an inverse operatorL−1 exists such that1

f (t)= L
−1g(α). (15.11)

For our three Fourier transformsL−1 is given in Section 15.3. In general, the determination
of the inverse transform is the main problem in using integral transforms. The inverse
Laplace transform is discussed in Section 15.12. For details of the inverse Hankel and
inverse Mellin transforms we refer to the Additional Readings at the end of the chapter.

Integral transforms have many special physical applications and interpretations that
are noted in the remainder of this chapter. The most common application is outlined in
Fig. 15.1. Perhaps an original problem can be solved only with difficulty, if at all, in the
original coordinates (space). It often happens that the transform of the problem can be
solved relatively easily. Then the inverse transform returns the solution from the trans-
form coordinates to the original system. Example 15.4.1 and Exercise 15.4.1 illustrate this
technique.

Exercises

15.1.1 The Fourier transforms for a function of two variables are

F(u, v) = 1

2π

∫ ∞

−∞

∫

f (x, y)ei(ux+vy) dx dy,

f (x, y) = 1

2π

∫ ∞

−∞

∫

F(u, v)e−i(ux+vy) dudv.

Usingf (x, y)= f ([x2+ y2]1/2), show that the zero-order Hankel transforms

F(ρ) =
∫ ∞

0
rf (r)J0(ρr) dr,

f (r) =
∫ ∞

0
ρF(ρ)J0(ρr) dρ,

are a special case of the Fourier transforms.

1Expectation is not proof, and here proof of existence is complicated because we are actually in aninfinite -dimensional Hilbert
space. We shall prove existence in the special cases of interest by actual construction.



15.1 Integral Transforms 935

This technique may be generalized to derive the Hankel transforms of orderν =
0, 1

2,1, 1
2, . . . (compare I. N. Sneddon,Fourier Transforms, New York: McGraw-Hill

(1951)). A more general approach, valid forν >−1
2 , is presented in Sneddon’sThe Use

of Integral Transforms(New York: McGraw-Hill (1972)). It might also be noted that
the Hankel transforms of nonintegral orderν = ±1

2 reduce to Fourier sine and cosine
transforms.

15.1.2 Assuming the validity of the Hankel transform–inverse transform pair of equations

g(α) =
∫ ∞

0
f (t)Jn(αt)t dt,

f (t) =
∫ ∞

0
g(α)Jn(αt)α dα,

show that the Dirac delta function has a Bessel integral representation

δ(t − t ′)= t

∫ ∞

0
Jn(αt)Jn(αt ′)α dα.

This expression is useful in developing Green’s functions in cylindrical coordinates,
where the eigenfunctions are Bessel functions.

15.1.3 From the Fourier transforms, Eqs. (15.22) and (15.23), show that the transformation

t → lnx

iω→ α − γ

leads to

G(α)=
∫ ∞

0
F(x)xα−1dx

and

F(x)= 1

2πi

∫ γ+i∞

γ−i∞
G(α)x−αdα.

These are the Mellin transforms. A similar change of variables is employed in Sec-
tion 15.12 to derive the inverse Laplace transform.

15.1.4 Verify the following Mellin transforms:

(a)
∫ ∞

0
xα−1 sin(kx) dx = k−α(α − 1)!sin

πα

2
, −1< α < 1.

(b)
∫ ∞

0
xα−1 cos(kx) dx = k−α(α − 1)!cos

πα

2
, 0< α < 1.

Hint. You can force the integrals into a tractable form by inserting a convergence factor
e−bx and (after integrating) lettingb→ 0. Also, coskx + i sinkx = expikx.
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15.2 DEVELOPMENT OF THE FOURIER INTEGRAL

In Chapter 14 it was shown that Fourier series are useful in representing certain func-
tions (1) over a limited range[0,2π], [−L,L], and so on, or (2) for the infinite interval
(−∞,∞), if the function is periodic. We now turn our attention to the problem of rep-
resenting a nonperiodic function over the infinite range. Physically this means resolving a
single pulse or wave packet into sinusoidal waves.

We have seen (Section 14.2) that for the interval[−L,L] the coefficientsan and bn

could be written as

an =
1

L

∫ L

−L

f (t)cos
nπt

L
dt, (15.12)

bn =
1

L

∫ L

−L

f (t)sin
nπt

L
dt. (15.13)

The resulting Fourier series is

f (x) = 1

2L

∫ L

−L

f (t) dt + 1

L

∞
∑

n=1

cos
nπx

L

∫ L

−L

f (t)cos
nπt

L
dt

+ 1

L

∞
∑

n=1

sin
nπx

L

∫ L

−L

f (t)sin
nπt

L
dt, (15.14)

or

f (x)= 1

2L

∫ L

−L

f (t) dt + 1

L

∞
∑

n=1

∫ L

−L

f (t)cos
nπ

L
(t − x)dt. (15.15)

We now let the parameterL approach infinity, transforming the finite interval[−L,L] into
the infinite interval(−∞,∞). We set

nπ

L
= ω,

π

L
=�ω, with L→∞.

Then we have

f (x)→ 1

π

∞
∑

n=1

�ω

∫ ∞

−∞
f (t)cosω(t − x)dt, (15.16)

or

f (x)= 1

π

∫ ∞

0
dω

∫ ∞

−∞
f (t)cosω(t − x)dt, (15.17)

replacing the infinite sum by the integral overω. The first term (corresponding toa0) has
vanished, assuming that

∫∞
−∞ f (t) dt exists.

It must be emphasized that this result (Eq. (15.17)) is purely formal. It is not intended
as a rigorous derivation, but it can be made rigorous (compare I. N. Sneddon,Fourier
Transforms, Section 3.2). We take Eq. (15.17) as the Fourier integral. It is subject to the
conditions thatf (x) is (1) piecewise continuous, (2) piecewise differentiable, and (3) ab-
solutely integrable — that is,

∫∞
−∞ |f (x)|dx is finite.



15.2 Development of the Fourier Integral 937

Fourier Integral — Exponential Form

Our Fourier integral (Eq. (15.17)) may be put into exponential form by noting that

f (x)= 1

2π

∫ ∞

−∞
dω

∫ ∞

−∞
f (t)cosω(t − x)dt, (15.18)

whereas

1

2π

∫ ∞

−∞
dω

∫ ∞

−∞
f (t)sinω(t − x)dt = 0; (15.19)

cosω(t − x) is an even function ofω and sinω(t − x) is an odd function ofω. Adding
Eqs. (15.18) and (15.19) (with a factori), we obtain theFourier integral theorem

f (x)= 1

2π

∫ ∞

−∞
e−iωx dω

∫ ∞

−∞
f (t)eiωt dt. (15.20)

The variableω introduced here is an arbitrary mathematical variable. In many physical
problems, however, it corresponds to the angular frequencyω. We may then interpret
Eq. (15.18) or (15.20) as a representation off (x) in terms of a distribution of infinitely
long sinusoidal wave trains of angular frequencyω, in which this frequency is acontinu-
ousvariable.

Dirac Delta Function Derivation

If the order of integration of Eq. (15.20) is reversed, we may rewrite it as

f (x)=
∫ ∞

−∞
f (t)

{

1

2π

∫ ∞

−∞
eiω(t−x)dω

}

dt. (15.20a)

Apparently the quantity in curly brackets behaves as a delta functionδ(t − x). We might
take Eq. (15.20a) as presenting us with a representation of the Dirac delta function. Alter-
natively, we take it as a clue to a new derivation of the Fourier integral theorem.

From Eq. (1.171b) (shifting the singularity fromt = 0 to t = x),

f (x)= lim
n→∞

∫ ∞

−∞
f (t)δn(t − x)dt, (15.21a)

whereδn(t − x) is a sequence defining the distributionδ(t − x). Note that Eq. (15.21a)
assumes thatf (t) is continuous att = x. We takeδn(t − x) to be

δn(t − x)= sinn(t − x)

π(t − x)
= 1

2π

∫ n

−n

eiω(t−x) dω, (15.21b)

using Eq. (1.174). Substituting into Eq. (15.21a), we have

f (x)= lim
n→∞

1

2π

∫ ∞

−∞
f (t)

∫ n

−n

eiω(t−x)dωdt. (15.21c)
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Interchanging the order of integration and then taking the limit asn →∞, we have
Eq. (15.20), the Fourier integral theorem.

With the understanding that it belongs under an integral sign, as in Eq. (15.21a), the
identification

δ(t − x)= 1

2π

∫ ∞

−∞
eiω(t−x) dω (15.21d)

provides a very useful representation of the delta function.

15.3 FOURIER TRANSFORMS — INVERSION THEOREM

Let usdefineg(ω), the Fourier transform of the functionf (t), by

g(ω)≡ 1√
2π

∫ ∞

−∞
f (t)eiωt dt. (15.22)

Exponential Transform

Then, from Eq. (15.20), we have the inverse relation,

f (t)= 1√
2π

∫ ∞

−∞
g(ω)e−iωt dω. (15.23)

Note that Eqs. (15.22) and (15.23) are almost but not quite symmetrical, differing in the
sign ofi.

Here two points deserve comment. First, the 1/
√

2π symmetry is a matter of choice,
not of necessity. Many authors will attach the entire 1/2π factor of Eq. (15.20) to one
of the two equations: Eq. (15.22) or Eq. (15.23). Second, although the Fourier integral,
Eq. (15.20), has received much attention in the mathematics literature, we shall be primar-
ily interested in the Fourier transform and its inverse. They are the equations with physical
significance.

When we move the Fourier transform pair to three-dimensional space, it becomes

g(k)= 1

(2π)3/2

∫

f (r)eik·r d3r, (15.23a)

f (r)= 1

(2π)3/2

∫

g(k)e−ik·r d3k. (15.23b)

The integrals are over all space. Verification, if desired, follows immediately by substitut-
ing the left-hand side of one equation into the integrand of the other equation and using the
three-dimensional delta function.2 Equation (15.23b) may be interpreted as an expansion
of a functionf (r) in a continuum of plane wave eigenfunctions;g(k) then becomes the
amplitude of the wave, exp(−ik · r).

2δ(r1− r2)= δ(x1− x2)δ(y1− y2)δ(z1− z2) with Fourier integralδ(x1− x2)= 1
2π

∫∞
−∞ exp[ik1(x1− x2)]dk1, etc.
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Cosine Transform

If f (x) is odd or even, these transforms may be expressed in a somewhat different
form. Consider first an even functionfc with fc(x) = fc(−x). Writing the exponential
of Eq. (15.22) in trigonometric form, we have

gc(ω) = 1√
2π

∫ ∞

−∞
fc(t)(cosωt + i sinωt) dt

=
√

2

π

∫ ∞

0
fc(t)cosωt dt, (15.24)

the sinωt dependence vanishing on integration over the symmetric interval(−∞,∞).
Similarly, since cosωt is even, Eqs. (15.23) transforms to

fc(x)=
√

2

π

∫ ∞

0
gc(ω)cosωx dω. (15.25)

Equations (15.24) and (15.25) are known as Fourier cosine transforms.

Sine Transform

The corresponding pair of Fourier sine transforms is obtained by assuming thatfs(x) =
−fs(−x), odd, and applying the same symmetry arguments. The equations are

gs(ω)=
√

2

π

∫ ∞

0
fs(t)sinωt dt, 3 (15.26)

fs(x)=
√

2

π

∫ ∞

0
gs(ω)sinωx dω. (15.27)

From the last equation we may develop the physical interpretation thatf (x) is being
described by a continuum of sine waves. The amplitude of sinωx is given by

√
2/πgs(ω),

in whichgs(ω) is the Fourier sine transform off (x). It will be seen that Eq. (15.27) is the
integral analog of the summation (Eq. (14.24)). Similar interpretations hold for the cosine
and exponential cases.

If we take Eqs. (15.22), (15.24), and (15.26) as the direct integral transforms, de-
scribed byL in Eq. (15.10) (Section 15.1), the corresponding inverse transforms,L−1

of Eq. (15.11), are given by Eqs. (15.23), (15.25), and (15.27).
Note that the Fourier cosine transforms and the Fourier sine transforms each involve

only positive values (and zero) of the arguments. We use the parity off (x) to establish the
transforms; but once the transforms are established, the behavior of the functionsf andg

for negative argument is irrelevant. In effect, the transform equations themselves impose
a definite parity : even for the Fourier cosinetransform andodd for the Fourier sine
transform.

3Note that a factor−i has been absorbed into thisg(ω).
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FIGURE 15.2 Finite wave train.

Example 15.3.1 FINITE WAVE TRAIN

An important application of the Fourier transform is the resolution of a finite pulse into
sinusoidal waves. Imagine that an infinite wave train sinω0t is clipped by Kerr cell or
saturable dye cell shutters so that we have

f (t)=











sinω0t, |t |< Nπ

ω0
,

0, |t |> Nπ

ω0
.

(15.28)

This corresponds toN cycles of our original wave train (Fig. 15.2). Sincef (t) is odd, we
may use the Fourier sine transform (Eq. (15.26)) to obtain

gs(ω)=
√

2

π

∫ Nπ/ω0

0
sinω0t sinωt dt. (15.29)

Integrating, we find our amplitude function:

gs(ω)=
√

2

π

[

sin[(ω0−ω)(Nπ/ω0)]
2(ω0−ω)

− sin[(ω0+ω)(Nπ/ω0)]
2(ω0+ω)

]

. (15.30)

It is of considerable interest to see howgs(ω) depends on frequency. For largeω0 and
ω ≈ ω0, only the first term will be of any importance because of the denominators. It is
plotted in Fig. 15.3. This is the amplitude curve for the single-slit diffraction pattern.

There are zeros at

ω0−ω

ω0
= �ω

ω0
=± 1

N
,± 2

N
, and so on. (15.31)

For largeN,gs(ω) may also be interpreted as a Dirac delta distribution, as in Section 1.15.
Since the contributions outside the central maximum are small in this case, we may take

�ω= ω0

N
(15.32)

as a good measure of the spread in frequency of our wave pulse. Clearly, ifN is large
(a long pulse), the frequency spread will be small. On the other hand, if our pulse is clipped
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FIGURE 15.3 Fourier transform
of finite wave train.

short,N small, the frequency distribution will be wider and the secondary maxima are more
important. �

Uncertainty Principle

Here is a classical analog of the famous uncertainty principle of quantum mechanics. If we
are dealing with electromagnetic waves,

hω

2π
=E, energy (of our photon)

h�ω

2π
=�E, (15.33)

h being Planck’s constant. Here�E represents an uncertainty in the energy of our pulse.
There is also an uncertainty in the time, for our wave ofN cycles requires 2Nπ/ω0 seconds
to pass. Taking

�t = 2Nπ

ω0
, (15.34)

we have the product of these two uncertainties:

�E ·�t = h�ω

2π
· 2πN

ω0
= h

ω0

2πN
· 2πN

ω0
= h. (15.35)

The Heisenberg uncertainty principle actually states

�E ·�t ≥ h

4π
, (15.36)

and this is clearly satisfied in our example.
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Exercises

15.3.1 (a) Show thatg(−ω) = g∗(ω) is a necessary and sufficient condition forf (x) to be
real.

(b) Show thatg(−ω)=−g∗(ω) is a necessary and sufficient condition forf (x) to be
pure imaginary.

Note. The condition of part (a) is used in the development of the dispersion relations of
Section 7.2.

15.3.2 Let F(ω) be the Fourier (exponential) transform off (x) andG(ω) be the Fourier trans-
form of g(x)= f (x + a). Show that

G(ω)= e−iaωF(ω).

15.3.3 The function

f (x)=
{

1, |x|< 1
0, |x|> 1

is a symmetrical finite step function.

(a) Find thegc(ω), Fourier cosine transform off (x).
(b) Taking the inverse cosine transform, show that

f (x)= 2

π

∫ ∞

0

sinω cosωx

ω
dω.

(c) From part (b) show that

∫ ∞

0

sinω cosωx

ω
dω=











0, |x|> 1,
π
4 , |x| = 1,
π
2 , |x|< 1.

15.3.4 (a) Show that the Fourier sine and cosine transforms ofe−at are

gs(ω)=
√

2

π

ω

ω2+ a2
, gc(ω)=

√

2

π

a

ω2+ a2
.

Hint. Each of the transforms can be related to the other by integration by parts.
(b) Show that

∫ ∞

0

ω sinωx

ω2+ a2
dω= π

2
e−ax, x > 0,

∫ ∞

0

cosωx

ω2+ a2
dω= π

2a
e−ax, x > 0.

These results are also obtained by contour integration (Exercise 7.1.14).

15.3.5 Find the Fourier transform of the triangular pulse (Fig. 15.4).

f (x)=
{

h
(

1− a|x|
)

, |x|< 1
a
,

0, |x|> 1
a
.

Note. This function provides another delta sequence withh= a anda→∞.
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FIGURE 15.4 Triangular pulse.

15.3.6 Define a sequence

δn(x)=
{

n, |x|< 1
2n

,

0, |x|> 1
2n

.

(This is Eq. (1.172).) Expressδn(x) as a Fourier integral (via the Fourier integral theo-
rem, inverse transform, etc.). Finally, show that we may write

δ(x)= lim
n→∞

δn(x)= 1

2π

∫ ∞

−∞
e−ikx dk.

15.3.7 Using the sequence

δn(x)= n√
π

exp
(

−n2x2),

show that

δ(x)= 1

2π

∫ ∞

−∞
e−ikx dk.

Note. Remember thatδ(x) is defined in terms of its behavior as part of an integrand
(Section 1.15), especially Eqs. (1.178) and (1.179).

15.3.8 Derive sine and cosine representations ofδ(t−x) that are comparable to the exponential
representation, Eq. (15.21d).

ANS.
2

π

∫ ∞

0
sinωt sinωx dω,

2

π

∫ ∞

0
cosωt cosωx dω.

15.3.9 In a resonant cavity an electromagnetic oscillation of frequencyω0 dies out as

A(t)=A0e
−ω0t/2Qe−iω0t , t > 0.

(TakeA(t)= 0 for t < 0.) The parameterQ is a measure of the ratio of stored energy to
energy loss per cycle. Calculate the frequency distribution of the oscillation,a∗(ω)a(ω),
wherea(ω) is the Fourier transform ofA(t).
Note. The largerQ is, the sharper your resonance line will be.

ANS. a∗(ω)a(ω)=
A2

0

2π

1

(ω−ω0)2+ (ω0/2Q)2
.
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15.3.10 Prove that

h̄

2πi

∫ ∞

−∞

e−iωt dω

E0− iŴ/2− h̄ω
=

{

exp
(

−Ŵt
2h̄

)

exp
(

− iE0t
h̄

)

, t > 0,

0, t < 0.

This Fourier integral appears in a variety of problems in quantum mechanics: WKB
barrier penetration, scattering, time-dependent perturbation theory, and so on.
Hint. Try contour integration.

15.3.11 Verify that the following are Fourier integral transforms of one another:

(a)

√

2

π
· 1√

a2− x2
, |x|< a, andJ0(ay),

0, |x|> a,

(b)
0, |x|< a,

−
√

2

π

1√
x2+ a2

, |x|> a, andN0(a|y|),

(c)

√

π

2
· 1√

x2+ a2
and K0

(

a|y|
)

.

(d) Can you suggest whyI0(ay) is not included in this list?

Hint. J0,N0, andK0 may be transformed most easily by using an exponential repre-
sentation, reversing the order of integration, and employing the Dirac delta function
exponential representation (Section 15.2). These cases can be treated equally well as
Fourier cosine transforms.
Note. TheK0 relation appears as a consequence of a Green’s function equation in Ex-
ercise 9.7.14.

15.3.12 A calculation of the magnetic field of a circular current loop in circular cylindrical
coordinates leads to the integral

∫ ∞

0
coskz k K1(ka) dk.

Show that this integral is equal to

πa

2(z2+ a2)3/2
.

Hint. Try differentiating Exercise 15.3.11(c).

15.3.13 As an extension of Exercise 15.3.11, show that

(a)
∫ ∞

0
J0(y) dy = 1, (b)

∫ ∞

0
N0(y) dy = 0, (c)

∫ ∞

0
K0(y) dy = π

2
.

15.3.14 The Fourier integral, Eq. (15.18), has been held meaningless forf (t) = cosαt . Show
that the Fourier integral can be extended to coverf (t)= cosαt by use of the Dirac delta
function.
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15.3.15 Show that

∫ ∞

0
sinka J0(kρ)dk =

{
(

a2− ρ2
)−1/2

, ρ < a,

0, ρ > a.

Herea andρ are positive. The equation comes from the determination of the distribution
of charge on an isolated conducting disk, radiusa. Note that the function on the right
has aninfinite discontinuity atρ = a.
Note. A Laplace transform approach appears in Exercise 15.10.8.

15.3.16 The functionf (r) has a Fourier exponential transform,

g(k)= 1

(2π)3/2

∫

f (r)eik·r d3r = 1

(2π)3/2k2
.

Determinef (r).
Hint. Use spherical polar coordinates ink-space.

ANS. f (r)= 1

4πr
.

15.3.17 (a) Calculate the Fourier exponential transform off (x)= e−a|x|.
(b) Calculate the inverse transform by employing the calculus of residues (Sec-

tion 7.1).

15.3.18 Show that the following are Fourier transforms of each other

inJn(t) and







√

2

π
Tn(x)

(

1− x2)−1/2
, |x|< 1,

0, |x|> 1.

Tn(x) is thenth-order Chebyshev polynomial.
Hint. With Tn(cosθ)= cosnθ , the transform ofTn(x)(1− x2)−1/2 leads to an integral
representation ofJn(t).

15.3.19 Show that the Fourier exponential transform of

f (µ)=
{

Pn(µ), |µ| ≤ 1,

0, |µ|> 1

is (2in/2π)jn(kr). Here Pn(µ) is a Legendre polynomial andjn(kr) is a spherical
Bessel function.

15.3.20 Show that the three-dimensional Fourier exponential transform of a radially symmetric
function may be rewritten as a Fourier sine transform:

1

(2π)3/2

∫ ∞

−∞
f (r)eik·r d3x = 1

k

√

2

π

∫ ∞

0

[

rf (r)
]

sinkr dr.
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15.3.21 (a) Show thatf (x) = x−1/2 is a self-reciprocal under both Fourier cosine and sine
transforms; that is,

√

2

π

∫ ∞

0
x−1/2 cosxt dx = t−1/2,

√

2

π

∫ ∞

0
x−1/2 sinxt ds = t−1/2.

(b) Use the preceding results to evaluate the Fresnel integrals
∫∞

0 cos(y2) dy and
∫∞

0 sin(y2) dy.

15.4 FOURIER TRANSFORM OF DERIVATIVES

In Section 15.1, Fig. 15.1 outlines the overall technique of using Fourier transforms and
inverse transforms to solve a problem. Here we take an initial step in solving a differential
equation — obtaining the Fourier transform of a derivative.

Using the exponential form, we determine that the Fourier transform off (x) is

g(ω)= 1√
2π

∫ ∞

−∞
f (x)eiωx dx (15.37)

and fordf (x)/dx

g1(ω)= 1√
2π

∫ ∞

−∞

df (x)

dx
eiωx dx. (15.38)

Integrating Eq. (15.38) by parts, we obtain

g1(ω)= eiωx

√
2π

f (x)

∣

∣

∣

∞

−∞
− iω√

2π

∫ ∞

−∞
f (x)eiωx dx. (15.39)

If f (x) vanishes4 asx→±∞, we have

g1(ω)=−iω g(ω); (15.40)

that is, the transform of the derivative is(−iω) times the transform of the original function.
This may readily be generalized to thenth derivative to yield

gn(ω)= (−iω)ng(ω), (15.41)

provided all the integrated parts vanish asx → ±∞. This is the power of the Fourier
transform, the reason it is so useful in solving (partial) differential equations. The operation
of differentiation has been replaced by a multiplication inω-space.

4Apart from cases such as Exercise 15.3.6,f (x) must vanish asx→±∞ in order for the Fourier transform off (x) to exist.
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Example 15.4.1 WAVE EQUATION

This technique may be used to advantage in handling PDEs. To illustrate the technique, let
us derive a familiar expression of elementary physics. An infinitely long string is vibrating
freely. The amplitudey of the (small) vibrations satisfies the wave equation

∂2y

∂x2
= 1

v2

∂2y

∂t2
. (15.42)

We shall assume an initial condition

y(x,0)= f (x), (15.43)

wheref is localized, that is, approaches zero at largex.

Applying our Fourier transform inx, which means multiplying byeiαx and integrating
overx, we obtain

∫ ∞

−∞

∂2y(x, t)

∂x2
eiαx dx = 1

v2

∫ ∞

−∞

∂2y(x, t)

∂t2
eiαx dx (15.44)

or

(−iα)2Y(α, t)= 1

v2

∂2Y(α, t)

∂t2
. (15.45)

Here we have used

Y(α, t)= 1√
2π

∫ ∞

−∞
y(x, t)eiαx dx (15.46)

and Eq. (15.41) for the second derivative. Note that the integrated part of Eq. (15.39) van-
ishes: The wave has not yet gone to±∞ because it is propagating forward in time, and
there is no source at infinity becausef (±∞) = 0. Since no derivatives with respect to
α appear, Eq. (15.45) is actually an ODE — in fact, the linear oscillator equation. This
transformation, from a PDE to an ODE, is a significant achievement. We solve Eq. (15.45)
subject to the appropriate initial conditions. Att = 0, applying Eq. (15.43), Eq. (15.46)
reduces to

Y(α,0)= 1√
2π

∫ ∞

−∞
f (x)eiαx dx = F(α). (15.47)

The general solution of Eq. (15.45) in exponential form is

Y(α, t)= F(α)e±ivαt . (15.48)

Using the inversion formula (Eq. (15.23)), we have

y(x, t)= 1√
2π

∫ ∞

−∞
Y(α, t)e−iαx dα, (15.49)

and, by Eq. (15.48),

y(x, t)= 1√
2π

∫ ∞

−∞
F(α)e−iα(x∓vt) dα. (15.50)
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Sincef (x) is the Fourier inverse transform ofF(α),

y(x, t)= f (x ∓ vt), (15.51)

corresponding to waves advancing in the+x- and−x-directions, respectively.
The particular linear combinations of waves is given by the boundary condition of

Eq. (15.43) and some other boundary condition, such as a restriction on∂y/∂t . �

The accomplishment of the Fourier transform here deserves special emphasis.

• Our Fourier transform converted a PDE into an ODE, where the “degree of transcen-
dence” of the problem was reduced.

In Section 15.9 Laplace transforms are used to convert ODEs (with constant coefficients)
into algebraic equations. Again, the degree of transcendence is reduced. The problem is
simplified — as outlined in Fig. 15.1.

Example 15.4.2 HEAT FLOW PDE

To illustrate another transformation of a PDE into an ODE, let us Fourier transform the
heat flow partial differential equation

∂ψ

∂t
= a2∂2ψ

∂x2
,

where the solutionψ(x, t) is the temperature in space as a function of time. By taking the
Fourier transform of both sides of this equation (note that here onlyω is the transform
variable conjugate tox becauset is the time in the heat flow PDE), where

�(ω, t)= 1√
2π

∫ ∞

−∞
ψ(x, t)eiωx dx,

this yields an ODE for the Fourier transform� of ψ in the time variablet ,

∂�(ω, t)

∂t
=−a2ω2�(ω, t).

Integrating we obtain

ln� =−a2ω2t + lnC, or � = Ce−a2ω2t ,

where the integration constantC may still depend onω and, in general, is determined
by initial conditions. In fact,C = �(ω,0) is the initial spatial distribution of�, so it is
given by the transform (inx) of the initial distribution ofψ, namely,ψ(x,0). Putting this
solution back into our inverse Fourier transform, this yields

ψ(x, t)= 1√
2π

∫ ∞

−∞
C(ω)e−iωxe−a2ω2t dω.

For simplicity, we here takeC ω-independent (assuming a delta-function initial temper-
ature distribution) and integrate by completing the square inω, as in Example 15.1.1,
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making appropriate changes of variables and parameters (a2 → a2t, ω → x, t →−ω).
This yields the particular solution of the heat flow PDE,

ψ(x, t)= C

a
√

2t
exp

(

− x2

4a2t

)

,

which appears as a clever guess in Chapter 8. In effect, we have shown thatψ is the inverse
Fourier transform ofC exp(−a2ω2t). �

Example 15.4.3 INVERSION OF PDE

Derive a Fourier integral for the Green’s functionG0 of Poisson’s PDE, which is a solution
of

∇
2G0(r , r ′)=−δ(r − r ′).

OnceG0 is known, the general solution of Poisson’s PDE,

∇
2�=−4πρ(r)

of electrostatics, is given as

�(r)=
∫

G0(r , r ′)4πρ(r ′) d3r ′.

Applying ∇
2 to � and using the PDE the Green’s function satisfies, we check that

∇
2�(r)=

∫

∇
2G0(r , r ′)4πρ(r ′) d3r ′ =−

∫

δ(r − r ′)4πρ(r ′) d3r ′ =−4πρ(r).

Now we use the Fourier transform ofG0, which isg0, and of that of theδ function, writing

∇
2
∫

g0(p)eip·(r−r ′) d3p

(2π)3
=−

∫

eip·(r−r ′) d3p

(2π)3
.

Because the integrands of equal Fourier integrals must be the same (almost) everywhere,
which follows from the inverse Fourier transform, and with

∇eip·(r−r ′) = ipeip·(r−r ′),

this yields−p2g0(p) = −1. Therefore, application of the Laplacian to a Fourier integral
f (r) corresponds to multiplying its Fourier transformg(p) by−p2. Substituting this solu-
tion into the inverse Fourier transform forG0 gives

G0(r , r ′)=
∫

eip·(r−r ′) d3p

(2π)3p2
= 1

4π |r − r ′| .

We can verify the last part of this result by applying∇
2 to G0 again and recalling from

Chapter 1 that∇2 1
|r−r ′| =−4πδ(r − r ′).
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The inverse Fourier transform can be evaluated using polar coordinates, exploiting the
spherical symmetry ofp2. For simplicity, we writeR= r − r ′ and callθ the angle between
R andp,

∫

eip·R d3p

p2
=

∫ ∞

0
dp

∫ 1

−1
eipR cosθd cosθ

∫ 2π

0
dϕ

= 2π

iR

∫ ∞

0

dp

p
eipR cosθ

∣

∣

∣

1

cosθ=−1
= 4π

R

∫ ∞

0

sinpR

p
dp

= 4π

R

∫ ∞

0

sinpR

pR
d(pR)= 2π2

R
,

whereθ andϕ are the angles ofp and
∫∞

0
sinx
x

dx = π
2 , from Example 7.1.4. Dividing by

(2π)3, we obtainG0(R)= 1/(4πR), as claimed. An evaluation of this Fourier transform
by contour integration is given in Example 9.7.2. �

Exercises

15.4.1 The one-dimensional Fermi age equation for the diffusion of neutrons slowing down in
some medium (such as graphite) is

∂2q(x, τ )

∂x2
= ∂q(x, τ )

∂τ
.

Hereq is the number of neutrons that slow down, falling below some given energy per
second per unit volume. The Fermi age,τ , is a measure of the energy loss.
If q(x,0) = Sδ(x), corresponding to a plane source of neutrons atx = 0, emittingS

neutrons per unit area per second, derive the solution

q = S
e−x2/4τ

√
4πτ

.

Hint. Replaceq(x, τ ) with

p(k, τ )= 1√
2π

∫ ∞

−∞
q(x, τ )eikx dx.

This is analogous to the diffusion of heat in an infinite medium.

15.4.2 Equation (15.41) yields

g2(ω)=−ω2g(ω)

for the Fourier transform of the second derivative off (x). The conditionf (x)→ 0 for
x→±∞ may be relaxed slightly. Find the least restrictive condition for the preceding
equation forg2(ω) to hold.

ANS.

[

df (x)

dx
− iωf (x)

]

eiωx
∣

∣

∣

∞

−∞
= 0.
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15.4.3 The one-dimensional neutron diffusion equation with a (plane) source is

−D
d2ϕ(x)

dx2
+K2Dϕ(x)=Qδ(x),

whereϕ(x) is the neutron flux,Qδ(x) is the (plane) source atx = 0, andD andK2 are
constants. Apply a Fourier transform. Solve the equation in transform space. Transform
your solution back intox-space.

ANS. ϕ(x)= Q

2KD
e−|Kx|.

15.4.4 For a point source at the origin, the three-dimensional neutron diffusion equation be-
comes

−D∇
2ϕ(r)+K2Dϕ(r)=Qδ(r).

Apply a three-dimensional Fourier transform. Solve the transformed equation. Trans-
form the solution back intor -space.

15.4.5 (a) Given thatF(k) is the three-dimensional Fourier transform off (r) andF1(k) is
the three-dimensional Fourier transform of∇f (r), show that

F1(k)= (−ik)F (k).

This is a three-dimensional generalization of Eq. (15.40).
(b) Show that the three-dimensional Fourier transform of∇ ·∇f (r) is

F2(k)= (−ik)2F(k).

Note. Vectork is a vector in the transform space. In Section 15.6 we shall have
h̄k = p, linear momentum.

15.5 CONVOLUTION THEOREM

We shall employ convolutions to solve differential equations, to normalize momentum
wave functions (Section 15.6), and to investigate transfer functions (Section 15.7).

Let us consider two functionsf (x) andg(x) with Fourier transformsF(t) andG(t),
respectively. We define the operation

f ∗ g ≡ 1√
2π

∫ ∞

−∞
g(y)f (x − y)dy (15.52)

as theconvolution of the two functionsf andg over the interval(−∞,∞). This form of
an integral appears in probability theory in the determination of the probability density of
two random, independent variables. Our solution of Poisson’s equation, Eq. (9.148), may
be interpreted as a convolution of a charge distribution,ρ(r2), and a weighting function,
(4πε0|r1− r2|)−1. In other works this is sometimes referred to as theFaltung, to use the
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FIGURE 15.5

German term for “folding.”5 We now transform the integral in Eq. (15.52) by introducing
the Fourier transforms:

∫ ∞

−∞
g(y)f (x − y)dy = 1√

2π

∫ ∞

−∞
g(y)

∫ ∞

−∞
F(t)e−it (x−y) dt dy

= 1√
2π

∫ ∞

−∞
F(t)

[∫ ∞

−∞
g(y)eitydy

]

e−itx dt

=
∫ ∞

−∞
F(t)G(t)e−itx dt, (15.53)

interchanging the order of integration and transformingg(y). This result may be inter-
preted as follows: The Fourier inverse transform of aproduct of Fourier transforms is the
convolution of the original functions,f ∗ g.

For the special casex = 0 we have
∫ ∞

−∞
F(t)G(t) dt =

∫ ∞

−∞
f (−y)g(y) dy. (15.54)

The minus sign in−y suggests that modifications be tried. We now do this withg∗ instead
of g using a different technique.

Parseval’s Relation

Results analogous to Eqs. (15.53) and (15.54) may be derived for the Fourier sine and co-
sine transforms (Exercises 15.5.1 and 15.5.3). Equation (15.54) and the corresponding sine
and cosine convolutions are often labeledParseval’s relationsby analogy with Parseval’s
theorem for Fourier series (Chapter 14, Exercise 14.4.2).

5For f (y)= e−y , f (y) andf (x − y) are plotted in Fig. 15.5. Clearly,f (y) andf (x − y) are mirror images of each other in
relation to the vertical liney = x/2, that is, we could generatef (x − y) by folding overf (y) on the liney = x/2.
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The Parseval relation6,7

∫ ∞

−∞
F(ω)G∗(ω)dω=

∫ ∞

−∞
f (t)g∗(t) dt (15.55)

may be derived elegantly using the Dirac delta function representation, Eq. (15.21d). We
have

∫ ∞

−∞
f (t)g∗(t) dt =

∫ ∞

−∞

1√
2π

∫ ∞

−∞
F(ω)e−iωtdω · 1√

2π

∫ ∞

−∞
G∗(x)eixt dx dt,

(15.56)
with attention to the complex conjugation in theG∗(x) to g∗(t) transform. Integrating over
t first, and using Eq. (15.21d), we obtain

∫ ∞

−∞
f (t)g∗(t) dt =

∫ ∞

−∞
F(ω)

∫ ∞

−∞
G∗(x)δ(x −ω)dx dω

=
∫ ∞

−∞
F(ω)G∗(ω)dω, (15.57)

our desired Parseval relation. Iff (t)= g(t), then the integrals in the Parseval relation are
normalization integrals (Section 10.4). Equation (15.57) guarantees that if a functionf (t)

is normalized to unity, its transformF(ω) is likewise normalized to unity. This is extremely
important in quantum mechanics as developed in the next section.

It may be shown that the Fourier transform is a unitary operation (in the Hilbert spaceL2,
square integrable functions). The Parseval relation is a reflection of this unitary property —
analogous to Exercise 3.4.26 for matrices.

In Fraunhofer diffraction optics the diffraction pattern (amplitude) appears as the trans-
form of the function describing the aperture (compare Exercise 15.5.5). With intensity
proportional to the square of the amplitude the Parseval relation implies that the energy
passing through the aperture seems to be somewhere in the diffraction pattern — a state-
ment of the conservation of energy. Parseval’s relations may be developed independently
of the inverse Fourier transform and then used rigorously to derive the inverse transform.
Details are given by Morse and Feshbach,8 Section 4.8 (see also Exercise 15.5.4).

Exercises

15.5.1 Work out the convolution equation corresponding to Eq. (15.53) for

(a) Fourier sine transforms

1

2

∫ ∞

0
g(y)

[

f (y + x)+ f (y − x)
]

dy =
∫ ∞

0
Fs(s)Gs(s)cossx ds,

wheref andg are odd functions.

6Note that all arguments are positive, in contrast to Eq. (15.54).
7Some authors prefer to restrict Parseval’s name to series and refer to Eq. (15.55) asRayleigh’s theorem.
8P. M. Morse and H. Feshbach,Methods of Theoretical Physics, New York: McGraw-Hill (1953).
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(b) Fourier cosine transforms

1

2

∫ ∞

0
g(y)

[

f (y + x)+ f (x − y)
]

dy =
∫ ∞

0
Fc(s)Gc(s)cossx ds,

wheref andg are even functions.

15.5.2 F(ρ) and G(ρ) are the Hankel transforms off (r) and g(r), respectively (Exer-
cise 15.1.1). Derive the Hankel transform Parseval relation:

∫ ∞

0
F ∗(ρ)G(ρ)ρ dρ =

∫ ∞

0
f ∗(r)g(r)r dr.

15.5.3 Show that for both Fourier sine and Fourier cosine transforms Parseval’s relation has
the form

∫ ∞

0
F(t)G(t) dt =

∫ ∞

0
f (y)g(y) dy.

15.5.4 Starting from Parseval’s relation (Eq. (15.54)), letg(y)= 1, 0≤ y ≤ α, and zero else-
where. From this derive the Fourier inverse transform (Eq. (15.23)).
Hint. Differentiate with respect toα.

15.5.5 (a) A rectangular pulse is described by

f (x)=
{

1, |x|< a,

0, |x|> a.

Show that the Fourier exponential transform is

F(t)=
√

2

π

sinat

t
.

This is the single-slit diffraction problem of physical optics. The slit is described
by f (x). The diffraction patternamplitude is given by the Fourier transformF(t).

(b) Use the Parseval relation to evaluate
∫ ∞

−∞

sin2 t

t2
dt.

This integral may also be evaluated by using the calculus of residues, Exer-
cise 7.1.12.

ANS. (b) π.

15.5.6 Solve Poisson’s equation,∇2ψ(r) = −ρ(r)/ε0, by the following sequence of opera-
tions:

(a) Take the Fourier transform of both sides of this equation. Solve for the Fourier
transform ofψ(r).

(b) Carry out the Fourier inverse transform by using a three-dimensional analog of the
convolution theorem, Eq. (15.53).
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15.5.7 (a) Givenf (x) = 1− |x/2|,−2≤ x ≤ 2, and zero elsewhere, show that the Fourier
transform off (x) is

F(t)=
√

2

π

(

sint

t

)2

.

(b) Using the Parseval relation, evaluate
∫ ∞

−∞

(

sint

t

)4

dt.

ANS. (b)
2π

3
.

15.5.8 With F(t) andG(t) the Fourier transforms off (x) andg(x), respectively, show that
∫ ∞

−∞

∣

∣f (x)− g(x)
∣

∣

2
dx =

∫ ∞

−∞

∣

∣F(t)−G(t)
∣

∣

2
dt.

If g(x) is an approximation tof (x), the preceding relation indicates that the mean
square deviation int-space is equal to the mean square deviation inx-space.

15.5.9 Use the Parseval relation to evaluate

(a)
∫ ∞

−∞

dω

(ω2+ a2)2
, (b)

∫ ∞

−∞

ω2dω

(ω2+ a2)2
.

Hint. Compare Exercise 15.3.4.

ANS. (a)
π

2a3
, (b)

π

2a
.

15.6 MOMENTUM REPRESENTATION

In advanced dynamics and in quantum mechanics, linear momentum and spatial position
occur on an equal footing. In this section we shall start with the usual space distribution
and derive the corresponding momentum distribution. For the one-dimensional case our
wave functionψ(x) has the following properties:

1. ψ∗(x)ψ(x)dx is the probability density of finding a quantum particle betweenx and
x + dx, and

2.
∫ ∞

−∞
ψ∗(x)ψ(x)dx = 1 (15.58)

corresponds to probability unity.
3. In addition, we have

〈x〉 =
∫ ∞

−∞
ψ∗(x)xψ(x)dx (15.59)

for theaverageposition of the particle along thex-axis. This is often called anexpec-
tation value.

We want a functiong(p) that will give the same information about the momentum:
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1. g∗(p)g(p)dp is the probability density that our quantum particle has a momentum
betweenp andp+ dp.

2.

∫ ∞

−∞
g∗(p)g(p)dp = 1. (15.60)

3. 〈p〉 =
∫ ∞

−∞
g∗(p)p g(p)dp. (15.61)

As subsequently shown, such a function is given by the Fourier transform of our space
functionψ(x). Specifically,9

g(p)= 1√
2πh̄

∫ ∞

−∞
ψ(x)e−ipx/h̄ dx, (15.62)

g∗(p)= 1√
2πh̄

∫ ∞

−∞
ψ∗(x)eipx/h̄ dx. (15.63)

The corresponding three-dimensional momentum function is

g(p)= 1

(2πh̄)3/2

∫

∞
∫

−∞

∫

ψ(r)e−ir ·p/h̄ d3r.

To verify Eqs. (15.62) and (15.63), let us check on properties 2 and 3.
Property 2, the normalization, is automatically satisfied as a Parseval relation,

Eq. (15.55). If the space functionψ(x) is normalized to unity, the momentum function
g(p) is also normalized to unity.

To check on property 3, we must show that

〈p〉 =
∫ ∞

−∞
g∗(p)pg(p)dp =

∫ ∞

−∞
ψ∗(x)

h̄

i

d

dx
ψ(x)dx, (15.64)

where (h̄/i)(d/dx) is the momentum operator in the space representation. We replace
the momentum functions by Fourier-transformed space functions, and the first integral
becomes

1

2πh̄

∫

∞
∫

−∞

∫

pe−ip(x−x′)/h̄ψ∗(x′)ψ(x)dp dx′ dx. (15.65)

Now we use the plane-wave identity

pe−ip(x−x′)/h̄ = d

dx

[

− h̄

i
e−ip(x−x′)/h̄

]

, (15.66)

9The h̄ may be avoided by using the wave numberk,p = kh̄ (andp= kh̄), so

ϕ(k)= 1

(2π)1/2

∫

ψ(x)e−ikx dx.

An example of this notation appears in Section 16.1.
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with p a constant, not an operator. Substituting into Eq. (15.65) and integrating by parts,
holdingx′ andp constant, we obtain

〈p〉 =
∫

∞
∫

−∞

[

1

2πh̄

∫ ∞

−∞
e−ip(x−x′)/h̄ dp

]

·ψ∗(x′) h̄
i

d

dx
ψ(x)dx′ dx. (15.67)

Here we assumeψ(x) vanishes asx →±∞, eliminating the integrated part. Using the
Dirac delta function, Eq. (15.21c), Eq. (15.67) reduces to Eq. (15.64) to verify our mo-
mentum representation.

Alternatively, if the integration overp is done first in Eq. (15.65), leading to
∫ ∞

−∞
pe−ip(x−x′)/h̄ dp = 2πih̄2δ′(x − x′),

and using Exercise 1.15.9, we can do the integration overx, which causesψ(x) to become
−dψ(x′)/dx′. The remaining integral overx′ is the right-hand side of Eq. (15.64).

Example 15.6.1 HYDROGEN ATOM

The hydrogen atom ground state10 may be described by the spatial wave function

ψ(r)=
(

1

πa3
0

)1/2

e−r/a0, (15.68)

a0 being the Bohr radius, 4πε0h̄
2/me2. We now have a three-dimensional wave function.

The transform corresponding to Eq. (15.62) is

g(p)= 1

(2πh̄)3/2

∫

ψ(r)e−ip·r/h̄ d3r. (15.69)

Substituting Eq. (15.68) into Eq. (15.69) and using
∫

e−ar+ib·r d3r = 8πa

(a2+ b2)2
, (15.70)

we obtain the hydrogenic momentum wave function,

g(p)= 23/2

π

a
3/2
0 h̄5/2

(a2
0p2+ h̄2)2

. (15.71)

Such momentum functions have been found useful in problems like Compton scattering
from atomic electrons, the wavelength distribution of the scattered radiation, depending on
the momentum distribution of the target electrons.

The relation between the ordinary space representation and the momentum representa-
tion may be clarified by considering the basic commutation relations of quantum mechan-
ics. We go from a classical Hamiltonian to the Schrödinger wave equation by requiring that
momentump and positionx not commute. Instead, we require that

[p,x] ≡ px − xp =−ih̄. (15.72)

10See E. V. Ivash, A momentum representation treatment of the hydrogen atom problem.Am. J. Phys.40: 1095 (1972) for
a momentum representation treatment of the hydrogen atoml = 0 states.
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For the multidimensional case, Eq. (15.72) is replaced by

[pi, xj ] = −ih̄δij . (15.73)

The Schrödinger (space) representation is obtained by using

x→ x : pi →−ih̄
∂

∂xi

,

replacing the momentum by a partial space derivative. We see that

[p,x]ψ(x)=−ih̄ψ(x). (15.74)

However, Eq. (15.72) can equally well be satisfied by using

p→ p : xj → ih̄
∂

∂pj

.

This is the momentum representation. Then

[p,x]g(p)=−ih̄g(p). (15.75)

Hence the representation(x) is not unique;(p) is an alternate possibility.
In general, the Schrödinger representation(x) leading to the Schrödinger wave equation

is more convenient because the potential energyV is generally given as a function of
positionV (x, y, z). The momentum representation(p) usually leads to an integral equation
(compare Chapter 16 for the pros and cons of the integral equations). For an exception,
consider the harmonic oscillator. �

Example 15.6.2 HARMONIC OSCILLATOR

The classical Hamiltonian (kinetic energy+ potential energy= total energy) is

H(p,x)= p2

2m
+ 1

2
kx2=E, (15.76)

wherek is the Hooke’s law constant.
In the Schrödinger representation we obtain

− h̄2

2m

d2ψ(x)

dx2
+ 1

2
kx2ψ(x)=Eψ(x). (15.77)

For total energyE equal to
√

(k/m)h̄/2 there is an unnormalized solution (Section 13.1),

ψ(x)= e−(
√

mk/2h̄)x2
. (15.78)

The momentum representation leads to

p2

2m
g(p)− h̄2k

2

d2g(p)

dp2
=Eg(p). (15.79)

Again, for

E =
√

k

m

h̄

2
(15.80)
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the momentum wave equation (15.79) is satisfied by the unnormalized

g(p)= e−p2/(2h̄
√

mk). (15.81)

Either representation, space or momentum (and an infinite number of other possibilities),
may be used, depending on which is more convenient for the particular problem under
attack.

The demonstration thatg(p) is the momentum wave function corresponding to
Eq. (15.78) — that it is the Fourier inverse transform of Eq. (15.78) — is left as Exer-
cise 15.6.3. �

Exercises

15.6.1 The functioneik·r describes a plane wave of momentump = h̄k normalized to unit
density. (Time dependence ofe−iωt is assumed.) Show that these plane-wave functions
satisfy an orthogonality relation

∫

(

eik·r )∗eik′·rdx dy dz= (2π)3δ(k − k′).

15.6.2 An infinite plane wave in quantum mechanics may be represented by the function

ψ(x)= eip′x/h̄.

Find the corresponding momentum distribution function. Note that it has an infinity and
thatψ(x) is not normalized.

15.6.3 A linear quantum oscillator in its ground state has a wave function

ψ(x)= a−1/2π−1/4e−x2/2a2
.

Show that the corresponding momentum function is

g(p)= a1/2π−1/4h̄−1/2e−a2p2/2h̄2
.

15.6.4 Thenth excited state of the linear quantum oscillator is described by

ψn(x)= a−1/22−n/2π−1/4(n!)−1/2e−x2/2a2
Hn(x/a),

whereHn(x/a) is thenth Hermite polynomial, Section 13.1. As an extension of Exer-
cise 15.6.3, find the momentum function corresponding toψn(x).
Hint. ψn(x) may be represented by(â†)nψ0(x), whereâ† is the raising operator, Exer-
cise 13.1.14 to 13.1.16.

15.6.5 A free particle in quantum mechanics is described by a plane wave

ψk(x, t)= ei[kx−(h̄k2/2m)t].

Combining waves of adjacent momentum with an amplitude weighting factorϕ(k), we
form a wave packet

�(x, t)=
∫ ∞

−∞
ϕ(k)ei[kx−(h̄k2/2m)t] dk.
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(a) Solve forϕ(k) given that

�(x,0)= e−x2/2a2
.

(b) Using the known value ofϕ(k), integrate to get the explicit form of�(x, t). Note
that this wave packet diffuses or spreads out with time.

ANS. �(x, t)= e−{x
2/2[a2+(ih̄/m)t]}

[1+ (ih̄t/ma2)]1/2
.

Note. An interesting discussion of this problem from the evolution operator point of
view is given by S. M. Blinder, Evolution of a Gaussian wave packet,Am. J. Phys.36:
525 (1968).

15.6.6 Find the time-dependent momentum wave functiong(k, t) corresponding to�(x, t) of
Exercise 15.6.5. Show that the momentum wave packetg∗(k, t)g(k, t) is independent
of time.

15.6.7 The deuteron, Example 10.1.2, may be described reasonably well with a Hulthén wave
function

ψ(r)=A[e−αr − e−βr ]/r,

with A, α, andβ constants. Findg(p), the corresponding momentum function.
Note. The Fourier transform may be rewritten as Fourier sine and cosine transforms or
as a Laplace transform, Section 15.8.

15.6.8 The nuclear form factorF(k) and the charge distributionρ(r) are three-dimensional
Fourier transforms of each other:

F(k)= 1

(2π)3/2

∫

ρ(r)eik·r d3r.

If the measured form factor is

F(k)= (2π)−3/2
(

1+ k2

a2

)−1

,

find the corresponding charge distribution.

ANS. ρ(r)= a2

4π

e−ar

r
.

15.6.9 Check the normalization of the hydrogen momentum wave function

g(p)= 23/2

π

a
3/2
0 h̄5/2

(a2
0p2+ h̄2)2

by direct evaluation of the integral
∫

g∗(p)g(p) d3p.

15.6.10 With ψ(r) a wave function in ordinary space andϕ(p) the corresponding momentum
function, show that
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(a)
1

(2πh̄)3/2

∫

rψ(r)e−ir ·p/h̄ d3r = ih̄∇pϕ(p),

(b)
1

(2πh̄)3/2

∫

r2ψ(r)e−r ·p/h̄ d3r = (ih̄∇p)2ϕ(p).

Note. ∇p is the gradient in momentum space:

x̂
∂

∂px

+ ŷ
∂

∂py

+ ẑ
∂

∂pz

.

These results may be extended to any positive integer power ofr and therefore to any
(analytic) function that may be expanded as a Maclaurin series inr .

15.6.11 The ordinary space wave functionψ(r , t) satisfies the time-dependent Schrödinger
equation

ih̄
∂ψ(r , t)

∂t
=− h̄2

2m
∇

2ψ + V (r)ψ.

Show that the corresponding time-dependent momentum wave function satisfies the
analogous equation,

ih̄
∂ϕ(p, t)

∂t
= p2

2m
ϕ + V (ih̄∇p)ϕ.

Note. Assume thatV (r) may be expressed by a Maclaurin series and use Exer-
cise 15.6.10.V (ih̄∇p) is the same function of the variableih̄∇p that V (r) is of the
variabler .

15.6.12 The one-dimensional time-independent Schrödinger wave equation is

− h̄2

2m

d2ψ(x)

dx2
+ V (x)ψ(x)=Eψ(x).

For the special case ofV (x) an analytic function ofx, show that the corresponding
momentum wave equation is

V

(

ih̄
d

dp

)

g(p)+ p2

2m
g(p)=Eg(p).

Derive this momentum wave equation from the Fourier transform, Eq. (15.62), and its
inverse. Do not use the substitutionx→ ih̄(d/dp) directly.

15.7 TRANSFER FUNCTIONS

A time-dependent electrical pulse may be regarded as built-up as a superposition of plane
waves of many frequencies. For angular frequencyω we have a contribution

F(ω)eiωt .

Then the complete pulse may be written as

f (t)= 1

2π

∫ ∞

−∞
F(ω)eiωt dω. (15.82)
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FIGURE 15.6 Servomechanism or a stereo amplifier.

Because the angular frequencyω is related to the linear frequencyν by

ν = ω

2π
,

it is customary to associate the entire 1/2π factor with this integral.
But if ω is a frequency, what about the negative frequencies? The negativeω may be

looked on as a mathematical device to avoid dealing with two functions (cosωt and sinωt)
separately (compare Section 14.1).

Because Eq. (15.82) has the form of a Fourier transform, we may solve forF(ω) by
writing the inverse transform,

F(ω)=
∫ ∞

−∞
f (t)e−iωt dt. (15.83)

Equation (15.83) represents aresolution of the pulsef (t) into its angular frequency com-
ponents. Equation (15.82) is asynthesis of the pulsefrom its components.

Consider some device, such as a servomechanism or a stereo amplifier (Fig. 15.6), with
an inputf (t) and an outputg(t). For an input of a single frequencyω,fω(t) = eiωt , the
amplifier will alter the amplitude and may also change the phase. The changes will proba-
bly depend on the frequency. Hence

gω(t)= ϕ(ω)fω(t). (15.84)

This amplitudes- and phase-modifying functionϕ(ω) is called atransfer function. It usu-
ally will be complex:

ϕ(ω)= u(ω)+ iv(ω), (15.85)

where the functionsu(ω) andv(ω) are real.
In Eq. (15.84) we assume that the transfer functionϕ(ω) is independent of input ampli-

tude and of the presence or absence of any other frequency components. That is, we are
assuming a linear mapping off (t) onto g(t). Then the total output may be obtained by
integrating over the entire input, as modified by the amplifier

g(t)= 1

2π

∫ ∞

−∞
ϕ(ω)F (ω)eiωtdω. (15.86)

The transfer function is characteristic of the amplifier. Once the transfer function is
known (measured or calculated), the outputg(t) can be calculated for any inputf (t).
Let us considerϕ(ω) as the Fourier (inverse) transform of some function�(t):

ϕ(ω)=
∫ ∞

−∞
�(t)e−iωtdt. (15.87)
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Then Eq. (15.86) is the Fourier transform of two inverse transforms. From Section 15.5 we
obtain the convolution

g(t)=
∫ ∞

−∞
f (τ)�(t − τ) dτ. (15.88)

Interpreting Eq. (15.88), we have an input — a “cause” —f (τ), modified by�(t − τ),
producing an output — an “effect” —g(t). Adopting the concept ofcausality— that the
cause precedes the effect — we must requireτ < t . We do this by requiring

�(t − τ)= 0, τ > t. (15.89)

Then Eq. (15.88) becomes

g(t)=
∫ t

−∞
f (τ)�(t − τ) dτ. (15.90)

The adoption of Eq. (15.89) has profound consequences here and equivalently in disper-
sion theory, Section 7.2.

Significance of (t)

To see the significance of�, let f (τ) be a sudden impulse starting atτ = 0,

f (τ)= δ(τ ),

whereδ(τ ) is a Dirac delta distribution on the positive side of the origin. Then Eq. (15.90)
becomes

g(t) =
∫ t

−∞
δ(τ )�(t − τ) dτ,

(15.91)

g(t) =
{

�(t), t > 0,

0, t < 0.

This identifies�(t) as the output function corresponding to a unit impulse att = 0. Equa-
tion (15.91) also serves to establish that�(t) is real. Our original transfer function gives
the steady-state output corresponding to a unit-amplitude single-frequency input.�(t) and
ϕ(ω) are Fourier transforms of each other.

From Eq. (15.87) we now have

ϕ(ω)=
∫ ∞

0
�(t)e−iωt dt, (15.92)

with the lower limit set equal to zero by causality (Eq. (15.89)). With�(t) real from
Eq. (15.91) we separate real and imaginary parts and write

u(ω) =
∫ ∞

0
�(t)cosωt dt,

(15.93)

v(ω) = −
∫ ∞

0
�(t)sinωt dt, ω > 0.
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From this we see that the real part ofϕ(ω),u(ω), is even, whereas the imaginary part of
ϕ(ω), v(ω), is odd:

u(−ω)= u(ω), v(−ω)=−v(ω).

Compare this result with Exercise 15.3.1.
Interpreting Eq. (15.93) as Fourier cosine and sine transforms, we have

�(t) = 2

π

∫ ∞

0
u(ω)cosωt dω

= − 2

π

∫ ∞

0
v(ω)sinωt dω, t > 0. (15.94)

Combining Eqs. (15.93) and (15.94), we obtain

v(ω)=−
∫ ∞

0
sinωt

{

2

π

∫ ∞

0
u(ω′)cosω′t dω′

}

dt, (15.95)

showing that if our transfer function has a real part, it will also have an imaginary part (and
vice versa). Of course, this assumes that the Fourier transforms exist, thus excluding cases
such as�(t)= 1.

The imposition of causality has led to a mutual interdependence of the real and imagi-
nary parts of the transfer function. The reader should compare this with the results of the
dispersion theory of Section 7.2, also involving causality.

It may be helpful to show that the parity properties ofu(ω) andv(ω) require�(t) to
vanish for negativet . Inverting Eq. (15.87), we have

�(t)= 1

2π

∫ ∞

−∞

[

u(ω)+ iv(ω)
][

cosωt + i sinωt
]

dω. (15.96)

With u(ω) even andv(ω) odd, Eq. (15.96) becomes

�(t)= 1

π

∫ ∞

0
u(ω)cosωt dω− 1

π

∫ ∞

0
v(ω)sinωt dω. (15.97)

From Eq. (15.94),
∫ ∞

0
u(ω)cosωt dω=−

∫ ∞

0
v(ω)sinωt dω, t > 0. (15.98)

If we reverse the sign oft,sinωt reverses sign and, from Eq. (15.97),

�(t)= 0, t < 0

(demonstrating the internal consistency of our analysis).

Exercise

15.7.1 Derive the convolution

g(t)=
∫ ∞

−∞
f (τ)�(t − τ) dτ.
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15.8 LAPLACE TRANSFORMS

Definition

The Laplace transformf (s) or L of a functionF(t) is defined by11

f (s)= L
{

F(t)
}

= lim
a→∞

∫ a

0
e−stF(t) dt =

∫ ∞

0
e−stF(t) dt. (15.99)

A few comments on the existence of the integral are in order. The infinite integral ofF(t),
∫ ∞

0
F(t) dt,

need not exist. For instance,F(t) may diverge exponentially for larget . However, if there
is some constants0 such that

∣

∣e−s0tF(t)
∣

∣≤M, (15.100)

a positive constant for sufficiently larget, t > t0, the Laplace transform (Eq. (15.99)) will
exist for s > s0;F(t) is said to be ofexponential order. As a counterexample,F(t)= et2

does not satisfy the condition given by Eq. (15.100) and isnot of exponential order.L{et2}
doesnot exist.

The Laplace transform may also fail to exist because of a sufficiently strong singularity
in the functionF(t) ast → 0; that is,

∫ ∞

0
e−st tn dt

diverges at the origin forn≤−1. The Laplace transformL{tn} does not exist forn≤−1.
Since, for two functionsF(t) andG(t), for which the integrals exist

L
{

aF(t)+ bG(t)
}

= aL
{

F(t)
}

+ bL
{

G(t)
}

, (15.101)

the operation denoted byL is linear.

Elementary Functions

To introduce the Laplace transform, let us apply the operation to some of the elementary
functions. In all cases we assume thatF(t)= 0 for t < 0. If

F(t)= 1, t > 0,

11This is sometimes called aone-sided Laplace transform; the integral from−∞ to+∞ is referred to as atwo-sided Laplace
transform . Some authors introduce an additional factor ofs. This extras appears to have little advantage and continually gets
in the way (compare Jeffreys and Jeffreys, Section 14.13 — see the Additional Readings — for additional comments). Generally,
we takes to be real and positive. It is possible to haves complex, providedℜ(s) > 0.
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then

L{1} =
∫ ∞

0
e−st dt = 1

s
, for s > 0. (15.102)

Again, let

F(t)= ekt , t > 0.

The Laplace transform becomes

L
{

ekt
}

=
∫ ∞

0
e−stektdt = 1

s − k
, for s > k. (15.103)

Using this relation, we obtain the Laplace transform of certain other functions. Since

coshkt = 1

2

(

ekt + e−kt
)

, sinhkt = 1

2

(

ekt − e−kt
)

, (15.104)

we have

L{coshkt} = 1

2

(

1

s − k
+ 1

s + k

)

= s

s2− k2
,

(15.105)

L{sinhkt} = 1

2

(

1

s − k
− 1

s + k

)

= k

s2− k2
,

both valid fors > k. We have the relations

coskt = coshikt, sinkt =−i sinhikt. (15.106)

Using Eqs. (15.105) withk replaced byik, we find that the Laplace transforms are

L{coskt} = s

s2+ k2
,

(15.107)

L{sinkt} = k

s2+ k2
,

both valid for s > 0. Another derivation of this last transform is given in the next sec-
tion. Note that lims→0L{sinkt} = 1/k. The Laplace transform assigns a value of 1/k to
∫∞

0 sinkt dt .
Finally, for F(t)= tn, we have

L
{

tn
}

=
∫ ∞

0
e−st tn dt,

which is just the factorial function. Hence

L
{

tn
}

= n!
sn+1

, s > 0, n >−1. (15.108)

Note that in all these transforms we have the variables in the denominator — negative
powers ofs. In particular, lims→∞ f (s)= 0. The significance of this point is that iff (s)

involves positive powers ofs (lims→∞ f (s)→∞), then no inverse transform exists.
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Inverse Transform

There is little importance to these operations unless we can carry out the inverse transform,
as in Fourier transforms. That is, with

L
{

F(t)
}

= f (s),

then

L
−1{f (s)

}

= F(t). (15.109)

This inverse transform isnot unique. Two functionsF1(t) andF2(t) may have the same
transform,f (s). However, in this case

F1(t)− F2(t)=N(t),

whereN(t) is a null function (Fig. 15.7), indicating that
∫ t0

0
N(t) dt = 0,

for all positive t0. This result is known asLerch’s theorem. Therefore to the physicist
and engineerN(t) may almost always be taken as zero and the inverse operation becomes
unique.

The inverse transform can be determined in various ways. (1) A table of transforms can
be built up and used to carry out the inverse transformation, exactly as a table of logarithms
can be used to look up antilogarithms. The preceding transforms constitute the beginnings
of such a table. For a more complete set of Laplace transforms see upcoming Table 15.2
or AMS-55, Chapter 29 (see footnote 4 in Chapter 5 for the reference). Employing partial
fraction expansions and various operational theorems, which are considered in succeeding
sections, facilitates use of the tables.

• There is some justification for suspecting that these tables are probably of more value
in solving textbook exercises than in solving real-world problems.

• (2) A general technique forL−1 will be developed in Section 15.12 by using the cal-
culus of residues.

FIGURE 15.7 A possible null
function.



968 Chapter 15 Integral Transforms

• (3) For the difficulties and the possibilities of a numerical approach — numerical inver-
sion — we refer to the Additional Readings.

Partial Fraction Expansion

Utilization of a table of transforms (or inverse transforms) is facilitated by expandingf (s)

in partial fractions .
Frequentlyf (s), our transform, occurs in the formg(s)/h(s), whereg(s) andh(s) are

polynomials with no common factors,g(s) being of lower degree thanh(s). If the factors
of h(s) are all linear and distinct, then by the method of partial fractions we may write

f (s)= c1

s − a1
+ c2

s − a2
+ · · · + cn

s − an

, (15.110)

where theci are independent ofs. Theai are the roots ofh(s). If any one of the roots, say,
a1, is multiple (occurringm times), thenf (s) has the form

f (s)= c1,m

(s − a1)m
+ c1,m−1

(s − a1)m−1
+ · · · + c1,1

s − a1
+

n
∑

i=2

ci

s − ai

. (15.111)

Finally, if one of the factors is quadratic,(s2 + ps + q), then the numerator, instead of
being a simple constant, will have the form

as + b

s2+ ps + q
.

There are various ways of determining the constants introduced. For instance, in
Eq. (15.110) we may multiply through by(s − ai) and obtain

ci = lim
s→ai

(s − ai)f (s). (15.112)

In elementary cases a direct solution is often the easiest.

Example 15.8.1 PARTIAL FRACTION EXPANSION

Let

f (s)= k2

s(s2+ k2)
= c

s
+ as + b

s2+ k2
. (15.113)

Putting the right side of the equation over a common denominator and equating like powers
of s in the numerator, we obtain

k2

s(s2+ k2)
= c(s2+ k2)+ s(as + b)

s(s2+ k2)
, (15.114)

c+ a = 0, s2; b= 0, s1; ck2= k2, s0.

Solving these(s 
= 0), we have

c= 1, b= 0, a =−1,
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giving

f (s)= 1

s
− s

s2+ k2
, (15.115)

and

L
−1{f (s)

}

= 1− coskt (15.116)

by Eqs. (15.102) and (15.106). �

Example 15.8.2 A STEP FUNCTION

As one application of Laplace transforms, consider the evaluation of

F(t)=
∫ ∞

0

sintx

x
dx. (15.117)

Suppose we take the Laplace transform of this definite (and improper) integral:

L

{∫ ∞

0

sintx

x
dx

}

=
∫ ∞

0
e−st

∫ ∞

0

sintx

x
dx dt. (15.118)

Now, interchanging the order of integration (which is justified),12 we get
∫ ∞

0

1

x

[∫ ∞

0
e−st sintx dt

]

dx =
∫ ∞

0

dx

s2+ x2
, (15.119)

since the factor in square brackets is just the Laplace transform of sintx. From the integral
tables,

∫ ∞

0

dx

s2+ x2
= 1

s
tan−1

(

x

s

)∣

∣

∣

∣

∞

0
= π

2s
= f (s). (15.120)

By Eq. (15.102) we carry out the inverse transformation to obtain

F(t)= π

2
, t > 0, (15.121)

in agreement with an evaluation by the calculus of residues (Section 7.1). It has been as-
sumed thatt > 0 in F(t). For F(−t) we need note only that sin(−tx) = −sintx, giving
F(−t)=−F(t). Finally, if t = 0,F (0) is clearly zero. Therefore

∫ ∞

0

sintx

x
dx = π

2

[

2u(t)− 1
]

=







π
2 , t > 0

0, t = 0
−π

2 , t < 0.

(15.122)

Note that
∫∞

0 (sintx/x) dx, taken as a function oft , describes a step function (Fig. 15.8),
a step of heightπ at t = 0. This is consistent with Eq. (1.174). �

The technique in the preceding example was to (1) introduce a second integration —
the Laplace transform, (2) reverse the order of integration and integrate, and (3) take the

12See — in the Additional Readings — Jeffreys and Jeffreys (1966), Chapter 1 (uniform convergence of integrals).
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FIGURE 15.8 F(t)=
∫∞

0
sintx

x
dx,

a step function.

inverse Laplace transform. There are many opportunities where this technique of reversing
the order of integration can be applied and proved useful. Exercise 15.8.6 is a variation of
this.

Exercises

15.8.1 Prove that

lim
s→∞

sf (s)= lim
t→+0

F(t).

Hint. Assume thatF(t) can be expressed asF(t)=
∑∞

n=0 ant
n.

15.8.2 Show that

1

π
lim
s→0

L{cosxt} = δ(x).

15.8.3 Verify that

L

{

cosat − cosbt

b2− a2

}

= s

(s2+ a2)(s2+ b2)
, a2 
= b2.

15.8.4 Using partial fraction expansions, show that

(a) L
−1

{

1

(s + a)(s + b)

}

= e−at − e−bt

b− a
, a 
= b.

(b) L
−1

{

s

(s + a)(s + b)

}

= ae−at − be−bt

a − b
, a 
= b.

15.8.5 Using partial fraction expansions, show that fora2 
= b2,

(a) L
−1

{

1

(s2+ a2)(s2+ b2)

}

=− 1

a2− b2

{

sinat

a
− sinbt

b

}

,

(b) L
−1

{

s2

(s2+ a2)(s2+ b2)

}

= 1

a2− b2
{a sinat − b sinbt}.
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15.8.6 The electrostatic potential of a charged conducting disk is known to have the general
form (circular cylindrical coordinates)

�(ρ, z)=
∫ ∞

0
e−k|z|J0(kρ)f (k) dk,

with f (k) unknown. At large distances(z →∞) the potential must approach the
Coulomb potentialQ/4πε0z. Show that

lim
k→0

f (k)= q

4πε0
.

Hint. You may setρ = 0 and assume a Maclaurin expansion off (k) or, usinge−kz,
construct a delta sequence.

15.8.7 Show that

(a)
∫ ∞

0

coss

sν
ds = π

2(ν − 1)!cos(νπ/2)
, 0< ν < 1,

(b)
∫ ∞

0

sins

sν
ds = π

2(ν − 1)!sin(νπ/2)
, 0< ν < 2,

Why isν restricted to (0, 1) for (a), to(0,2) for (b)? These integrals may be interpreted
as Fourier transforms ofs−ν and as Mellin transforms of sins and coss.
Hint. Replaces−ν by a Laplace transform integral:L{tν−1}/(ν − 1)!. Then integrate
with respect tos. The resulting integral can be treated as a beta function (Section 8.4).

15.8.8 A functionF(t) can be expanded in a power series (Maclaurin); that is,

F(t)=
∞
∑

n=0

ant
n.

Then

L
{

F(t)
}

=
∫ ∞

0
e−st

∞
∑

n=0

ant
ndt =

∞
∑

n=0

an

∫ ∞

0
e−st tndt.

Show thatf (s), the Laplace transform ofF(t), contains no powers ofs greater than
s−1. Check your result by calculatingL{δ(t)}, and comment on this fiasco.

15.8.9 Show that the Laplace transform ofM(a, c, x) is

L
{

M(a, c, x)
}

= 1

s
2F1

(

a,1; c, 1

s

)

.

15.9 LAPLACE TRANSFORM OF DERIVATIVES

Perhaps the main application of Laplace transforms is in converting differential equations
into simpler forms that may be solved more easily. It will be seen, for instance, that coupled
differential equations with constant coefficients transform to simultaneous linear algebraic
equations.
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Let us transform the first derivative ofF(t):

L
{

F ′(t)
}

=
∫ ∞

0
e−st dF(t)

dt
dt.

Integrating by parts, we obtain

L
{

F ′(t)
}

= e−stF(t)

∣

∣

∣

∞

0
+ s

∫ ∞

0
e−stF(t) dt

= sL
{

F(t)
}

− F(0). (15.123)

Strictly speaking,F(0)= F(+0)13anddF/dt is required to be at least piecewise contin-
uous for 0≤ t <∞. Naturally, bothF(t) and its derivative must be such that the integrals
do not diverge. Incidentally, Eq. (15.123) provides another proof of Exercise 15.8.8. An
extension gives

L
{

F (2)(t)
}

= s2
L

{

F(t)
}

− sF (+0)− F ′(+0), (15.124)

L
{

F (n)(t)
}

= sn
L

{

F(t)
}

− sn−1F(+0)− · · · − F (n−1)(+0). (15.125)

The Laplace transform, like the Fourier transform, replaces differentiation with multi-
plication. In the following examples ODEs become algebraic equations. Here is the power
and the utility of the Laplace transform. But see Example 15.10.3 for what may happen if
the coefficients are not constant.

Note how the initial conditions,F(+0),F ′(+0), and so on, are incorporated into the
transform. Equation (15.124) may be used to deriveL{sinkt}. We use the identity

−k2 sinkt = d2

dt2
sinkt. (15.126)

Then applying the Laplace transform operation, we have

−k2
L{sinkt} = L

{

d2

dt2
sinkt

}

= s2
L{sinkt} − s sin(0)− d

dt
sinkt

∣

∣

∣

t=0
. (15.127)

Since sin(0)= 0 andd/dt sinkt |t=0= k,

L{sinkt} = k

s2+ k2
, (15.128)

verifying Eq. (15.107).

13Zero is approached from the positive side.
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Example 15.9.1 SIMPLE HARMONIC OSCILLATOR

As a physical example, consider a massm oscillating under the influence of an ideal spring,
spring constantk. As usual, friction is neglected. Then Newton’s second law becomes

m
d2X(t)

dt2
+ kX(t)= 0; (15.129)

also, we take as initial conditions

X(0)=X0, X′(0)= 0.

Applying the Laplace transform, we obtain

mL

{

d2X

dt2

}

+ kL
{

X(t)
}

= 0, (15.130)

and by use of Eq. (15.124) this becomes

ms2x(s)−msX0+ kx(s)= 0, (15.131)

x(s)=X0
s

s2+ω2
0

, with ω2
0 ≡

k

m
. (15.132)

From Eq. (15.107) this is seen to be the transform of cosω0t , which gives

X(t)=X0 cosω0t, (15.133)

as expected. �

Example 15.9.2 EARTH’S NUTATION

A somewhat more involved example is the nutation of the earth’s poles (force-free pre-
cession). If we treat the Earth as a rigid (oblate) spheroid, the Euler equations of motion
reduce to

dX

dt
=−aY,

dY

dt
=+aX, (15.134)

where a ≡ [(Iz − Ix)/Iz]ωz, X = ωx , Y = ωy with angular velocity vectorω =
(ωx,ωy,ωz) (Fig. 15.9),Iz = moment of inertia about thez-axis andIy = Ix moment
of inertia about thex- (or y-)axis. Thez-axis coincides with the axis of symmetry of the
Earth. It differs from the axis for the Earth’s daily rotation,ω, by some 15 meters, measured
at the poles. Transformation of these coupled differential equations yields

sx(s)−X(0)=−ay(s), sy(s)− Y(0)= ax(s). (15.135)

Combining to eliminatey(s), we have

s2x(s)− sX(0)+ aY (0)=−a2x(s),

or

x(s)=X(0)
s

s2+ a2
− Y(0)

a

s2+ a2
. (15.136)
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FIGURE 15.9

Hence

X(t)=X(0)cosat − Y(0)sinat. (15.137)

Similarly,

Y(t)=X(0)sinat + Y(0)cosat. (15.138)

This is seen to be a rotation of the vector(X,Y ) counterclockwise (fora > 0) about the
z-axis with angleθ = at and angular velocitya.

A direct interpretation may be found by choosing the time axis so thatY(0)= 0. Then

X(t)=X(0)cosat, Y (t)=X(0)sinat, (15.139)

which are the parametric equations for rotation of(X,Y ) in a circular orbit of radiusX(0),
with angular velocitya in the counterclockwise sense.

In the case of the Earth’s angular velocity, vectorX(0) is about 15 meters, whereas
a, as defined here, corresponds to a period(2π/a) of some 300 days. Actually because
of departures from the idealized rigid body assumed in setting up Euler’s equations, the
period is about 427 days.14 If in Eq. (15.134) we set

X(t)= Lx, Y (t)= Ly,

whereLx andLy are thex- andy-components of the angular momentumL , a =−gLBz,
gL is the gyromagnetic ratio, andBz is the magnetic field (along thez-axis), then
Eq. (15.134) describes the Larmor precession of charged bodies in a uniform magnetic
field Bz. �

14D. Menzel, ed.,Fundamental Formulas of Physics, Englewood Cliffs, NJ: Prentice-Hall (1955), reprinted, 2nd ed., Dover
(1960), p. 695.
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Dirac Delta Function

For use with differential equations one further transform is helpful — the Dirac delta func-
tion:15

L
{

δ(t − t0)
}

=
∫ ∞

0
e−stδ(t − t0) dt = e−st0, for t0≥ 0, (15.140)

and fort0= 0

L
{

δ(t)
}

= 1, (15.141)

where it is assumed that we are using a representation of the delta function such that
∫ ∞

0
δ(t) dt = 1, δ(t)= 0, for t > 0. (15.142)

As an alternate method,δ(t) may be considered the limit asε→ 0 of F(t), where

F(t)=







0, t < 0,

ε−1, 0< t < ε,

0, t > ε.

(15.143)

By direct calculation

L
{

F(t)
}

= 1− e−εs

εs
. (15.144)

Taking the limit of the integral (instead of the integral of the limit), we have

lim
ε→0

L
{

F(t)
}

= 1,

or Eq. (15.141),

L
{

δ(t)
}

= 1.

This delta function is frequently called theimpulse function because it is so useful in
describing impulsive forces, that is, forces lasting only a short time.

Example 15.9.3 IMPULSIVE FORCE

Newton’s second law for impulsive force acting on a particle of massm becomes

m
d2X

dt2
= Pδ(t), (15.145)

whereP is a constant. Transforming, we obtain

ms2x(s)−msX(0)−mX′(0)= P. (15.146)

15Strictly speaking, the Dirac delta function is undefined. However, the integral over it is well defined. This approach is developed
in Section 1.16 using delta sequences.
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For a particle starting from rest,X′(0)= 0.16 We shall also takeX(0)= 0. Then

x(s)= P

ms2
, (15.147)

and

X(t) = P

m
t, (15.148)

dX(t)

dt
= P

m
, a constant. (15.149)

The effect of the impulsePδ(t) is to transfer (instantaneously)P units of linear momentum
to the particle.

A similar analysis applies to the ballistic galvanometer. The torque on the galvanometer
is given initially bykι, in which ι is a pulse of current andk is a proportionality constant.
Sinceι is of short duration, we set

kι= kq δ(t), (15.150)

whereq is the total charge carried by the currentι. Then, withI the moment of inertia,

I
d2θ

dt2
= kq δ(t), (15.151)

and, transforming as before, we find that the effect of the current pulse is a transfer ofkq

units ofangular momentum to the galvanometer. �

Exercises

15.9.1 Use the expression for the transform of a second derivative to obtain the transform of
coskt .

15.9.2 A massm is attached to one end of an unstretched spring, spring constantk (Fig. 15.10).
At time t = 0 the free end of the spring experiences a constant accelerationa, away from
the mass. Using Laplace transforms,

FIGURE 15.10 Spring.

16This should beX′(+0). To include the effect of the impulse, consider that the impulse will occur att = ε and letε→ 0.
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(a) Find the positionx of m as a function of time.
(b) Determine the limiting form ofx(t) for small t .

ANS. (a) x = 1

2
at2− a

ω2
(1− cosωt), ω2= k

m
,

(b) x = aω2

4! t4, ωt ≪ 1.

15.9.3 Radioactive nuclei decay according to the law

dN

dt
=−λN,

N being the concentration of a given nuclide andλ being the particular decay constant.
This equation may be interpreted as stating that the rate of decay is proportional to the
number of these radioactive nuclei present. They all decay independently.
In a radioactive series ofn different nuclides, starting withN1,

dN1

dt
= −λ1N1,

dN2

dt
= λ1N1− λ2N2, and so on.

dNn

dt
= λn−1Nn−1, stable.

FindN1(t),N2(t), N3(t), n= 3, with N1(0)=N0, N2(0)=N3(0)= 0.

ANS.N1(t)=N0e
−λ1t , N2(t)=N0

λ1

λ2− λ1

(

e−λ1t − e−λ2t
)

,

N3(t)=N0

(

1− λ2

λ2− λ1
e−λ1t + λ1

λ2− λ1
e−λ2t

)

.

Find an approximate expression forN2 andN3, valid for smallt whenλ1≈ λ2.

ANS. N2≈N0λ1t , N3≈
N0

2
λ1λ2t

2.

Find approximate expressions forN2 andN3, valid for larget , when

(a) λ1≫ λ2,
(b) λ1≪ λ2.

ANS. (a)N2≈N0e
−λ2t ,

N3≈N0
(

1− e−λ2t
)

, λ1t ≫ 1.

(b) N2≈N0
λ1
λ2

e−λ1t ,

N3≈N0
(

1− e−λ1t
)

, λ2t ≫ 1.

15.9.4 The formation of an isotope in a nuclear reactor is given by

dN2

dt
= nvσ1N10− λ2N2(t)− nvσ2N2(t).
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Here the productnv is the neutron flux, neutrons per cubic centimeter, times centimeters
per second mean velocity;σ1 andσ2 (cm2) are measures of the probability of neutron
absorption by the original isotope, concentrationN10, which is assumed constant and
the newly formed isotope, concentrationN2, respectively. The radioactive decay con-
stant for the isotope isλ2.

(a) Find the concentrationN2 of the new isotope as a function of time.
(b) If the original element is Eu153, σ1 = 400 barns= 400× 10−24 cm2, σ2 =

1000 barns= 1000× 10−24 cm2, andλ2 = 1.4× 10−9 s−1. If N10= 1020 and
(nv) = 109 cm−2 s−1, find N2, the concentration of Eu154 after one year of con-
tinuous irradiation. Is the assumption thatN1 is constant justified?

15.9.5 In a nuclear reactor Xe135 is formed as both a direct fission product and a decay product
of I135, half-life, 6.7 hours. The half-life of Xe135 is 9.2 hours. Because Xe135 strongly
absorbs thermal neutrons thereby “poisoning” the nuclear reactor, its concentration is a
matter of great interest. The relevant equations are

dNI

dt
= γIϕσf NU − λINI ,

dNX

dt
= λINI + γXϕσf NU − λXNX − ϕσXNX.

HereNI = concentration of I135 (Xe135, U235). Assume

NU = constant,

γI = yield of I135 per fission= 0.060,

γX = yield of Xe135 direct from fission= 0.003,

λI = I135 (

Xe135
)

decay constant= ln 2

t1/2
= 0.693

t1/2
,

σf = thermal neutron fission cross section for U235,

σX = thermal neutron absorption cross section for Xe135

= 3.5× 106 barns= 3.5× 10−18 cm2.

(σI the absorption cross section of I135, is negligible.)

ϕ = neutron flux= neutrons/cm3×mean velocity (cm/s).

(a) FindNX(t) in terms of neutron fluxϕ and the productσf NU .
(b) FindNX(t →∞).
(c) AfterNX has reached equilibrium, the reactor is shut down,ϕ = 0. FindNX(t) fol-

lowing shutdown. Notice the increase inNX, which may for a few hours interfere
with starting the reactor up again.
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15.10 OTHER PROPERTIES

Substitution

If we replace the parameters by s − a in the definition of the Laplace transform
(Eq. (15.99)), we have

f (s − a) =
∫ ∞

0
e−(s−a)tF(t) dt =

∫ ∞

0
e−steatF(t) dt

= L
{

eatF(t)
}

. (15.152)

Hence the replacement ofs with s − a corresponds to multiplyingF(t) by eat , and con-
versely. This result can be used to good advantage in extending our table of transforms.
From Eq. (15.107) we find immediately that

L
{

eatsinkt
}

= k

(s − a)2+ k2
; (15.153)

also,

L
{

eatcoskt
}

= s − a

(s − a)2+ k2
, s > a.

Example 15.10.1 DAMPED OSCILLATOR

These expressions are useful when we consider an oscillating mass with damping propor-
tional to the velocity. Equation (15.129), with such damping added, becomes

mX′′(t)+ bX′(t)+ kX(t)= 0, (15.154)

in which b is a proportionality constant. Let us assume that the particle starts from rest at
X(0)=X0, X′(0)= 0. The transformed equation is

m
[

s2x(s)− sX0
]

+ b
[

sx(s)−X0
]

+ kx(s)= 0, (15.155)

and

x(s)=X0
ms + b

ms2+ bs + k
. (15.156)

This may be handled by completing the square of the denominator:

s2+ b

m
s + k

m
=

(

s + b

2m

)2

+
(

k

m
− b2

4m2

)

. (15.157)

If the damping is small,b2 < 4 km, the last term is positive and will be denoted byω2
1:

x(s) = X0
s + b/m

(s + b/2m)2+ω2
1

= X0
s + b/2m

(s + b/2m)2+ω2
1

+X0
(b/2mω1)ω1

(s + b/2m)2+ω2
1

. (15.158)
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By Eq. (15.153),

X(t) = X0e
−(b/2m)t

(

cosω1t +
b

2mω1
sinω1t

)

= X0
ω0

ω1
e−(b/2m)t cos(ω1t − ϕ), (15.159)

where

tanϕ = b

2mω1
, ω2

0 =
k

m
.

Of course, asb→ 0, this solution goes over to the undamped solution (Section 15.9).�

RLC Analog

It is worth noting the similarity between this damped simple harmonic oscillation of a mass
on a spring and anRLC circuit (resistance, inductance, and capacitance) (Fig. 15.11). At
any instant the sum of the potential differences around the loop must be zero (Kirchhoff’s
law, conservation of energy). This gives

L
dI

dt
+RI + 1

C

∫ t

I dt = 0. (15.160)

Differentiating the currentI with respect to time (to eliminate the integral), we have

L
d2I

dt2
+R

dI

dt
+ 1

C
I = 0. (15.161)

If we replaceI (t) with X(t),L with m,R with b, andC−1 with k, then Eq. (15.161) is
identical with the mechanical problem. It is but one example of the unification of diverse
branches of physics by mathematics. A more complete discussion will be found in Olson’s
book.17

FIGURE 15.11 RLCcircuit.

17H. F. Olson,Dynamical Analogies, New York: Van Nostrand (1943).
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FIGURE 15.12 Translation.

Translation

This time letf (s) be multiplied bye−bs, b > 0:

e−bsf (s) = e−bs

∫ ∞

0
e−stF(t) dt

=
∫ ∞

0
e−s(t+b)F(t) dt. (15.162)

Now let t + b= τ . Equation (15.162) becomes

e−bsf (s) =
∫ ∞

b

e−sτF(τ − b)dτ

=
∫ ∞

0
e−sτF(τ − b)u(τ − b)dτ, (15.163)

whereu(τ −b) is the unit step function. This relation is often called theHeaviside shifting
theorem (Fig. 15.12).

SinceF(t) is assumed to be equal to zero fort < 0, F(τ − b) = 0 for 0≤ τ < b.
Therefore we can extend the lower limit to zero without changing the value of the integral.
Then, noting thatτ is only a variable of integration, we obtain

e−bsf (s)= L
{

F(t − b)
}

. (15.164)

Example 15.10.2 ELECTROMAGNETIC WAVES

The electromagnetic wave equation withE = Ey or Ez, a transverse wave propagating
along thex-axis, is

∂2E(x, t)

∂x2
− 1

v2

∂2E(x, t)

∂t2
= 0. (15.165)

Transforming this equation with respect tot , we get

∂2

∂x2
L

{

E(x, t)
}

− s2

v2
L

{

E(x, t)
}

+ s

v2
E(x,0)+ 1

v2

∂E(x, t)

∂t

∣

∣

∣

∣

t=0
= 0. (15.166)
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If we have the initial conditionE(x,0)= 0 and

∂E(x, t)

∂t

∣

∣

∣

∣

t=0
= 0,

then

∂2

∂x2
L

{

E(x, t)
}

= s2

v2
L

{

E(x, t)
}

. (15.167)

The solution (of thisODE) is

L
{

E(x, t)
}

= c1e
−(s/v)x + c2e

+(s/v)x . (15.168)

The “constants”c1 and c2 are obtained by additional boundary conditions. They are
constant with respect tox but may depend ons. If our wave remains finite asx →
∞,L{E(x, t)} will also remain finite. Hencec2 = 0. If E(0, t) is denoted byF(t), then
c1= f (s) and

L
{

E(x, t)
}

= e−(s/v)xf (s). (15.169)

From the translation property (Eq. (15.164)) we find immediately that

E(x, t)=
{

F
(

t − x
v

)

, t ≥ x
v
,

0, t < x
v
.

(15.170)

Differentiation and substitution into Eq. (15.165) verifies Eq. (15.170). Our solution rep-
resents a wave (or pulse) moving in the positivex-direction with velocityv. Note that for
x > vt the region remains undisturbed; the pulse has not had time to get there. If we had
wanted a signal propagated along the negativex-axis,c1 would have been set equal to 0
and we would have obtained

E(x, t)=
{

F
(

t + x
v

)

, t ≥− x
v
,

0, t <− x
v
,

(15.171)

a wave along the negativex-axis. �

Derivative of a Transform

When F(t), which is at least piecewise continuous, ands are chosen so thate−stF(t)

converges exponentially for larges, the integral
∫ ∞

0
e−stF(t) dt

is uniformly convergent and may be differentiated (under the integral sign) with respect
to s. Then

f ′(s)=
∫ ∞

0
(−t)e−stF(t) dt = L

{

−tF (t)
}

. (15.172)

Continuing this process, we obtain

f (n)(s)= L
{

(−t)nF(t)
}

. (15.173)
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All the integrals so obtained will be uniformly convergent because of the decreasing expo-
nential behavior ofe−stF(t).

This same technique may be applied to generate more transforms. For example,

L
{

ekt
}

=
∫ ∞

0
e−stekt dt = 1

s − k
, s > k. (15.174)

Differentiating with respect tos (or with respect tok), we obtain

L
{

tekt
}

= 1

(s − k)2
, s > k. (15.175)

Example 15.10.3 BESSEL’S EQUATION

An interesting application of a differentiated Laplace transform appears in the solution of
Bessel’s equation withn= 0. From Chapter 11 we have

x2y′′(x)+ xy′(x)+ x2y(x)= 0. (15.176)

Dividing by x and substitutingt = x andF(t)= y(x) to agree with the present notation,
we see that the Bessel equation becomes

tF ′′(t)+ F ′(t)+ tF (t)= 0. (15.177)

We need a regular solution, in particular,F(0) = 1. From Eq. (15.177) witht = 0,
F ′(+0)= 0. Also, we assume that our unknownF(t) has a transform. Transforming and
using Eqs. (15.123), (15.124), and (15.172), we have

− d

ds

[

s2f (s)− s
]

+ sf (s)− 1− d

ds
f (s)= 0. (15.178)

Rearranging Eq. (15.178), we obtain
(

s2+ 1
)

f ′(s)+ sf (s)= 0, (15.179)

or
df

f
=− s ds

s2+ 1
, (15.180)

a first-order ODE. By integration,

lnf (s)=−1
2 ln

(

s2+ 1
)

+ lnC, (15.181)

which may be rewritten as

f (s)= C√
s2+ 1

. (15.182)

To make use of Eq. (15.108), we expandf (s) in a series of negative powers ofs, conver-
gent fors > 1:

f (s) = C

s

(

1+ 1

s2

)−1/2

= C

s

[

1− 1

2s2
+ 1 · 3

22 · 2!s4
− · · · + (−1)n(2n)!

(2nn!)2s2n
+ · · ·

]

. (15.183)
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Inverting, term by term, we obtain

F(t)= C

∞
∑

n=0

(−1)nt2n

(2nn!)2
. (15.184)

WhenC is set equal to 1, as required by the initial conditionF(0)= 1, F(t) is justJ0(t),
our familiar Bessel function of order zero. Hence

L
{

J0(t)
}

= 1√
s2+ 1

. (15.185)

Note that we assumeds > 1. The proof fors > 0 is left as a problem.
It is worth noting that this application was successful and relatively easy because we

took n = 0 in Bessel’s equation. This made it possible to divide out a factor ofx (or t).
If this had not been done, the terms of the formt2F(t) would have introduced a second
derivative off (s). The resulting equation would have been no easier to solve than the
original one.

When we go beyond linear ODEs with constant coefficients, the Laplace transform may
still be applied, but there is no guarantee that it will be helpful.

The application to Bessel’s equation,n 
= 0, will be found in the references. Alterna-
tively, we can show that

L
{

Jn(at)
}

= a−n(
√

s2+ a2− s)n√
s2+ a2

(15.186)

by expressingJn(t) as an infinite series and transforming term by term. �

Integration of Transforms

Again, with F(t) at least piecewise continuous andx large enough so thate−xtF(t) de-
creases exponentially (asx→∞), the integral

f (x)=
∫ ∞

0
e−xtF(t) dt (15.187)

is uniformly convergent with respect tox. This justifies reversing the order of integration
in the following equation:

∫ b

s

f (x)dx =
∫ b

s

dx

∫ ∞

0
dt e−xtF(t)

=
∫ ∞

0

F(t)

t

(

e−st − e−bt
)

dt, (15.188)

on integrating with respect tox. The lower limits is chosen large enough so thatf (s) is
within the region of uniform convergence. Now lettingb→∞, we have

∫ ∞

s

f (x)dx =
∫ ∞

0

F(t)

t
e−stdt = L

{

F(t)

t

}

, (15.189)

provided thatF(t)/t is finite att = 0 or diverges less strongly thant−1 (so thatL{F(t)/t}
will exist).
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Limits of Integration — Unit Step Function

The actual limits of integration for the Laplace transform may be specified with the (Heav-
iside) unit step function

u(t − k)=
{

0, t < k

1, t > k.

For instance,

L
{

u(t − k)
}

=
∫ ∞

k

e−st dt = 1

s
e−ks .

A rectangular pulse of widthk and unit height is described byF(t) = u(t) − u(t − k).
Taking the Laplace transform, we obtain

L
{

u(t)− u(t − k)
}

=
∫ k

0
e−st dt = 1

s

(

1− e−ks
)

.

The unit step function is also used in Eq. (15.163) and could be invoked in Exer-
cise 15.10.13.

Exercises

15.10.1 Solve Eq. (15.154), which describes a damped simple harmonic oscillator forX(0) =
X0, X′(0)= 0, and

(a) b2= 4 km (critically damped),
(b) b2 > 4 km (overdamped).

ANS. (a) X(t)=X0e
−(b/2m)t

(

1+ b

2m
t

)

.

15.10.2 Solve Eq. (15.154), which describes a damped simple harmonic oscillator forX(0)= 0,
X′(0)= v0, and

(a) b2 < 4 km (underdamped),
(b) b2= 4 km (critically damped),
(c) b2 > 4 km (overdamped).

ANS. (a)X(t)= v0

ω1
e−(b/2m)t sinω1t ,

(b) X(t)= v0te
−(b/2m)t .

15.10.3 The motion of a body falling in a resisting medium may be described by

m
d2X(t)

dt2
=mg − b

dX(t)

dt
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FIGURE 15.13 Ringing circuit.

when the retarding force is proportional to the velocity. FindX(t) anddX(t)/dt for the
initial conditions

X(0)= dX

dt

∣

∣

∣

∣

t=0
= 0.

15.10.4 Ringing circuit. In certain electronic circuits, resistance, inductance, and capacitance
are placed in the plate circuit in parallel (Fig. 15.13). A constant voltage is maintained
across the parallel elements, keeping the capacitor charged. At timet = 0 the circuit
is disconnected from the voltage source. Find the voltages across the parallel elements
R,L, andC as a function of time. AssumeR to be large.
Hint. By Kirchhoff’s laws

IR + IC + IL = 0 and ER =EC =EL,

where

ER = IRR, EL = L
dIL

dt

EC =
q0

C
+ 1

C

∫ t

0
IC dt,

q0 = initial charge of capacitor.

With the DC impedance ofL= 0, letIL(0)= I0, EL(0)= 0. This meansq0= 0.

15.10.5 With J0(t) expressed as a contour integral, apply the Laplace transform operation, re-
verse the order of integration, and thus show that

L
{

J0(t)
}

=
(

s2+ 1
)−1/2

, for s > 0.

15.10.6 Develop the Laplace transform ofJn(t) from L{J0(t)} by using the Bessel function
recurrence relations.
Hint. Here is a chance to use mathematical induction.

15.10.7 A calculation of the magnetic field of a circular current loop in circular cylindrical
coordinates leads to the integral

∫ ∞

0
e−kzkJ1(ka) dk, ℜ(z)≥ 0.

Show that this integral is equal toa/(z2+ a2)3/2.
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15.10.8 The electrostatic potential of a point chargeq at the origin in circular cylindrical coor-
dinates is

q

4πε0

∫ ∞

0
e−kzJ0(kρ)dk = q

4πε0
· 1

(ρ2+ z2)1/2
, ℜ(z)≥ 0.

From this relation show that the Fourier cosine and sine transforms ofJ0(kρ) are

(a)

√

π

2
Fc

{

J0(kρ)
}

=
∫ ∞

0
J0(kρ)coskζ dk =

{
(

ρ2− ζ 2
)−1/2

, ρ > ζ,

0, ρ < ζ.

(b)

√

π

2
Fs

{

J0(kρ)
}

=
∫ ∞

0
J0(kρ)sinkζ dk =

{

0, ρ > ζ,
(

ρ2− ζ 2
)−1/2

, ρ < ζ.

Hint. Replacez by z+ iζ and take the limit asz→ 0.

15.10.9 Show that

L
{

I0(at)
}

=
(

s2− a2)−1/2
, s > a.

15.10.10 Verify the following Laplace transforms:

(a) L
{

j0(at)
}

= L

{

sinat

at

}

= 1

a
cot−1

(

s

a

)

,

(b) L
{

n0(at)
}

does not exist,

(c) L
{

i0(at)
}

= L

{

sinhat

at

}

= 1

2a
ln

s + a

s − a
= 1

a
coth−1

(

s

a

)

,

(d) L
{

k0(at)
}

does not exist.

15.10.11 Develop a Laplace transform solution of Laguerre’s equation

tF ′′(t)+ (1− t)F ′(t)+ nF(t)= 0.

Note that you need a derivative of a transform and a transform of derivatives. Go as far
as you can withn; then (and only then) setn= 0.

15.10.12 Show that the Laplace transform of the Laguerre polynomialLn(at) is given by

L
{

Ln(at)
}

= (s − a)n

sn+1
, s > 0.

15.10.13 Show that

L
{

E1(t)
}

= 1

s
ln(s + 1), s > 0,

where

E1(t)=
∫ ∞

t

e−τ

τ
dτ =

∫ ∞

1

e−xt

x
dx.

E1(t) is the exponential-integral function.



988 Chapter 15 Integral Transforms

15.10.14 (a) From Eq. (15.189) show that
∫ ∞

0
f (x)dx =

∫ ∞

0

F(t)

t
dt,

provided the integrals exist.
(b) From the preceding result show that

∫ ∞

0

sint

t
dt = π

2
,

in agreement with Eqs. (15.122) and (7.56).

15.10.15 (a) Show that

L

{

sinkt

t

}

= cot−1
(

s

k

)

.

(b) Using this result (withk = 1), prove that

L
{

si(t)
}

=−1

s
tan−1 s,

where

si(t)=−
∫ ∞

t

sinx

x
dx, the sine integral.

15.10.16 If F(t) is periodic (Fig. 15.14) with a perioda so thatF(t + a) = F(t) for all t ≥ 0,
show that

L
{

F(t)
}

=
∫ a

0 e−stF(t) dt

1− e−as
,

with the integration now over only thefirst period of F(t).

15.10.17 Find the Laplace transform of the square wave (perioda) defined by

F(t)=
{

1, 0< t < a
2

0, a
2 < t < a.

ANS. f (s)= 1

s
· 1− e−as/2

1− e−as
.

FIGURE 15.14 Periodic function.
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15.10.18 Show that

(a) L{coshat cosat} = s3

s4+ 4a4
, (c) L{sinhat cosat} = as2− 2a3

s4+ 4a4
,

(b) L{coshat sinat} = as2+ 2a3

s4+ 4a4
, (d) L{sinhat sinat} = 2a2s

s4+ 4a4
.

15.10.19 Show that

(a) L
−1{(s2+ a2)−2}= 1

2a3
sinat − 1

2a2
t cosat ,

(b) L
−1{s

(

s2+ a2)−2}= 1

2a
t sinat ,

(c) L
−1{s2(s2+ a2)−2}= 1

2a
sinat + 1

2
t cosat ,

(d) L
−1{s3(s2+ a2)−2}= cosat − a

2
t sinat .

15.10.20 Show that

L
{(

t2− k2)−1/2
u(t − k)

}

=K0(ks).

Hint. Try transforming an integral representation ofK0(ks) into the Laplace transform
integral.

15.10.21 The Laplace transform
∫ ∞

0
e−xsxJ0(x) dx = s

(s2+ 1)3/2

may be rewritten as

1

s2

∫ ∞

0
e−yyJ0

(

y

s

)

dy = s

(s2+ 1)3/2
,

which is in Gauss–Laguerre quadrature form. Evaluate this integral fors = 1.0,0.9,0.8,

. . . , decreasings in steps of 0.1 until the relative error rises to 10 percent. (The effect
of decreasings is to make the integrand oscillate more rapidly per unit length ofy, thus
decreasing the accuracy of the numerical quadrature.)

15.10.22 (a) Evaluate
∫ ∞

0
e−kzkJ1(ka) dk

by the Gauss–Laguerre quadrature. Takea = 1 andz= 0.1(0.1)1.0.

(b) From the analytic form, Exercise 15.10.7, calculate the absolute error and the rel-
ative error.
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15.11 CONVOLUTION (FALTUNGS) THEOREM

One of the most important properties of the Laplace transform is that given by the convo-
lution, or Faltungs, theorem.18 We take two transforms,

f1(s)= L
{

F1(t)
}

and f2(s)= L
{

F2(t)
}

, (15.190)

and multiply them together. To avoid complications when changing variables, we hold the
upper limits finite:

f1(s)f2(s)= lim
a→∞

∫ a

0
e−sxF1(x) dx

∫ a−x

0
e−syF2(y) dy. (15.191)

The upper limits are chosen so that the area of integration, shown in Fig. 15.15a, is the
shaded triangle, not the square. If we integrate over a square in thexy-plane, we have
a parallelogram in thetz-plane, which simply adds complications. This modification is
permissible because the two integrands are assumed to decrease exponentially. In the limit
a →∞, the integral over the unshaded triangle will give zero contribution. Substituting
x = t − z, y = z, the region of integration is mapped into the triangle shown in Fig. 15.15b.
To verify the mapping, map the vertices:t = x + y, z = y. Using Jacobians to transform
the element of area, we have

dx dy =

∣

∣

∣

∣

∣

∣

∣

∣

∂x

∂t

∂y

∂t

∂x

∂z

∂y

∂z

∣

∣

∣

∣

∣

∣

∣

∣

dt dz=
∣

∣

∣

∣

1 0
−1 1

∣

∣

∣

∣

dt dz (15.192)

or dx dy = dt dz. With this substitution Eq. (15.191) becomes

f1(s)f2(s) = lim
a→∞

∫ a

0
e−st

∫ t

0
F1(t − z)F2(z) dz dt

= L

{∫ t

0
F1(t − z)F2(z) dz

}

. (15.193)

a b

FIGURE 15.15
Change of variables,

(a)xy-plane (b)zt-plane.

18An alternate derivation employs the Bromwich integral (Section 15.12). This is Exercise 15.12.3.
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For convenience this integral is represented by the symbol
∫ t

0
F1(t − z)F2(z) dz≡ F1 ∗ F2 (15.194)

and referred to as theconvolution, closely analogous to the Fourier convolution (Sec-
tion 15.5). If we substitutew = t − z, we find

F1 ∗ F2= F2 ∗ F1, (15.195)

showing that the relation is symmetric.
Carrying out the inverse transform, we also find

L
−1{f1(s)f2(s)

}

=
∫ t

0
F1(t − z)F2(z) dz. (15.196)

This can be useful in the development of new transforms or as an alternative to a partial
fraction expansion. One immediate application is in the solution of integral equations (Sec-
tion 16.2). Since the upper limit,t , is variable, this Laplace convolution is useful in treating
Volterra integral equations. The Fourier convolution with fixed (infinite) limits would apply
to Fredholm integral equations.

Example 15.11.1 DRIVEN OSCILLATOR WITH DAMPING

As one illustration of the use of the convolution theorem, let us return to the massm on
a spring, with damping and a driving forceF(t). The equation of motion ((15.129) or
(15.154)) now becomes

mX′′(t)+ bX′(t)+ kX(t)= F(t). (15.197)

Initial conditionsX(0)= 0,X′(0)= 0 are used to simplify this illustration, and the trans-
formed equation is

ms2x(s)+ bs x(s)+ kx(s)= f (s), (15.198)

or

x(s)= f (s)

m

1

(s + b/2m)2+ω2
1

, (15.199)

whereω2
1 ≡ k/m− b2/4m2, as before.

By the convolution theorem (Eq. (15.193) or (15.196)),

X(t)= 1

mω1

∫ t

0
F(t − z)e−(b/2m)z sinω1z dz. (15.200)

If the force is impulsive,F(t)= Pδ(t),19

X(t)= P

mω1
e−(b/2m)t sinω1t. (15.201)

19Note thatδ(t) lies inside the interval[0, t].



992 Chapter 15 Integral Transforms

P represents the momentum transferred by the impulse, and the constantP/m takes the
place of an initial velocityX′(0).

If F(t)= F0 sinωt , Eq. (15.200) may be used, but a partial fraction expansion is perhaps
more convenient. With

f (s)= F0ω

s2+ω2

Eq. (15.199) becomes

x(s) = F0ω

m
· 1

s2+ω2
· 1

(s + b/2m)2+ω2
1

= F0ω

m

[

a′s + b′

s2+ω2
+ c′s + d ′

(s + b/2m)2+ω2
1

]

. (15.202)

The coefficientsa′, b′, c′, andd ′ are independent ofs. Direct calculation shows

− 1

a′
= b

m
ω2+ m

b

(

ω2
0−ω2)2

,

− 1

b′
= −m

b

(

ω2
0−ω2)

[

b

m
ω2+ m

b

(

ω2
0−ω2)2

]

.

Sincec′ andd ′ will lead to exponentially decreasing terms (transients), they will be dis-
carded here. Carrying out the inverse operation, we find for the steady-state solution

X(t)= F0

[b2ω2+m2(ω2
0−ω2)2]1/2

sin(ωt − ϕ), (15.203)

where

tanϕ = bω

m(ω2
0−ω2)

.

Differentiating the denominator, we find that the amplitude has a maximum when

ω2= ω2
0−

b2

2m2
= ω2

1−
b2

4m2
. (15.204)

This is the resonance condition.20At resonance the amplitude becomesF0/bω1, showing
that the massm goes into infinite oscillation at resonance if damping is neglected(b= 0).
It is worth noting that we have had three different characteristic frequencies:

ω2
2 = ω2

0−
b2

2m2
,

resonance for forced oscillations, with damping;

ω2
1 = ω2

0−
b2

4m2
,

20The amplitude (squared) has the typical resonance denominator, the Lorentz line shape, Exercise 15.3.9.
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free oscillation frequency, with damping; and

ω2
0 =

k

m
,

free oscillation frequency, no damping. They coincide only if the damping is zero.�

Returning to Eqs. (15.197) and (15.199), Eq. (15.197) is our ODE for the response of
a dynamical system to an arbitrary driving force. The final response clearly depends on both
the driving force and the characteristics of our system. This dual dependence is separated
in the transform space. In Eq. (15.199) the transform of the response (output) appears as
the product of two factors, one describing the driving force (input) and the other describing
the dynamical system. This latter part, which modifies the input and yields the output, is
often called atransfer function . Specifically,[(s+b/2m)2+ω2

1]−1 is the transfer function
corresponding to this damped oscillator. The concept of a transfer function is of great use in
the field of servomechanisms. Often the characteristics of a particular servomechanism are
described by giving its transfer function. The convolution theorem then yields the output
signal for a particular input signal.

Exercises

15.11.1 From the convolution theorem show that

1

s
f (s)= L

{∫ t

0
F(x)dx

}

,

wheref (s)= L{F(t)}.
15.11.2 If F(t)= ta andG(t)= tb, a >−1, b >−1:

(a) Show that the convolution

F ∗G= ta+b+1
∫ 1

0
ya(1− y)b dy.

(b) By using the convolution theorem, show that
∫ 1

0
ya(1− y)b dy = a!b!

(a + b+ 1)! .

This is the Euler formula for the beta function (Eq. (8.59a)).

15.11.3 Using the convolution integral, calculate

L
−1

{

s

(s2+ a2)(s2+ b2)

}

, a2 
= b2.

15.11.4 An undamped oscillator is driven by a forceF0 sinωt . Find the displacement as a func-
tion of time. Notice that it is a linear combination of two simple harmonic motions,
one with the frequency of the driving force and one with the frequencyω0 of the free
oscillator. (AssumeX(0)=X′(0)= 0.)

ANS. X(t)= F0/m

ω2−ω2
0

(

ω

ω0
sinω0t − sinωt

)

.
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Other exercises involving the Laplace convolution appear in Section 16.2.

15.12 INVERSE LAPLACE TRANSFORM

Bromwich Integral

We now develop an expression for the inverse Laplace transformL−1 appearing in the
equation

F(t)= L
−1{f (s)

}

. (15.205)

One approach lies in the Fourier transform, for which we know the inverse relation. There
is a difficulty, however. Our Fourier transformable function had to satisfy the Dirichlet
conditions. In particular, we required that

lim
ω→∞

G(ω)= 0 (15.206)

so that the infinite integral would be well defined.21 Now we wish to treat functionsF(t)

that may diverge exponentially. To surmount this difficulty, we extract an exponential fac-
tor, eγ t , from our (possibly) divergent Laplace function and write

F(t)= eγ tG(t). (15.207)

If F(t) diverges aseαt , we requireγ to be greater thanα sothat G(t) will be convergent.
Now, withG(t)= 0 for t < 0 and otherwise suitably restricted so that it may be represented
by a Fourier integral (Eq. (15.20)),

G(t)= 1

2π

∫ ∞

−∞
eiut du

∫ ∞

0
G(v)e−iuv dv. (15.208)

Using Eq. (15.207), we may rewrite (15.208) as

F(t)= eγ t

2π

∫ ∞

−∞
eiut du

∫ ∞

0
F(v)e−γ ve−iuv dv. (15.209)

Now, with the change of variable,

s = γ + iu, (15.210)

the integral overv is thrown into the form of a Laplace transform,
∫ ∞

0
f (v)e−sv dv = f (s); (15.211)

21If delta functions are included,G(ω) may be a cosine. Although this does not satisfy Eq. (15.206),G(ω) is still bounded.
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FIGURE 15.16 Singularities
of estf (s).

s is now a complex variable, andℜ(s) ≥ γ to guarantee convergence. Notice that the
Laplace transform has mapped a function specified on the positive real axis onto the com-
plex plane,ℜ(s)≥ γ .22

With γ as a constant,ds = i du. Substituting Eq. (15.211) into Eq. (15.209), we obtain

F(t)= 1

2πi

∫ γ+i∞

γ−i∞
estf (s) ds. (15.212)

Here is ourinverse transform. We have rotated the line of integration through 90◦ (by
usingds = i du). The path has become an infinite vertical line in the complex plane, the
constantγ having been chosen so that all the singularities off (s) are on the left-hand side
(Fig. 15.16).

Equation (15.212), our inverse transformation, is usually known as theBromwich in-
tegral, although sometimes it is referred to as theFourier–Mellin theorem or Fourier–
Mellin integral . This integral may now be evaluated by the regular methods of contour
integration (Chapter 7). Ift > 0, the contour may be closed by an infinite semicircle in the
left half-plane. Then by the residue theorem (Section 7.1)

F(t)=�(residues included forℜ(s) < γ ). (15.213)

Possibly this means of evaluation withℜ(s) ranging through negative values seems para-
doxical in view of our previous requirement thatℜ(s)≥ γ . The paradox disappears when
we recall that the requirementℜ(s) ≥ γ was imposed to guarantee convergence of the
Laplace transform integral that definedf (s). Oncef (s) is obtained, we may then pro-
ceed to exploit its properties as an analytical function in the complex plane wherever we
choose.23 In effect we are employing analytic continuation to getL{F(t)} in the left half-
plane, exactly as the recurrence relation for the factorial function was used to extend the
Euler integral definition (Eq. (8.5)) to the left half-plane.

Perhaps a pair of examples may clarify the evaluation of Eq. (15.212).

22For a derivation of the inverse Laplace transform using only real variables, see C. L. Bohn and R. W. Flynn, Real variable
inversion of Laplace transforms: An application in plasma physics.Am. J. Phys.46: 1250 (1978).
23In numerical workf (s) may well be available only for discrete real, positive values ofs. Then numerical procedures are
indicated. See Krylov and Skoblya in the Additional Reading.
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Example 15.12.1 INVERSION VIA CALCULUS OF RESIDUES

If f (s)= a/(s2− a2), then

estf (s)= aest

s2− a2
= aest

(s + a)(s − a)
. (15.214)

The residues may be found by using Exercise 6.6.1 or various other means. The first step is
to identify the singularities, the poles. Here we have one simple pole ats = a and another
simple pole ats =−a. By Exercise 6.6.1, the residue ats = a is (1

2)eat and the residue at
s =−a is (−1

2)e−at . Then

Residues=
(1

2

)(

eat − e−at
)

= sinhat = F(t), (15.215)

in agreement with Eq. (15.105). �

Example 15.12.2

If

f (s)= 1− e−as

s
,

thenes(t−a) grows exponentially fort < a on the semicircle in the left-hands-plane, so
contour integration and the residue theorem are not applicable. However, we can evaluate
the integral explicitly as follows. We letγ → 0 and substitutes = iy, so

F(t)= 1

2πi

∫ γ+i∞

γ−i∞
estf (s)= 1

2π

∫ ∞

−∞

[

eiyt − eiy(t−a)
]dy

y
. (15.216)

Using the Euler identity, only the sines survive that are odd iny and we obtain

F(t)= 1

π

∫ ∞

−∞

[

sinty

y
− sin(t − a)y

y

]

. (15.217)

If k > 0, then
∫∞

0
sinky

y
dy gives π/2, and it gives−π/2 if k < 0. As a consequence,

F(t) = 0 if t > a > 0 and if t < 0. If 0 < t < a, then F(t) = 1. This can be written
compactly in terms of the Heaviside unit step functionu(t) as follows:

F(t)= u(t)− u(t − a)=







0, t < 0,

1, 0< t < a,

0, t > a,

(15.218)

a step function of unit height and lengtha (Fig. 15.17). �

Two general comments may be in order. First, these two examples hardly begin to show
the usefulness and power of the Bromwich integral. It is always available for inverting a
complicated transform when the tables prove inadequate.

Second, this derivation is not presented as a rigorous one. Rather, it is given more as
a plausibility argument, although it can be made rigorous. The determination of the in-
verse transform is somewhat similar to the solution of a differential equation. It makes
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FIGURE 15.17
Finite-length step function

u(t)− u(t − a).

little difference how you get the solution. Guess at it if you want. The solution can al-
ways be checked by substitution back into the original differential equation. Similarly,
F(t) can (and, to check on careless errors, should) be checked by determining whether, by
Eq. (15.99),

L
{

F(t)
}

= f (s).

Two alternate derivations of the Bromwich integral are the subjects of Exercises 15.12.1
and 15.12.2.

As a final illustration of the use of the Laplace inverse transform, we have some results
from the work of Brillouin and Sommerfeld (1914) in electromagnetic theory.

Example 15.12.3 VELOCITY OF ELECTROMAGNETIC WAVES IN A DISPERSIVE MEDIUM

The group velocityu of traveling waves is related to the phase velocityv by the equation

u= v− λ
dv

dλ
. (15.219)

Hereλ is the wavelength. In the vicinity of an absorption line (resonance),dv/dλ may be
sufficiently negative so thatu > c (Fig. 15.18). The question immediately arises whether
a signal can be transmitted faster thanc, the velocity of light in vacuum. This question,
which assumes that such a group velocity is meaningful, is of fundamental importance to
the theory of special relativity.

We need a solution to the wave equation

∂2ψ

∂x2
= 1

v2

∂2ψ

∂t2
, (15.220)

corresponding to a harmonic vibration starting at the origin at time zero. Since our medium
is dispersive,v is a function of the angular frequency. Imagine, for instance, a plane wave,
angular frequencyω, incident on a shutter at the origin. Att = 0 the shutter is (instanta-
neously) opened, and the wave is permitted to advance along the positivex-axis.
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FIGURE 15.18 Optical dispersion.

Let us then build up a solution starting atx = 0. It is convenient to use the Cauchy
integral formula, Eq. (6.43),

ψ(0, t)= 1

2πi

∮

e−izt

z− z0
dz= e−iz0t

(for a contour encirclingz = z0 in the positive sense). Usings = −iz and z0 = ω, we
obtain

ψ(0, t)= 1

2πi

∫ γ+i∞

γ−i∞

est

s + iω
ds =

{

0, t < 0,

e−iωt , t > 0.
(15.221)

To be complete, the loop integral is along the vertical lineℜ(s)= γ and an infinite semi-
circle, as shown in Fig. 15.19. The location of the infinite semicircle is chosen so that the
integral over it vanishes. This means a semicircle in the left half-plane fort > 0 and the
residue is enclosed. Fort < 0 we pick the right half-plane and no singularity is enclosed.
The fact that this is just the Bromwich integral may be verified by noting that

F(t)=
{

0, t < 0,

e−iωt , t > 0
(15.222)

FIGURE 15.19 Possible closed contours.
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and applying the Laplace transform. The transformed functionf (s) becomes

f (s)= 1

s + iω
. (15.223)

Our Cauchy–Bromwich integral provides us with the time dependence of a signal leav-
ing the origin att = 0. To include the space dependence, we note that

es(t−x/v)

satisfies the wave equation. With this as a clue, we replacet by t−x/v and write a solution:

ψ(x, t)= 1

2πi

∫ γ+i∞

γ−i∞

es(t−x/v)

s + iω
ds. (15.224)

It was seen in the derivation of the Bromwich integral that our variables replaces theω
of the Fourier transformation. Hence the wave velocityv may become a function ofs, that
is, v(s). Its particular form need not concern us here. We need only the propertyv ≤ c and

lim
|s|→∞

v(s)= constant, c. (15.225)

This is suggested by the asymptotic behavior of the curve on the right side of Fig. 15.18.24

Evaluating Eq. (15.225) by the calculus of residues, we may close the path of integration
by a semicircle in the right half-plane, provided

t − x

c
< 0.

Hence

ψ(x, t)= 0, t − x

c
< 0, (15.226)

which means that the velocity of our signal cannot exceed the velocity of light in the vac-
uum,c. This simple but very significant result was extended by Sommerfeld and Brillouin
to show just how the wave advanced in the dispersive medium. �

Summary — Inversion of Laplace Transform

• Direct use of tables, Table 15.2, and references; use of partial fractions (Section 15.8)
and the operational theorems of Table 15.1.

• Bromwich integral, Eq. (15.212), and the calculus of residues.

• Numerical inversion, see the Additional Readings.

24Equation (15.225) follows rigorously from the theory of anomalous dispersion. See also the Kronig–Kramers optical disper-
sion relations of Section 7.2.
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Table 15.1 Laplace Transform Operations

Operations Equation

1. Laplace transform f (s)=L{F(t)} =
∫ ∞

0
e−stF(t) dt (15.99)

2. Transform of derivative sf (s)− F(+0)=L{F ′(t)} (15.123)

s2f (s)− sF (+0)− F ′(+0)=L{F ′′(t)} (15.124)

3. Transform of integral
1

s
f (s)=L

{∫ t

0
F(x)dx

}

(Exercise 15.11.1)

4. Substitution f (s − a)=L{eatF(t)} (15.152)

5. Translation e−bsf (s)=L{F(t − b)} (15.164)

6. Derivative of transform f (n)(s)=L{(−t)nF(t)} (15.173)

7. Integral of transform
∫ ∞

s
f (x)dx =L

{

F(t)

t

}

(15.189)

8. Convolution f1(s)f2(s)=L

{∫ t

0
F1(t − z)F2(z) dz

}

(15.193)

9. Inverse transform, Bromwich integral
1

2πi

∫ γ+i∞

γ−i∞
estf (s) ds = F(t) (15.212)

Exercises

15.12.1 Derive the Bromwich integral from Cauchy’s integral formula.
Hint. Apply the inverse transformL−1 to

f (s)= 1

2πi
lim

α→∞

∫ γ+iα

γ−iα

f (z)

s − z
dz,

wheref (z) is analytic forℜ(z)≥ γ .

15.12.2 Starting with

1

2πi

∫ γ+i∞

γ−i∞
estf (s) ds,

show that by introducing

f (s)=
∫ ∞

0
e−szF(z)dz,

we can convert one integral into the Fourier representation of a Dirac delta function.
From this derive the inverse Laplace transform.

15.12.3 Derive the Laplace transformation convolution theorem by use of the Bromwich inte-
gral.

15.12.4 Find

L
−1

{

s

s2− k2

}

(a) by a partial fraction expansion.
(b) Repeat, using the Bromwich integral.
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Table 15.2 Laplace Transforms

f (s) F (t) Limitation Equation

1. 1 δ(t) Singularity at+0 (15.141)

2.
1

s
1 s > 0 (15.102)

3.
n!

sn+1
tn s > 0 (15.108)

n >−1

4.
1

s − k
ekt s > k (15.103)

5.
1

(s − k)2
tekt s > k (15.175)

6.
s

s2− k2
coshkt s > k (15.105)

7.
k

s2− k2
sinhkt s > k (15.105)

8.
s

s2+ k2
coskt s > 0 (15.107)

9.
k

s2+ k2
sinkt s > 0 (15.107)

10.
s − a

(s − a)2+ k2
eat coskt s > a (15.153)

11.
k

(s − a)2+ k2
eat sinkt s > a (15.153)

12.
s2− k2

(s2+ k2)2
t coskt s > 0 (Exercise 15.10.19)

13.
2ks

(s2+ k2)2
t sinkt s > 0 (Exercise 15.10.19)

14.(s2+ a2)−1/2 J0(at) s > 0 (15.185)

15.(s2− a2)−1/2 I0(at) s > a (Exercise 15.10.9)

16.
1

a
cot−1

(

s

a

)

j0(at) s > 0 (Exercise 15.10.10)

17.

1

2a
ln

s + a

s − a

1

a
coth−1

(

s

a

)















i0(at) s > a (Exercise 15.10.10)

18.
(s − a)n

sn+1
Ln(at) s > 0 (Exercise 15.10.12)

19.
1

s
ln(s + 1) E1(x)=−Ei(−x) s > 0 (Exercise 15.10.13)

20.
ln s

s
− ln t − γ s > 0 (Exercise 15.12.9)

A more extensive table of Laplace transforms appears in Chapter 29 of AMS-55 (see footnote 4 in Chapter 5 for the reference).

15.12.5 Find

L
−1

{

k2

s(s2+ k2)

}
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(a) by using a partial fraction expansion.
(b) Repeat using the convolution theorem.
(c) Repeat using the Bromwich integral.

ANS. F(t)= 1− coskt.

15.12.6 Use the Bromwich integral to find the function whose transform isf (s)= s−1/2. Note
thatf (s) has a branch point ats = 0. The negativex-axis may be taken as a cut line.

ANS. F(t)= (πt)−1/2.

15.12.7 Show that

L
−1{(s2+ 1

)−1/2}= J0(t)

by evaluation of the Bromwich integral.
Hint. Convert your Bromwich integral into an integral representation ofJ0(t). Fig-
ure 15.20 shows a possible contour.

15.12.8 Evaluate the inverse Laplace transform

L
−1{(s2− a2)−1/2}

by each of the following methods:

(a) Expansion in a series and term-by-term inversion.
(b) Direct evaluation of the Bromwich integral.
(c) Change of variable in the Bromwich integral:s = (a/2)(z+ z−1).

FIGURE 15.20 A possible
contour for the inversion of

J0(t).
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15.12.9 Show that

L
−1

{

ln s

s

}

=− ln t − γ,

whereγ = 0.5772. . . , the Euler–Mascheroni constant.

15.12.10 Evaluate the Bromwich integral for

f (s)= s

(s2+ a2)2
.

15.12.11 Heaviside expansion theorem. If the transformf (s) may be written as a ratio

f (s)= g(s)

h(s)
,

whereg(s) andh(s) are analytic functions,h(s) having simple, isolated zeros ats = si ,
show that

F(t)= L
−1

{

g(s)

h(s)

}

=
∑

i

g(si)

h′(si)
esi t .

Hint. See Exercise 6.6.2.

15.12.12 Using the Bromwich integral, invertf (s) = s−2e−ks . ExpressF(t) = L−1{f (s)} in
terms of the (shifted) unit step functionu(t − k).

ANS. F(t)= (t − k)u(t − k).

15.12.13 You have a Laplace transform:

f (s)= 1

(s + a)(s + b)
, a 
= b.

Invert this transform by each of three methods:

(a) Partial fractions and use of tables.
(b) Convolution theorem.
(c) Bromwich integral.

ANS. F(t)= e−bt − e−at

a − b
, a 
= b.

Additional Readings

Champeney, D. C.,Fourier Transforms and Their Physical Applications.New York: Academic Press (1973).
Fourier transforms are developed in a careful, easy-to-follow manner. Approximately 60% of the book is
devoted to applications of interest in physics and engineering.

Erdelyi, A.,W. Magnus, F. Oberhettinger, and F. G. Tricomi,Tables of Integral Transforms, 2 vols. New York:
McGraw–Hill (1954). This text contains extensive tables of Fourier sine, cosine, and exponential transforms,
Laplace and inverse Laplace transforms, Mellin and inverse Mellin transforms, Hankel transforms, and other,
more specialized integral transforms.
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Hanna, J. R.,Fourier Series and Integrals of Boundary Value Problems. Somerset, NJ: Wiley (1990). This book
is a broad treatment of the Fourier solution of boundary value problems. The concepts of convergence and
completeness are given careful attention.

Jeffreys, H., and B. S. Jeffreys,Methods of Mathematical Physics, 3rd ed. Cambridge, UK: Cambridge University
Press (1972).

Krylov, V. I., and N. S. Skoblya,Handbook of Numerical Inversion of LaplaceTransform. Jerusalem: Israel
Program for Scientific Translations (1969).

Lepage, W. R.,Complex Variables and the Laplace Transform for Engineers. New York: McGraw-Hill (1961);
New York: Dover (1980). A complex variable analysis that is carefully developed and then applied to Fourier
and Laplace transforms. It is written to be read by students, but intended for the serious student.

McCollum, P. A., and B. F. Brown,Laplace Transform Tables and Theorems. New York: Holt, Rinehart and
Winston (1965).

Miles, J. W.,Integral Transforms in Applied Mathematics. Cambridge, UK: Cambridge University Press (1971).
This is a brief but interesting and useful treatment for the advanced undergraduate. It emphasizes applications
rather than abstract mathematical theory.

Papoulis, A.,The Fourier Integral and Its Applications. New York: McGraw-Hill (1962). This is a rigorous
development of Fourier and Laplace transforms and has extensive applications in science and engineering.

Roberts, G. E., and H. Kaufman,Table of Laplace Transforms. Philadelphia: Saunders (1966).

Sneddon, I. N.,Fourier Transforms. New York: McGraw-Hill (1951), reprinted, Dover (1995). A detailed com-
prehensive treatment, this book is loaded with applications to a wide variety of fields of modern and classical
physics.

Sneddon, I. H.,The Use of Integral Transforms. New York: McGraw-Hill (1972). Written for students in science
and engineering in terms they can understand, this book covers all the integral transforms mentioned in this
chapter as well as in several others. Many applications are included.

Van der Pol, B., and H. Bremmer,Operational Calculus Based on the Two-sided Laplace Integral, 3rd ed. Cam-
bridge, UK: Cambridge University Press (1987). Here is a development based on the integral range−∞ to
+∞, rather than the useful 0 to∞. Chapter V contains a detailed study of the Dirac delta function (impulse
function).

Wolf, K. B., Integral Transforms in Science and Engineering. New York: Plenum Press (1979). This book is a
very comprehensive treatment of integral transforms and their applications.


